Higgs potential and BSM opportunity workshop

The multilepton anomalies at the LHC and the prospect of new physics at the EW scale

> Abdualazem Fadol, Bruce Mellado, Yaquan Fang, Xifeng Ruan

> > July 29, 2021

Introduction

- □ Following a study here [1], it becomes clear that several anomalous in the LHC Run-I datasets can be explained by adding new scalar bosons to the SM.
- \Box Two real scalar χ and S, where χ is dark matter, while S is Higgs-like boson [2].

- □ Subsequently, a more sophisticated investigation is performed on Run-II LHC datasets [3].
- □ These discrepancies are not likely to be a result of the mismodelling of the SM prediction.
- [1] J.Phys.G 45 (2018) 11, 115003
- [2] Eur. Phys.J.C 76 (2016) 10, 580
- [3] JHEP 10 (2019) 157

The simplified model

$$\begin{split} \mathscr{L}_{\mathrm{K}} &= \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{1}{2} m_{S}^{2} S S, \\ \mathscr{L}_{SVV'} &= \frac{1}{4} \kappa_{sgg} \frac{\alpha_{s}}{12\pi \nu} S G^{a\mu\nu} G^{a}_{\mu\nu} + \frac{1}{4} \kappa_{sgg} \frac{\alpha}{\pi \nu} S F^{\mu\nu} F_{\mu\nu} \\ &\quad + \frac{1}{4} \kappa_{sgz} \frac{\alpha}{\pi \nu} S Z^{\mu\nu} Z_{\mu\nu} + \frac{1}{4} \kappa_{sgg} \frac{\alpha}{\pi \nu} S Z^{\mu\nu} F_{\mu\nu} \\ &\quad + \frac{1}{4} \kappa_{sww} \frac{2\alpha}{\pi s_{w}^{2} \nu} S W^{+\mu\nu} W_{\mu\nu}^{-}, \\ \mathscr{L}_{Sff} &= -\sum_{\tau} \kappa_{sff} \frac{\alpha}{\mu'} S \tilde{f} f, \\ \mathscr{L}_{HhS} &= -\frac{1}{2} \nu \left[\lambda_{hhs} hhS + \lambda_{hss} hSS + \lambda_{hHs} HHS \\ &\quad + \lambda_{Hss} HSS + \lambda_{hhs} HhS \right], \\ \mathscr{L}_{S\chi} &= -\frac{1}{2} \nu \lambda_{sg\chi} S \chi \chi - \frac{1}{2} \lambda_{ssg\chi} S S \chi \chi. \\ \mathscr{L}_{S} &= \mathscr{L}_{\mathrm{K}} + \mathscr{L}_{SVV'} + \mathscr{L}_{Sff} \tilde{f} + \mathscr{L}_{hHS} + \mathscr{L}_{S\chi} \end{split}$$

$$\begin{split} \mathscr{L}_{\mathrm{G}} &= -\frac{1}{4}\,\beta_{g}\,\kappa_{_{HSS}}^{\mathrm{SM}}\,G_{\mu\nu}G^{\mu\nu}H + \beta_{\nu}\,\kappa_{_{h\nu\nu}}^{\mathrm{SM}}\,V_{\mu}V^{\mu}H,\\ \mathscr{L}_{\mathrm{Y}} &= -\frac{1}{\sqrt{2}}\,\left[\,y_{_{HH}}\bar{t}tH + y_{_{bbH}}\bar{b}bH\,\right],\\ \mathscr{L}_{H} &= \frac{1}{2}\partial_{\mu}H\partial^{\mu}H - \frac{1}{2}m_{_{H}}^{2}HH + \mathscr{L}_{\mathrm{G}} + \mathscr{L}_{\mathrm{Y}}.\\ \mathscr{L}_{\mathrm{tot}} &= \mathscr{L}_{\mathrm{SM}} + \mathscr{L}_{H} + \mathscr{L}_{\mathrm{S}}. \end{split}$$

3

 $\label{eq:model} \begin{array}{l} \Box \quad \mbox{Where } \beta_g^2 = y_{ttH} / y_{ttH}^{\rm SM} \mbox{ is the scale factor for } H \mbox{ production.} \\ \hline \quad \mbox{The total Lagrangian contains the SM, } H \mbox{ sector and the real singlet scalar } S. \end{array}$

