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Part  2 Machine learning for Higgs physics at LHC

--- from technicolor to SUSY



A mini review of Higgs in new physics Part  1
--- from technicolor to SUSY

Possible New Physics 
to solve fine-tuning problem

 Double the number of particles (Higgs as fundamental scalar):  SUSY !

 Higgs is composite:  Technicolor !

 Higgs as Pseudo-Goldstone boson:   Little Higgs !
Twin Higgs !

For other composite Higgs, 
see the talk by Honghao Zhang and Fengfeng Cai



A mini review of Higgs in new physics Part  1
--- from technicolor to SUSY

Possible New Physics 
to solve fine-tuning problem

 Double the number of particles (Higgs as fundamental scalar):  SUSY !

 Higgs is composite:  Technicolor !

 Higgs as Pseudo-Goldstone boson:   Little Higgs !
Twin Higgs !

For other composite Higgs, 
see the talk by Honghao Zhang and Fengfeng Cai

 Two-Higgs-doublet models  (not solve fine-tuning)

Three-Higgs-doublet models  see the talk by Igor Ivanov



Two-Higgs-Doublet Models

Lei Wang, 2021 Pre-SUSY school 
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H. E. Haber, G. L. Kane, T. Sterling, NPB161 (1979) 493

L. J. Hall, M. B. Wise, NPB187 (1981) 397
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Ning Chen, Pre-school, this workshop 



Twin-Higgs Models

Z. Chacko, H. S. Goh, R. Harnik, PRL  96, 231802 (2006)
JHEP 01, 108 (2006)

The twin Higgs mechanism is proposed as an interesting solution to the

hierarchy problem. The SM Higgs emerges as a pseudo-Goldstone boson

once a global symmetry is spontaneously broken, which is similar to what

happens in the little Higgs models. An additional discrete symmetry is

imposed, which ensures the absence of one-loop quadratic divergence of

Higgs mass. The resulting Higgs boson mass is naturally around the

electroweak scale when the cut-off scale of the theory is around 5-10 TeV.



Thanks to  Guo-Li Liu

S. Weinberg,  PRD13(1976) 974;  D19(1979) 1277  

L. Susskind, PRD20 (1979) 2619

E. Farhi,  L. Susskind, Phys. Rept. 74 (1981) 277



Introduce TC-fermions which have QCD-like strong interaction. 
At some high scale (say TeV), TC-fermions condensate, replacing 
Higgs mechanism for EWSB.   



• Dynamical EWSB without fundamental Higgs

• New interaction appear at TeV,  solving hierarchy problem



Challenges



Until 2012,  TC theory was allowed by experiments;

The only trouble is its inelegance, getting more and more complex. 



In 2012  LHC discovery of 125 GeV Higgs  give TC a fatal blow, 

because in TC2 theory the top-Higgs boson formed by the top 

quark condensation should be heavier than 300 GeV.

Improvement：

2 conformal TC

1 topcolor improved to top seesaw Aad, et al., PLB (2012)  
Chatrchyan, et al, PLB (2012)

Franzosi, Foadi, PRD 88, 015013(2013)



Learn a lesson:

• TC theory, starting from a very simple very beautiful idea, is getting more 

and more complex; 

• TC/ETC is too ambitious,  dynamical EWSB plus generating fermion 

masses, too good too big to be true.



Commemoration for TC：

• Give up fundamental Higgs to solve naturalness problem

• A window to dynamical EWSB through strong interaction

• The discovery of 125 GeV Higgs gave a fatal blow to TC. 

Either give up or modify TC. The traditional TC predicts 

heavy composite Higgs (arXiv:1108.4000)



• Higgs boson is a pseudo Goldstone boson of  an approximate global symmetry

• At least two sets of interactions are needed to break this global symmetry
-- collective symmetry breaking

No one-loop quadratic divergence of Higgs mass

Motivation:

Arkani-Hamed, Cohen, Nelson, hep-ph/0105239

What is little Higgs 

Little Higgs Theory
Thanks to  Lei Wang

小黑格斯的历史：



Little Higgs Theory



Little Higgs Theory

collective symmetry breaking



Little Higgs Theory

Littlest Higgs Model Arkani-Hamed, Cohen, Katz, Nelson, JHEP07(2002)034



Little Higgs Theory

Phenomenology

(1)  Higgs diphoton signal is suppressed
Wang, JMY, PRD84, 075024(2011)

