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Part 1 A mini review of Higgs in new physics

--- from technicolor to SUSY

Possible New Physics

to solve fine-tuning problem

® Double the number of particles (Higgs as fundamental scalar): SUSY !
® Higgsis composite: Technicolor !

® Higgs as Pseudo-Goldstone boson: Little Higgs !
Twin Higgs !



Part 1 A mini review of Higgs in new physics

--- from technicolor to SUSY

Possible New Physics

to solve fine-tuning problem

® Double the number of particles (Higgs as fundamental scalar): SUSY !
® Higgsis composite: Technicolor !

® Higgs as Pseudo-Goldstone boson: Little Higgs !
Twin Higgs !

@ Two-Higgs-doublet models (not solve fine-tuning)

Three-Higgs-doublet models



Two-Higgs-Doublet Models

Lei Wang, 2021 Pre-SUSY school

Ning Chen, Pre-school, this workshop
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V. D. Barger, J. L. Hewett, R. Phillips, PRD41 (1990 ) 3421



Twin-Higgs Models

The twin Higgs mechanism is proposed as an interesting solution to the
hierarchy problem. The SM Higgs emerges as a pseudo-Goldstone boson
once a global symmetry is spontaneously broken, which is similar to what
happens in the little Higgs models. An additional discrete symmetry is
imposed, which ensures the absence of one-loop quadratic divergence of
Higgs mass. The resulting Higgs boson mass is naturally around the

electroweak scale when the cut-off scale of the theory is around 5-10 TeV.



technicolor

T m

S. Weinberg, PRD13(1976) 974; D19(1979) 1277
L. Susskind, PRD20 (1979) 2619
E. Farhi, L. Susskind, Phys. Rept. 74 (1981) 277



technicolor

=

Introduce TC-fermions which have QCD-like strong interaction.
At some high scale (say TeV), TC-fermions condensate, replacing
Higgs mechanism for EWSB.
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technicolor

T m

e Dynamical EWSB without fundamental Higgs

 New interaction appear at TeV, solving hierarchy problem
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technicolor

T m

Challenges

1. How can new strong dynamics generate fermion masses?
Pure technicolor does not; ETC is needed

2. How can the new dynamics generate fermion masses
without large FCNC ?

Changing behavior of TC dynamics (walking TC) can help

3. The dynamics splitting top and bottom masses would tend
to affect p-parameter. How to keep é6p ~ 0 ?
Models with additional top strong interactions (topcolor)



technicolor

Until 2012, TC theory was allowed by experiments;

The only trouble is its inelegance, getting more and more complex.

HH20124F, TCHILEA F 55654
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technicolor

In 2012 LHC discovery of 125 GeV Higgs give TC a fatal blow,
because in TC2 theory the top-Higgs boson formed by the top

qguark condensation should be heavier than 300 GeV.

Improvement:

1 topcolor improved to top seesaw

2 conformal TC



technicolor

Learn a lesson:

« TCtheory, starting from a very simple very beautiful idea, is getting more

and more complex;

« TC/ETCis too ambitious, dynamical EWSB plus generating fermion

masses, too good too big to be true.
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technicolor

Commemoration for TC:

* Give up fundamental Higgs to solve naturalness problem

A window to dynamical EWSB through strong interaction

 The discovery of 125 GeV Higgs gave a fatal blow to TC.
Either give up or modify TC. The traditional TC predicts

heavy composite Higgs (arXiv:1108.4000)




Little Higgs Theory

Motivation:

No one-loop quadratic divergence of Higgs mass

What is little Higgs
* Higgs boson is a pseudo Goldstone boson of an approximate global symmetry

* At least two sets of interactions are needed to break this global symmetry
-- collective symmetry breaking
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Little Higgs Theory

@ SUSY (symmetry between opposite spin & statistics)

Natural cancellations: t versus t
W versus W
H versus H

O The Little Higgs

Quadratic divergences cancelled at one-loop level by new states:
W,Z,B— Wy, Zi,By, t—T, H<o

(cancellation among same spin states!)



