

Institute of High Energy Physics Chinese Academy of Sciences

### Searches for light scalar and charged scalar



Jin Wang Institute of High Energy Physics, CAS

Monday, August 30, 2021

Higgs potential and BSM opportunity

# Introduction

- 2
- Standard Model (SM) of particle physics is very successful in describing and predicting experimental results
  - discovery of Higgs in 2012: an important piece to complete SM
- Strong evidence that physics beyond SM (BSM) exist
  - neutrino masses, matter–antimatter asymmetry, dark matter, gravity and hierarchy problem etc.
- Many BSM theories predict additional Higgs like bosons
  - Two Higgs doublet models(2HDM) predict extended Higgs sector with neutral CP even (h/H), neutral CP odd (A) and charged Higgs bosons (H<sup>±</sup>)
  - Other models (eg. 3HDM) extend to a Higgs triplet that gives doubly charged scalar Higgs
  - 2HDM plus singlet scalar (2HDM +S) or dark matter models predict spin-0, low-mass particles from Higgs exotic decays





# BSM Higgs searches in LHC

- 3
- Focus on recent BSM Higgs results from LHC on the following two directions
- Searches for light sector
  - direct searches for low-mass Higgs-like resonance
    - ATLAS: <u>ATLAS-CONF-2018-025</u>, CMS: <u>Phys. Lett. B 793 (2019) 320</u>
  - exotic Higgs decays to low-mass new particles
    - $H \rightarrow aa \rightarrow 4\gamma$  : <u>CMS-PAS-HIG-21-003</u>
    - $H \rightarrow aa \rightarrow bb\mu\mu$  : <u>ATLAS-CONF-2021-009</u>
    - $H \rightarrow XX/ZX \rightarrow 4l$ : <u>ATLAS-CONF-2021-034</u>
- Searches for charged Higgs
  - $H^{\pm} \rightarrow tb$  : <u>JHEP 06 (2021) 145</u>
  - $H^{\pm} \rightarrow cb$ : <u>ATLAS-CONF-2021-037</u>
  - $H^{\pm} \to cs$ : Phys. Rev. D 102 (2020) 072001
  - $H^{\pm} \rightarrow W^{\pm}Z$  and  $H^{\pm\pm} \rightarrow W^{\pm\pm}$ 
    - ATLAS: JHEP 06 (2021) 146, see also talk by Hanlin XU
    - CMS: <u>Eur. Phys. J. C 81 (2021) 723</u>

Higgs potential and BSM opportunity

## $H \rightarrow aa$ searches

- $H \rightarrow aa$  possible in Next-to-MSSM with a as scalar or pseudo scalar
  - extended Minimal SUSY SM (MSSM) by adding singlet field
- A large number of searches at the LHC
  - with many final states

•  $a \rightarrow bb, a \rightarrow \tau\tau, a \rightarrow \mu\mu, a \rightarrow \gamma\gamma$ 



• scanning  $m_a$  ranges up to  $m_a \le m_h/2$ 

$$H \rightarrow aa \rightarrow 4\gamma$$

- Final states: 4 isolated photons with mass range  $15GeV < m_a < 60GeV$ 
  - Iow statistics but also very low background contamination
- Boosted Decision Trees (BDT) is explored to separate signal from backgrounds
  - parameterized as a function of  $m_a$
- Signal extracted by fitting  $m_{4\gamma}$  spectrum to data
  - background modelled by sidebands with smooth falling shapes
- No significant deviation from the background-only hypothesis is observed



Higgs potential and BSM opportunity



## $H \rightarrow aa \rightarrow bb\mu\mu$

- 6
- Final states: two muons with two b-tagged jets
- Main background: ttbar and DY events
  - estimated from control regions
  - DY background reweighted from 0-b-tag region to 2-b-tag signal region
- BDT is trained to separate signal from backgrounds
  - with different  $m_{\mu\mu}$  8GeV windows



## $H \rightarrow aa \rightarrow bb\mu\mu$

- Small excess of events above the Standard Model backgrounds
  - observed at an invariant dimuon mass of 52 GeV
  - local (global) significance of  $3.3\sigma$  (1.7 $\sigma$ )
- 95% C.L. limits extracted for different signal masses



### $H \rightarrow XX/ZX \rightarrow 4l$

- 8
- Dark matter and 2HDM models predicts mediator X
  - searches for  $H \to XX/ZX$
- 4 lepton final state is explored
  - different phase spaces with different mass ranges

|            | Single Z (ZX) analysis                                 | High-mass (HM) analysis                                | Low-mass (LM) analysis                   |
|------------|--------------------------------------------------------|--------------------------------------------------------|------------------------------------------|
|            | $H \rightarrow ZX \rightarrow 4\ell \ (\ell = e, \mu)$ | $H \rightarrow XX \rightarrow 4\ell \ (\ell = e, \mu)$ | $H \rightarrow XX \rightarrow 4\mu$      |
| Mass range | $15\mathrm{GeV} < m_X < 55\mathrm{GeV}$                | $15\mathrm{GeV} < m_X < 60\mathrm{GeV}$                | $1 \mathrm{GeV} < m_X < 15 \mathrm{GeV}$ |