- [1] J.Phys.G 45 (2018) 11, 115003
- [2] Eur. Phys.J.C 76 (2016) 10, 580

Abdualazem | The multilepton anomalies at the LHC

The simplified model The possible decay modes

S. No.	Scalars	Decay modes
D.1	h	$b\bar{b}, \tau^+\tau^-, \mu^+\mu^-, s\bar{s}, c\bar{c}, gg, \gamma\gamma, Z\gamma, W^+W^-, ZZ$
D.2	Н	D.1, hh, SS, Sh
D.3	Α	D.1, $t\bar{t}$, Zh , ZH , ZS , $W^{\pm}H^{\mp}$
D.4	H^{\pm}	$W^{\pm}h, W^{\pm}H, W^{\pm}S$
D.5	S	D.1, χχ

Scalar	Production mode	Search channels	
	$gg \rightarrow H, Hjj (ggF and VBF)$	Direct SM decays as in Table 1	
		$\rightarrow SS/Sh \rightarrow 4W \rightarrow 4\ell + E_T^{miss}$	
		$\rightarrow hh \rightarrow \gamma \gamma b\bar{b}, b\bar{b}\tau\tau, 4b, \gamma \gamma WW$ etc.	
Η		$\rightarrow Sh$ where $S \rightarrow \chi \chi \implies \gamma \gamma$, $b\bar{b}$, $4\ell + E_T^{miss}$	
	$pp \rightarrow Z(W^{\pm})H (H \rightarrow SS/Sh)$	$\rightarrow 6(5)l + E_T^{miss}$	
		$\rightarrow 4(3)l + 2j + E_T^{miss}$	
		$\rightarrow 2(1)l + 4j + E_T^{miss}$	
	$pp \rightarrow t\bar{t}H, (t + \bar{t})H (H \rightarrow SS/Sh)$	$\rightarrow 2W + 2Z + E_T^{miss}$ and b-jets	
		\rightarrow 6W \rightarrow 3 same sign leptons + jets and E_T^{miss}	
H^{\pm}	$pp \rightarrow tH^{\pm} (H^{\pm} \rightarrow W^{\pm}H)$	$\rightarrow 6W \rightarrow 3$ same sign leptons + jets and E_T^{miss}	
	$pp \rightarrow tbH^{\pm} (H^{\pm} \rightarrow W^{\pm}H)$	Same as above with extra b-jet	
	$pp \rightarrow H^{\pm}H^{\mp} (H^{\pm} \rightarrow HW^{\pm})$	$\rightarrow 6W \rightarrow 3$ same sign leptons + jets and E_T^{miss}	
	$pp \rightarrow H^{\pm}W^{\pm} (H^{\pm} \rightarrow HW^{\pm})$	\rightarrow 6W \rightarrow 3 same sign leptons + jets and E_T^{miss}	
A	$gg \rightarrow A (ggF)$	$\rightarrow t\bar{t}$	
		$\rightarrow \gamma\gamma$	
	$gg \rightarrow A \rightarrow ZH (H \rightarrow SS/Sh)$	Same as $pp \rightarrow ZH$ above, but with resonance structure over final state objects	
	$gg \rightarrow A \rightarrow W^{\pm}H^{\mp}(H^{\mp} \rightarrow W^{\mp}H)$	6W signature with resonance structure over final state objects	
	$gg \rightarrow S(ggF)$	Resonantly through decays as in Table 1 ($\gamma\gamma$, $b\bar{b}$, $\tau\tau$, $ZZ \rightarrow 4\ell$)	
3	or $H \rightarrow SS/Sh$ (associated production)	Non-resonantly through multilepton + E_T^{miss} decays	

Is considered to be completely dominant.

A list of potential search channels arising from the addition of the new scalars; which

□ leads to rich phenomenological activities. Of particular interest are multilepton signatures.

Abdualazem | The multilepton anomalies at the LHC

The simplified model Multilepton final states

 $\Box \ pp \to H \to Sh \to \ell^+\ell^- + X$

Expected to have more jets multiplicity; and

- □ di-lepton invariant mass below 100 GeV.
- \Box Well separated leptons as shown in $\Delta \phi(\ell \ell)$.
- □ Efficiency comparable to that of the SM.

 \Box The masses of the H and S bosons were fixed to 270 GeV and 150 GeV respectively.

- □ The SM Higgs boson is taken to be 125.09 GeV.
- □ Including significant production mechanisms only:

- \Box The branching ratio for the $H \rightarrow Sh$ is fixed to 100%.
- \Box The *S* is assumed to have Higgs-like branching ratio.
- \Box The only free parameter left out in the fit is β_g of the size of the Yukawa couplings.

LHC multilepton measurements

- ATLAS and CMS multilepton measurements;
- □ with a simple baseline selection is shown.
- Most of the results are from the Run-II datasets.
- □ These were not included in the previous results [3].