Little Higgs Theory

collective symmetry breaking
L=LQ+EIL1+EEL2
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Little Higgs Theory

Littlest Higgs Model Arkani-Hamed, Cohen, Katz, Nelson, JHEPOT(2002)034
Global Symmetries | Gauge Syvmmetries
SU(5)/SO(5) | [SU@ eUQ)
Y N |
G H F I=SM

SUG) > soes)
14 Goldstones




Little Higgs Theory

Phenomenology

(1) Higgs diphoton signal is suppressed
Wang, JMY, PRD84, 075024(2011)

(2) T-odd particles, top-partner

Belyaev, Chen, Tobe, Yuan, PRD74, 115020 (2006)

(3) Dark matter
Wang, JMY, Zhu, PRD88 (2013) 075018



Supersymmetry

In fact, the concept of supersymmetry
emerged historically at least in part because
of 1ts role 1n string theory.

Experimental discovery of supersymmetry
would certainly give string theory a big
boost, and learning how supersymmetry 1S
broken might very well give string theorists
crucial clues about how to proceed.

Edward Witten
2003.8.16



Supersymmetry

* SUSY can make a “small” Higgs mass natural

* SUSY is part of a larger vision of physics,
not just a technical solution

* measured value of sin%0 favors SUSY GUT

* survives electroweak tests

* heavy top mass, as needed

Edward Witten
2003.8.16



Supersymmetry
Minimal SUSY (MSSM)

SM field Super partner SU;(2) Uy(1)
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Supersymmetry
SUSY needs 2 Higgs doublets

To give masses for both up and down type
quarks, two Higgs doublets with opposite Y are
needed since /1] term in W violates SUSY

YuijQiHLU § A+ Yaig Q; HdD;'

To cancel SU(2); X U(1)y anomaly, need one more
higgsino and thus one more Higgs chiral superfield
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Supersymmetry

SUSY predicts 5 Higgs bosons

250_ ' [ ' T T [ T I — T | T T T

maximal mixing
u = —200 GeV

Y5 200 ]

F i

: i

w

> i

= i . -
n

Eﬂ 150 £l -

’ i

i e — i — e — i — o0 — - — :

= - P -]

i g B I ]

oo /-/ -*"_H'—. tan g = 3 |

) /' r 1 | | 1

100 150 200 250




Supersymmetry

SUSY predicts 5 Higgs bosons

At tree level:  my < my|cos23| < my

At Ioop_level . A — Mé +m7cos2B(5 — 2siy) + m; my(A; — pcot )
| ! my(A; — pcot 3) ME + 2m3, cos 2Bs, + m;

3my Mz X} X7
2 2 2 t S t t
m, <my+e=my+ llog + (1—12 g)]

<135 GeV (for Mg < 2TeV)



Supersymmetry

SUSY predicts 5 Higgs bosons

Neutral Higgs Couplings:

h H A type
tt cosa/sinf3  sina/sinf8 yscotB | Hff
bb T —sina/cos S cosaf/cosf stan
WW, ZZ| sin(f—a) cos(f—a) 0 HVV
7z cos(B—a) sin(B— a) 0 |HHV

U Mg = 00 (@a— B—7/2) JIU

h H A type
tt 1 —cotfB vscotB | Hff
bb 77 1 tanfB ~stanf
WWwW, ZZ 1 0 0 HVV
Z A 0 | 0 HHV




Supersymmetry

SUSY Higgs bosons have very rich pheno at colliders

At lepton colliders LEP, CEPC, -+
e Z l
e ‘h | “h

At hadron colliders LHC, SPPC, -«



Supersymmetry

Status of SUSY in light of 125 GeV Higgs and muon g-2:

GMSB/AMSB:
CMSSM/mSUGRA:

MSSM:

nMSSM:
NMSSM:

Split-SUSY:

Stealth SUSY:
Compressed SUSY:

cannot explain muon g-2
can give 125 GeV Higgs, but with very heavy stop (fine-tuning)
can give 125 GeV Higgs; but cannot explain muon g-2

can fit all data well, but suffer from little fine-tuning

nearly excluded (suppress diphoton rate too much)

can fit all data well

no problem (give up naturalness)

no problem (can always escape detections)

no problem (can escape detection at LHC)



Supersymmetry

Status of SUSY in light of 125 GeV Higgs and muon g-2:

cannot explain muon g-2
GMSB/AMSB: can give 125 GeV Higgs, but with very heavy stop (fine-tuning)

CMSSM/mSUGRA: can give 125 GeV Higgs; but cannot explain muon g-2

Improve them :
Li, Liu, Wang, JMY, Zhang, 2106.04466

Wang, Wu, Xiao, JMY, Zhang, 2104.03262
Wang, Wang, Xiao, JMY, Zhu, 1808.10851
Wang, Wang, IMY, 1703.10894; 1504.00505

Wang, Wang, JMY, Zhang, 1505.02785



Part 2 Machine learning for Higgs physics at LHC

2.1 Introduction to machine learning

ARTIFICIAL INTELLIGENCE

A program that can sense, reason,
act, and adapt

MACHINE LEARNING

Algorithms whose performance improve
as they are exposed to more data over time

DEEP
LEARNING

Subset of machine learning in
which multilayered neural
networks learn from
vast amounts of data




Image
S'f"UCtU"e Classification
Discovery Feature °® Customer

e Elicitation  Fraud @® Retention
Detection ®

Meaningful
compression

DIMENSIONALLY . .
REDUCTION CLASSIFICATION ® Diagnostics

Big data
Visualisation

@ Forecasting

Recommended UNSUPERVISED SUPERVISED
Systems LEARNING LEARNING @ Predictions

CLUSTERING REGRESSION

Target@ed MACHINE @ Process

Marketing Optimization

LEARNING ~
[ ]
Customer New Insights
Segmentation

REINFORCEMNET
LEARNING

Real-Time Decisions @ ® Robot Navigation

Game Al @ @ Skill Aquisition
[ ]
Learning Tasks



Neural Network

 Warren McCulloch and Walter Pitts (1943) created the first neural network

based on mathematics and algorithms called threshold logic.

 The perceptron algorithm was invented in 1957 at the Cornell Aeronautical

Laboratory by Frank Rosenblatt.

* For multilayer perceptron (feed-forward neural network), where at least one
hidden layer exists, more sophisticated algorithms such as backpropagation

(Rumelhart, Hinton and Williams, 1986) must be used.
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Neural Network

. output y
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Machine Learning in HEP

Abdughani, Ren, Wu, JMY, Zhao, 1905.06047
Supervised deep learning in high energy phenomenology: a mini review

GOAL
» “Solve” HEP problems using DATA
EXAMPLE
» Physics model selection
e Scan (e.g. 1011.4306, 1106.4613, 1703.01309, 1708.06615)
« Collider
« Parton distribution function (e.g. 1605.04345)
» Object reconstruction (e.g. NIPS-DLPS)
» Pileup mitigation (e.g. 1512.04672, 1707.08600)
« Jet tagging (e.g. 1407.5675, 1501.05968, 1612.01551, 1702.00748)
» Event selection (e.g. 1402.4735, 1708.07034, 1807.09088)
» Decayed object reconstruction

« Anomaly event detection (e.g. 1807.10261)



Machine Learning in HEP

An event is a signal or background ?