- Main backgrounds:  $H \rightarrow ZZ$  and non-resonant ZZ events
  - estimated using MC and data-driven method separately
- Signal extracted from binned-fit to di-lepton masses



Higgs potential and BSM opportunity

### $H \rightarrow XX/ZX \rightarrow 4l$

- 9
- Signal extracted from binned fit to di-lepton mass of data
- No significant excess over backgrounds
- Limits extracted for all 3 searches



# Charged Higgs searches

#### 10

- Extended Higgs sectors with additional SU(2) doublets or triplets predict singly and doubly charged Higgs
- Many searches with different decays of singly charged Higgs are explored at the LHC
- Singly/Doubly charged Higgs bosons decaying into vector bosons



## $H^\pm \to t b$

- $H^{\pm} \rightarrow tb$  is the primary decay mode for  $m_{H^+} > m_t$
- Final states: lepton+jets with 4 signal regions
  - 5j 3b, 5j ≥4b, ≥6j 3b, ≥6j ≥4b
- Background dominated by top processes
  - estimated from MC
  - with data-based correction to tt+jets background



## $H^\pm \to t b$

- Neural Network (NN) classifier is trained to separate signal and backgrounds
  - parameterized as a function of signal masses
- Signal extracted by simultaneous fits of NN outputs in 4 signal regions
- No significant excess observed from data
  - most sensitive channel for low  $\tan \beta$



Higgs potential and BSM opportunity

$$H^{\pm} \rightarrow cb$$

- In 3HDM lightest H<sup>±</sup> can be lighter than top quark
  - predominantly decays into cb
- Final states: 1 lepton, 3 b-jet, 1 c-jet
- Main backgrounds: tt+jets
  - modelled using simulation
  - o corrected with a data-driven methods
- Events categorized based on jet and b-jet numbers
   ATLAS Preliminary









## $H^\pm \to cb$

- Neural Network (NN) classifier is explored to separate signal from backgrounds
  - parameterized as a function of signal masses
- Signal extracted from binned fit of NN outputs in different signal regions
- Small excess observed at 130GeV
  - local (global) significance of  $3\sigma$  ( $2\sigma$ )





Higgs potential and BSM opportunity

$$H^{\pm} \rightarrow cs$$

- Light charged Higgs from top decays with final states of 1 lepton and above 4 jets
- Main background from tt events
  - full reconstruction using kinematic fits
- Signal categorized based on c-tag ouputs
- No excess observed from data
  - upper limits extracted assuming  $BR(H^{\pm} \rightarrow cs) = 1$









Doubly and singly charged Higgs bosons into vector bosons channel in ATLAS

- 16
  - Target pair and associate production modes where *H*<sup>±±</sup> predominantly decay to WW
  - Final states: multi-leptons, MET and jets
  - Main backgrounds:
    - SM WZ, non-prompt leptons, electron charge-flip
    - data-driven corrections applied to improve the background modelling
  - Signal selection optimized for each lepton regions and different signal masses







Higgs potential and BSM opportunity

- Limits extracted from profiled likelihood fits for different sigal masses combined all signal categories
- No significant deviations from the Standard Model predictions are observed
- H<sup>±±</sup> excluded at 95% C.L. up to 350 GeV and 230 GeV for the pair and associated production modes



Higgs potential and BSM opportunity

- Target VBF singal with mjj > 500 GeV and  $|\Delta \eta_{jj}|$  > 2.5 for leading two jets
- Background estimated based on simulation and constraints from three control regions (CRs)
  - o noprompt lepton CR, tZq CR and ZZ CR

- No significant deviation from SM observed
  - $s_H$  range of 0.20 to 0.35 excluded for  $m_{H_5}$  of 200 to 1500 GeV



# Summary

- A wide range of searches for BSM Higgs at the LHC
  - exotic Higgs decays to low-mass new particles
  - singly and doubly charged Higgs searches
- No significant excess found over SM predictions
- Large parameter space of BSM benchmarks are already excluded
  - significant improvements from optimization of object identification, MVA techniques and background modelling
- More results to come with full Run2 data, and Run3/HL-LHC



## Back up

Higgs potential and BSM opportunity

 $H \rightarrow XX/ZX \rightarrow 4l$ 

#### CMS-PAS-HIG-19-007



No significant deviation from SM observed  $\rightarrow$  strong limits set

Several hundred mass hypotheses considered for both XX and ZX final states; excesses with largest local significance: 2.9 and 3.0σ at m<sub>x</sub> of 18.8 and 15.6 GeV, respectively

Limits on production cross-section times branching fraction interpreted in terms of dark-photon and ALP models

#### Higgs potential and BSM opportunity