

Probing the electroweak symmetry breaking with Higgs production at the LHC

Bin Yan Los Alamos National Laboratory

Higgs potential and BSM opportunity Aug 27-31, 2021

K. P. Xie and Bin Yan, PLB820(2021)136515

Higgs couplings and EWSB

Particle mass [GeV]

Higgs couplings and EWSB

Higgs couplings and EWSB

$$\mathcal{L}_{hVV} = \kappa_W g_{hWW}^{\mathrm{SM}} h W_{\mu}^+ W^{-\mu} + \frac{\kappa_Z}{2} g_{hZZ}^{\mathrm{SM}} h Z_{\mu} Z^{\mu},$$

$$g_{hVV}^{\rm SM} = 2m_V^2/v$$
 $\lambda_{WZ} \equiv \frac{\kappa_W}{\kappa_Z}$

To verify the EWSB, we need to determine:

(1) The magnitude of the Higgs couplings

(2) The relative size between hWW and hZZ couplings

Higgs couplings and New Physics

$$\mathcal{L}_{hVV} = \kappa_W g_{hWW}^{\mathrm{SM}} h W_{\mu}^+ W^{-\mu} + \frac{\kappa_Z}{2} g_{hZZ}^{\mathrm{SM}} h Z_{\mu} Z^{\mu},$$

(1) The magnitude of Higgs couplings @NP

For example:

Q. H. Cao, L. X. Xu, Bin Yan and S. H. Zhu, PLB789(2019)233-237

Composite Higgs models

$$\kappa_W = \kappa_Z = \sqrt{1-\xi}, \quad \xi = \frac{v^2}{2f^2}$$

(2) The negative relative sign of Higgs couplings @NP

I. Low, J. Lykken, JHEP10(2010)053

It depends on the custodial representation of Higgs.

 $\lambda_{WZ} < 0$ e.g. fiveplet in Georgi-Machacek model

How to fix the relative sign between hWW and hZZ couplings

EWSB@LHC and lepton colliders

th and Zh production

K. P. Xie and Bin Yan, PLB820(2021)136515

Cross section is sensitive to the relative sign between htt and hWW

Top quark Yukawa coupling as a bridge

Cross section is sensitive to the relative sign between htt and hZZ

High Energy behavior

relative sign between htt and hWW

 $bW^{\mu} \to ht$

$$M \sim \bar{u}(t) \Big[m_t (\kappa_t - \kappa_W) + \left(\frac{2m_W^2}{u} \kappa_W + \frac{m_t^2}{s} \kappa_t \right) p_W \Big] P_L u(b).$$

$$M_{\pm,\pm,0} \sim \frac{m_t^2}{m_Z^2} \left(\frac{\kappa_Z - \kappa_t}{m_t^2} \right) \log^2 \left(-\frac{s}{m_t^2} \right)$$

Cross sections@ 13 TeV LHC

$$R_{th} = \frac{\sigma(pp \to th)}{\sigma^{\rm SM}(pp \to th)}$$

$$R_{Zh} = \frac{\sigma(gg \to Zh)}{\sigma^{\rm SM}(gg \to Zh)}$$

Limits from current LHC

Limits from current LHC

 $\kappa_t \kappa_Z < 0$ was excluded by current data is not sensitive

to the assumption of Ztt coupling

*K*_t

Orange: tth cross section Green: ggF, h->ZZ Blue: Zh

*K*_t

12

Limits from current LHC

Summary

A. We proposed a new method to pin down the relative sign between hWW and hZZ couplings, which is a key part to verify the EWSB;

B. Combing th and Zh data at the 13 TeV LHC, the data favors the same sign of hWW and hZZ couplings.

C. This conclusion is not sensitive to the other possible new physics in Zh production.