Event

Extract i
Features Slg nal
Ehotons Features Classifier # or
* Leptons
p Background

» Jets (Tags)

* Missing ET

HIGH-LEVEL FEATURES

= Number of jets

- pr of the leading lepton
- A¢p between the leading jet and missing ET

- Reconstructed top mass

LOW-LEVEL FEATURES

- four—-momenta of reconstructed objects



Methods for Event Selection

B
o Cut-flow
S
Control Signal Region

Region



Methods for Event Selection

o Cut-flow

it
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Methods for Event Selection

e Cut-flow N
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Methods for Event Selection

e Cut-flow

Probability Density

0.008

0.006

0.004

0.002

| — Signal

L — Background

P
You may be
tempted to place

a threshold on x
.
Threshold depends
on natural relative
abundance

(|J'ID T T

4 3 2 1 0 1 2 3 4 5

Input feature x

|s the simple threshold
cut optimal?

Benjamin Nachman



Methods for Event Selection

e Cut-flow

« Machine Learning

> ~
 Boosted Decision Tree (BDT) / N / .
\



Methods for Event Selection

o Cut-flow

« Machine Learning
» Boosted Decision Tree (BDT)

yes| is sex male?

is age > 9.57
\ 0.73 36%
é is sibsp > 2.57
017 61%

0.05 2% 0.89 2%

FiBen SREREDE=FIVRERN



Methods for Event Selection

o Cut-flow

Machine Learning
» Boosted Decision Tree (BDT)
* Neural Networks

» Shallow Neural Network (NN)




Methods for Event Selection

o Cut-flow

« Machine Learning

Boosted Decision Tree (BDT)

Neural Networks

» Shallow Neural Network (NN)

Deep Learning

Deep Neural Network (DNN)

1410.3469, 1402.4735, 1803.01550
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Methods for Event Selection

e Cut-flow

« Machine Learning

Boosted Decision Tree (BDT)

Neural Networks

» Shallow Neural Network (NN)

Deep Learning
» Deep Neural Network (DNN)

» Convolutional Neural Network (CNN)

1708.07034

1410.3469, 1402.4735, 1803.01550
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Graph Neural Network

The Graph Neural Network: History

1
I
2016 2017
2014 2016 2017
I I
L)

1
1 1

oo
2018

[1) Gori et al. 2005

[2] Li et al. ICLR 2016

[3] Bruna et al. ICLR 2014

[4] Defferrard et al. NIPS 2016
[5] Kipf et al. ICLR 2017

[6] Gilmer et al. ICML 2017
[7] Liao et al. 2018

[8] Gaunt et al. 2018

[9] Allamanis et al. 2018



Graph Neural Network




Graph Neural Network




Event as Graph

Our ldea

* Represent an event as a graph ¢ = (V, E)

E: d; = \/AyngrA@gj

Encode each vertex into a state vector V: (0,0,1,0,m,E, Pr)

Message passing between vertices

Each vertex votes the signal/background

Average the votes as the final result

encode @/;e

—
()
A\ -

v

vote 9/ average
* / (s ) signal or
e\\e background




Performance Index

Expected discovery significance is

S UsLESQ ES

= . =
\/E JUBLEg \/ B

S, B: the number of selected signal and background events
e 0. Cross section
e L: integrated luminosity

€Y, e: efficiencies of preselection cuts and classifier

We define the expected relative discovery significance as es/+/€g



Detailed operation (1)

Embedding Message Passing State update Message Message Vote
Passing & Passing &
State update  State update

A 4
fo .
(" ma




Detailed operation (2)

: : . : hot(id
Use one-hot-like encoding for object identity. e £(id, E, py) = relu (VVe one pOT (id) n be>
30-dim feature vectors E

Distance measure using AR = \/An? + A¢?2

Pair distances are expanded in a Gaussian
basis (linearly distributed in [0, 5]) as vectors
of length 21.

Use separate message and update functions
for each iteration.