(2) T-odd particles, top-partner
Belyaev, Chen, Tobe, Yuan, PRD74, 115020 (2006)

(3) Dark matter 
Wang, JMY, Zhu, PRD88 (2013) 075018



Supersymmetry

Edward  Witten

2003.8.16



Supersymmetry

* SUSY can make a “small” Higgs mass natural 

* SUSY is part of a larger vision of physics,  

not just a technical solution 

* measured value of sin2θ favors SUSY GUT 

* survives electroweak tests 

* heavy top mass, as needed 
Edward  Witten

2003.8.16



Supersymmetry
Minimal SUSY (MSSM)



Supersymmetry

SUSY needs 2 Higgs doublets 



Supersymmetry

SUSY predicts 5 Higgs bosons 



Supersymmetry

SUSY predicts 5 Higgs bosons 

At tree level:

At loop-level: 



Supersymmetry

SUSY predicts 5 Higgs bosons 



Supersymmetry

SUSY Higgs bosons have very rich pheno at colliders 

At lepton colliders LEP，CEPC，⋯⋯
See, e.g., 

talks by Manqi Ruan et al

Li, Song, Su, Su, JMY, 2010.09782

Cao, Han, Ren, Wu, JMY, Zhang, 1410.1018

At hadron colliders LHC，SPPC，⋯⋯
Pre-school lecture  by Yanwen Liu
Several  talks in this workshop 

See, e.g., 



Supersymmetry

Status of SUSY in light of 125 GeV Higgs and muon g-2:

can fit all data well  



Supersymmetry

Status of SUSY in light of 125 GeV Higgs and muon g-2:

can fit all data well  

Improve them ：

Wang, Wu, Xiao, JMY, Zhang, 2104.03262

Wang, Wang, Xiao, JMY, Zhu, 1808.10851

Wang, Wang, JMY, 1703.10894; 1504.00505

Wang, Wang, JMY, Zhang, 1505.02785

Li, Liu, Wang, JMY, Zhang, 2106.04466



Part  2 Machine learning for Higgs physics at LHC

2.1  Introduction to machine learning





Neural Network
• Warren McCulloch and Walter Pitts (1943) created the first neural network 

based on mathematics and algorithms called threshold logic.

• The perceptron algorithm was invented in 1957 at the Cornell Aeronautical 

Laboratory by Frank Rosenblatt.

• For multilayer perceptron (feed-forward neural network), where at least one 

hidden layer exists, more sophisticated algorithms such as backpropagation 

(Rumelhart, Hinton and Williams, 1986) must be used.



input 𝒙𝒙 output  𝒚𝒚

input output hidden 

Neural Network







Machine Learning in HEP
36/70

GOAL

• “Solve” HEP problems using DATA

EXAMPLE

• Physics model selection

• Scan (e.g. 1011.4306, 1106.4613, 1703.01309, 1708.06615)

• Collider

• Parton distribution function (e.g. 1605.04345)

• Object reconstruction (e.g. NIPS-DLPS)

• Pileup mitigation (e.g. 1512.04672, 1707.08600)

• Jet tagging (e.g. 1407.5675, 1501.05968, 1612.01551, 1702.00748)

• Event selection (e.g. 1402.4735, 1708.07034, 1807.09088)

• Decayed object reconstruction

• Anomaly event detection (e.g. 1807.10261)

Abdughani, Ren, Wu, JMY, Zhao, 1905.06047
Supervised deep learning in high energy phenomenology: a mini review



An event is a signal or background ?

Machine Learning in HEP



Methods for Event Selection
• Cut-flow

B

S

Control 
Region

Signal Region



Methods for Event Selection
• Cut-flow
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Methods for Event Selection
• Cut-flow



Methods for Event Selection
• Cut-flow
• Machine Learning

• Boosted Decision Tree (BDT)

a lot of trees  a forest

When an event comes, it passes each tree and is valued 
1(signal) or 0(background). Finally, these values are averaged.   