[3] J.Phys.G 45 (2018) 11, 11500

Data set	Reference	Selection	
ATLAS Run 1	ATLAS-EXOT-2013-16 [4]	SS $\ell\ell$ and $\ell\ell\ell+b\text{-jets}$	
ATLAS Run 1	ATLAS-TOPQ-2015-02 [5]	OS $e\mu + b$ -jets	
CMS Run 2	CMS-PAS-HIG-17-005 [6]	SS $e\mu,\mu\mu$ and $\ell\ell\ell$ + b-jets	
CMS Run 2	CMS-TOP-17-018 [7]	OS $e\mu$	
CMS Run 2	CMS-PAS-SMP-18-002 ^[8]	$\ell\ell\ell + E_{\mathrm{T}}^{\mathrm{miss}}(WZ)$	
ATLAS Run 2	ATLAS-EXOT-2016-16 [9]	SS $\ell\ell$ and $\ell\ell\ell+b\text{-jets}$	
ATLAS Run 2	ATLAS-CONF-2018-027 [10]	OS $e\mu + b$ -jets	
ATLAS Run 2	ATLAS-CONF-2018-034 [11]	$\ell\ell\ell + E_{\rm T}^{\rm miss}~(WZ)$	

- [4] JHEP 10 (2015) 150
- [5] Eur. Phys. J. C 77 (2017) 804
- [6] CMS-PAS-HIG-17-005 (2017)
- [7] JHEP 10 (2018) 117
- [8] CMS-PAS-SMP-18-002 (2018)
- [9] JHEP 12 (2018) 039
- [10] ATLAS-CONF-2018-027 (2018)
- [11] ATLAS-CONF-2018-034 (2018)

LHC multilepton measurements CMS fit example with the BSM signal

- □ Poor modelling of POWHEG+Pythia8 distribution is improved through reweighting.
- \Box We fix the normalisation of the SM by scaling it to the data in the region $m_{\ell\ell} > 110$ GeV.

8

- □ A normalisation systematic of 3% is applied to all but DY.
- $\Box~$ DY systematic = 6.8%. 3% systematic on $m_{\ell\ell}$ shape in top
- □ Fit results:
 - $\beta_q^2 = 2.79 \pm 0.52$
 - Fit is extremely well constrained.

□ Used conservative assumption that $\ell^+\ell^- + 2b$ final state is perfectly described by the SM. □ The discrepancy comes from events with N_{b-iets} , and excess unlikely due to $t\bar{t}$.

The combined fit results

□ Fitting ATLAS and CMS measurements simultaneously.

- \Box The profile-likelihood ratio as a function of β_g^2 .
- \Box The combined best-fit for β_g^2 is 2.92 ± 0.35 .
- $\hfill\square$ This is equivalent to a significance of $8.04\sigma.$
- □ Which is calculated by:

• $Z = \sqrt{-2\log\lambda(0)}$

- □ The multilepton discrepancy can be explained using only one parameter.
- □ The inconsistencies have been growing since Run-I of the LHC.

• [3] JHEP 10 (2019) 157

LHC multilepton measurements Results not included in the combination

10

- \Box Residual discrepancies at high $m_{\ell\ell}$ will be fixed with missing NNLO QCD and NLO EW corrections.
- \Box Excess at low $m_{\ell\ell}$ remains prevalent, indicating that effects seen in Run 1 were not statistical fluctuations.
- NNLO QCD corrections do not fix the issue (see Mitov et al.)

LHC multilepton measurements

Excesses in di-leptons with full-jet veto not included in the combination

11

 $\Box~$ QCD NNLO to $q\bar{q} \rightarrow WW$ NLO QCD to $gg \rightarrow WW$ and NLO EW corrections is applied

Final state	Characteristic	Dominant SM process	Significance
l⁺l∙ + jets, b-jets	m _{ii} <100 GeV, dominated by 0b- jet and 1b-jet	tt+Wt	>5σ
l⁺l [.] + full-jet veto	m _{ii} <100 GeV	ww	~3σ
l±l± & l±l±l + b-jets	Moderate H_{τ}	ttW, 4t	>3σ
l‡l± & l±l±l et al., no b-jets	In association with h	Wh, WWW	~4.5σ
Z(→I⁺ŀ)+I	р _{тz} <100 GeV	zw	>3σ

12

 $\Box\,$ Anomalies cannot be explained by mismodelling of a particular process, e.g. $t\bar{t}$ production alone.

- □ nor are coming from SM prediction mismodelling.
- □ These discrepancies are interpreted with a simplified model;
- \Box where $H \rightarrow SS, Sh$ and S is treated as SM Higgs-like.
- \Box The masses of the *H* and *S* bosons were fixed while β_g is set free.
- The combined significance measures the inability of MC tools to describe multilepton data; and

13

 \Box how a simplified model with $H \rightarrow Sh$ is able to capture the effect with one parameter.