Tr(lt) (s,d) = relu (Wﬂ(lt) [exparsld(d)] t bg’t‘))

() (s5,m) = relu (Wu( X [:;l] + bl(‘t))

fv(s) = O-(VVUS + bs)

relu:
Binary Cross-Entropy (BCE) as loss function. expand:
Calculate gradients using error back-propagation.
Optimize network parameters using Adam algorithm. b., by, by, by :
Training with mini-batch of examples. W, W Wy, W, t

Adopt early stopping to prevent overfitting.
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pp — ttH (H=h) — ttbb

pp - ttH (H=A) - ttbhb

pp — tt bb (background)



o2

1 ]0]-1] 0|0] 00160 | 0.0679 | -0.0001
2 |0 0f 1)0] 03265 ) 06360 | 0.058
3]0 0f1)0]0195 | 03934 | 0.0187
4 |0 0f-1)0]01703 ) 03179 | 0.0215
5 0] 0f-1)0]03520 | 01805 | 0.0113
b |0 0f-1)0]01442 | 0.2491 | 0.0174
7 0] 0f[-1)0]00827 | 03333 | 0.0110
8 |0 0f 1])0] 00452 | 00709 | 0.0068
9 |0 0f 1)0] 00373 | 00519 | 0.0059
(0| 0|-1|0| 00282 | 0.0552 | 0.0043
11| 0| 0] 0| 1] 02154 | 0.2154 | 0.0000

1 2 3 4 5 b 7 8 9 10 n
1 ] 00000 | 2.8578 | 15566 | 3.1012 | 2.6385 | 2.3965 | 4.2066 | 1.4305 | 3.0275 | 4.4020 | 2.4592
2 | 28578 | 0.0000 | 22158 | 0.5844 | 23785 | 27535 | 45119 | 1.B450 | 04306 | 2.5726 | 2.6467
3 | 15566 | 22198 | 0.0000 | 16393 | 2.8377 | 2.3508 | 3.5506 | 2.2533 | 2.2532 | 3.3985 | 13257
4 | 31012 | 0.5844 | 16353 | 0.0000 | 2.8085 | 3.2335 | 4.2561 | 2.4220 | 06836 | 2.5808 | 2.1275
5 | 2.6385 | 23785 | 2.8377 | 2.8085 | 0.0000 | 0.5545 | 21564 | 1.3415 | 21250 | 2.0415 | 2.237%
6 | 2.3565 | 27535 | 23509 | 3.2339 | 0.5545 | 0.0000 | 19747 | 1.3322 | 2.556% | 2.5738 | 16836
7 | 4.2000 | 45119 | 3.5506 | 42561 | 21504 | 15747 | 0.0000 | 3.3008 | 4.2135 | 3.1e31 | 2.2780
§ | 14305 | 1.8450 [ 2.2553 | 24220 | 13419 | 1.3322 | 3.3068 | 0.0000 | 1.8527 | 2.9715 | 2.3663
9 | 3.0275 | 04306 | 22532 | 0.6836 | 21250 | 25569 | 4.2135 | 1.B527 | D.0000 | 2.1421 | 2452
10 | 44020 | 25726 | 3.3985 | 2.5808 | 2.0419 | 2.5738 | 3.1631 | 2.9715 | 2.1421 | 0.0000 | 2.6109
11 | 2.4592 | 26467 | L3257 | 21275 | 22379 | 16836 | 22780 | 23663 | 24522 | 26108 | 0.0000

FIG. 1. Event graph with detailed node features and edge
weights for a specific simulated tth event.