Methods for Event Selection
• Cut-flow
• Machine Learning

• Boosted Decision Tree (BDT)

泰坦尼克号乘客能否幸存的决策树



Methods for Event Selection
• Cut-flow
• Machine Learning

• Boosted Decision Tree (BDT)

• Neural Networks

• Shallow Neural Network (NN)
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Methods for Event Selection
• Cut-flow
• Machine Learning

• Boosted Decision Tree (BDT)

• Neural Networks

• Shallow Neural Network (NN)

• Deep Learning

• Deep Neural Network (DNN) 1410.3469, 1402.4735, 1803.01550

• Convolutional Neural Network (CNN) 1708.07034

𝜂𝜂

𝜙𝜙
color−particle type
size —energy or tansverse momentum 



Graph Neural Network



Graph Neural Network



Graph Neural Network



Event as Graph

• Represent an event as a graph 𝑮𝑮 = 𝑽𝑽,𝑬𝑬

• Encode each vertex into a state vector

• Message passing between vertices

• Each vertex votes the signal/background 

• Average the votes as the final result

𝑙𝑙
𝑗𝑗

𝐸𝐸

𝑗𝑗
𝑏𝑏

/
𝑠𝑠1

𝑠𝑠2

𝑠𝑠3

𝑠𝑠5
𝑠𝑠4

S
S

S

B
S

signal or 
background 

encode

vote average

𝑬𝑬:

𝑽𝑽: (0,0,1,0,𝑚𝑚,𝐸𝐸,𝑃𝑃𝑇𝑇)

MP 𝑠𝑠1𝑡𝑡
𝑠𝑠2𝑡𝑡

𝑠𝑠3𝑡𝑡

𝑠𝑠5𝑡𝑡
𝑠𝑠4𝑡𝑡

Our Idea



Performance Index

Expected discovery significance is

𝑆𝑆
𝐵𝐵

=
𝜎𝜎𝑆𝑆𝐿𝐿𝜖𝜖𝑆𝑆0

𝜎𝜎𝐵𝐵𝐿𝐿𝜖𝜖𝐵𝐵0
⋅
𝜖𝜖𝑆𝑆
𝜖𝜖𝐵𝐵

• 𝑆𝑆, 𝐵𝐵: the number of selected signal and background events

• 𝜎𝜎: cross section

• 𝐿𝐿:  integrated luminosity

• 𝜖𝜖0, 𝜖𝜖: efficiencies of preselection cuts and classifier

We define the expected relative discovery significance as ⁄𝜖𝜖𝑆𝑆 𝜖𝜖𝐵𝐵

51/71



Message Passing Neural Network

Detailed operation（1）



Neural Network Model
• Use one-hot-like encoding for object identity.
• 30-dim feature vectors
• Distance measure using Δ𝑅𝑅 = Δ𝜂𝜂2 + Δ𝜙𝜙2

• Pair distances are expanded in a Gaussian 
basis (linearly distributed in [0, 5]) as vectors 
of length 21.

• Use separate message and update functions 
for each iteration.

• 𝑓𝑓𝑒𝑒 id,𝐸𝐸, 𝑝𝑝𝑇𝑇 = relu 𝑊𝑊𝑒𝑒

onehot id
𝑝𝑝𝑇𝑇
𝐸𝐸

+ 𝑏𝑏𝑒𝑒

• 𝑓𝑓𝑚𝑚
𝑡𝑡 𝑠𝑠,𝑑𝑑 = relu 𝑊𝑊𝑚𝑚

𝑡𝑡 𝑠𝑠
expand 𝑑𝑑 + 𝒃𝒃𝑚𝑚

𝑡𝑡

• 𝑓𝑓𝑢𝑢
𝑡𝑡 𝑠𝑠,𝑚𝑚 = relu 𝑊𝑊𝑢𝑢

𝑡𝑡 𝑠𝑠
𝑚𝑚 + 𝒃𝒃𝑢𝑢

𝑡𝑡

• 𝑓𝑓𝑣𝑣 𝒔𝒔 = 𝜎𝜎 𝑊𝑊𝑣𝑣𝒔𝒔 + 𝒃𝒃𝑠𝑠

• Binary Cross-Entropy (BCE) as loss function.