For each event:

« each node i gives 3 probabilities (p;) for tth, ttA and tthb

e average over all the nodes as the final output

~ p(hle)
1
N Z(pi)k —  p(4le)
— p(ble)
For each event sample D:
Ln(D) = [ w(hle)
ecD L L*‘-'!.(-D)
QD) = Ly (D)

La(D) = [T p(Ale)

ecD



Probability density

Probability density

Probability density

o
.O 1
=}

ttbb
tth
ttA

0.2

0.8

1.0

T
0.2

T
0.8

1.0

+ each node i gives 3 probabilities (p;) for tth, ttA and tthh

* average over all the nodes as the final output

p(hle)

1
7. PR
p(ble)

The MPNN has indeed learned some
discriminative features for different
processes:

The background ttbb events tend to have
higher p(b|e);

The tth events tend to have higher p(h|e);
The ttA events tend to have higher p(A|e)



For each event:

Probability density

density
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Probabili
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Probability density
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—— CPeven ——-- CP odd _ _ =
1 . . + each node i gives 3 probabilities (p;), for tth, ttA and tthb
136.11b ) * average over all the nodes as the final output
> p(hle)
1
§ @~ ple)
S L
~100 -50 0 50 p(ble)
For each event sample D:
5_
> "\1 L, (D)= H’p(h €) .
4- ‘xl e€D Q(D) La(D)
‘\ ! . ‘r h{D]
2 \ La(D) = H p(Ale)
14 ‘\\\ e€D
—ZIUO —1I00 CI] 1?]0
300 fb-1 The overlap between the two distributions

r reduces with increasing luminosity.

When the luminosity is 300 fb~1, the two
distributions have nearly no overlap, which
A means that the CP nature of top-Higgs

T coupling can be determined.
In@



2.3 Machine learning for triple-Higgs coupling at LHC

Abdughani, Wang, Wu, JMY, Zhao, 2005.11086
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Fraction of Events
2

hh

t(E

twef

Iy

bbTT 4+ JheF

0.6 0.8 1.0

The MPNN training results for the
signal (hh) and backgrounds.

The event fractions of signal and
background versus the final score s



hh ] tW + j| £ by ith 7 bb iV it vi| alo) | 5/B

Nocut  |40.7 [127]|953600 [128]| 123200| 117100 [140]|661.3 [141)(20070 [140][1710 [142]| 482002 | ~0 | ~0
Baseline cuts| 0.0105 | 1.8568 |0.2180] 0.0675 0.0247 | 00246 | 00153 | 0.0101 |0.3876(0.0047
MPNN | 0.0067 | 00581 |0.0180] 0.0152 0.0080 | 00025 | 00018 | 0.0017 | 1.13 | 0.08
a=S/\/B+(8B)?

Signal and background cross sections in fb at 14 TeV HL-LHC with luminosity 3000 fb~1,

before hadron-level cuts but after baseline cuts and after MPNN validation process
requiring the signal events number Nsig = 20 to have reasonable statistics. The
significance is calculated by using § = 0.
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The 20 upper bounds on production cross section of the Higgs pair
and triple Higgs coupling at 14 TeV LHC



Summary

We apply the Message Passing Neural Network (MPNN) to the study of non-resonant Higgs pair
production process pp — hh in the final state with 2b + 2/ + E%‘iss at the LHC. Although the
MPNN can improve the signal significance, it is still challenging to observe such a process at the
LHC. We find that a 2¢ upper bound (including a 10% systematic uncertainty) on the production
cross section of the Higegs pair is 3.7 times the predicted SM cross section at the LHC with the

luminosity of 3000 fb~!, which will limit the triple Higgs coupling to the range of [—3,11.5].
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2.4 Machine learning for an ALP at LHC

Ren, Wang, Wu, JMY, Zhang, 2106.07018

pp = WE(= Fv)a(— vy)  pp = Z(= (70 )a(— 7y)
SM backgrounds: V + 7y, V +j, QCD di-jets

How to distinguish a photon-jet from a single photon or QCD jet ?

We use convolutional neural network (CNN) to identify photon-jet
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Conclusion

Machine learning is useful for Higgs physics

-- Graph neural network (GNN) for Htt production at LHC
can help distinguish CP-even h from CP-odd A

-- Graph neural network (GNN) for HH production at LHC
can enhance signal significance

-- Convolutional neural network (CNN) for ALP production at LHC
can enhance signal significance



Thank you for your attention !
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