• Calculate gradients using error back-propagation.

• Optimize network parameters using Adam algorithm.

• Training with mini-batch of examples.

• Adopt early stopping to prevent overfitting.

Training relu: rectified linear unit  (non linear trans)

expand: expand to Gausian basis to form a 
vector

𝒃𝒃𝒆𝒆, 𝒃𝒃𝒎𝒎, 𝒃𝒃𝒖𝒖, 𝒃𝒃𝒔𝒔 : parameters

𝑾𝑾𝒆𝒆, 𝑾𝑾𝒎𝒎, 𝑾𝑾𝒖𝒖, 𝑾𝑾𝒗𝒗 : linear transformations 

Detailed operation （2）



1901.05627     J Ren, L Wu, JMY

2.2  Machine learning for CP property of top-Higgs coupling at LHC

See the talks by Hualin Mei, Hongtao Yang, et al







𝑝𝑝𝑝𝑝 → 𝑡𝑡 ̅𝑡𝑡𝐻𝐻 𝐻𝐻 = ℎ → ̅𝑡𝑡𝑡𝑡 𝑏𝑏�𝑏𝑏

𝑝𝑝𝑝𝑝 → 𝑡𝑡 ̅𝑡𝑡𝐻𝐻 𝐻𝐻 = 𝐴𝐴 → ̅𝑡𝑡𝑡𝑡 𝑏𝑏�𝑏𝑏

𝑝𝑝𝑝𝑝 → 𝑡𝑡 ̅𝑡𝑡 𝑏𝑏�𝑏𝑏 (background)



58/70



• each node 𝑖𝑖 gives 3 probabilities 𝑝𝑝𝑖𝑖 𝑘𝑘 for  𝑡𝑡 ̅𝑡𝑡ℎ, 𝑡𝑡 ̅𝑡𝑡𝐴𝐴 and 𝑡𝑡 ̅𝑡𝑡𝑏𝑏�𝑏𝑏
• average over all the nodes as the final output

1
𝑁𝑁
�
𝑖𝑖

𝑝𝑝𝑖𝑖 𝑘𝑘

𝑝𝑝(ℎ|𝑒𝑒)

𝑝𝑝(𝐴𝐴|𝑒𝑒)

𝑝𝑝(𝑏𝑏|𝑒𝑒)

For each event: 

For each event sample 𝑫𝑫: 



The MPNN has indeed learned some 
discriminative features for different 
processes:
The background 𝑡𝑡 ̅𝑡𝑡𝑏𝑏�𝑏𝑏 events tend to have 
higher p(b|e);
The 𝑡𝑡 ̅𝑡𝑡ℎ events tend to have  higher p(h|e);
The 𝑡𝑡 ̅𝑡𝑡𝐴𝐴 events tend to have higher p(A|e)



The overlap between the two distributions 
reduces with increasing luminosity. 
When the luminosity is 300 𝑓𝑓𝑏𝑏−1 , the two 
distributions have nearly no overlap, which 
means that the CP nature of top-Higgs 
coupling can be determined.



Abdughani, Wang, Wu, JMY, Zhao, 2005.11086

2.3  Machine learning for triple-Higgs coupling at LHC

See the talks by Kunlin Ran, Zihang Jia, Junmou Chen, Mellado et al



The MPNN training results for the 
signal (hh) and backgrounds.
The event fractions of signal and
background versus the final score s



Signal and background cross sections in fb at 14 TeV HL-LHC with luminosity 3000 𝑓𝑓𝑏𝑏−1, 
before hadron-level cuts but after baseline cuts and after MPNN validation process 
requiring the signal events number 𝑁𝑁𝑠𝑠𝑖𝑖𝑠𝑠 = 20 to have reasonable statistics. The 
significance is calculated by using 𝛽𝛽 = 0.



The 2𝜎𝜎 upper bounds on production cross section of the Higgs pair 
and triple Higgs coupling at 14 TeV LHC



图形网络用于LHC上的双希格斯产生，发现用模拟的信号和背景数据训练出来的图形

网络可以提高信号的统计显著性，但是发现在高亮度的HL-LHC上信号的统计显著性

还是达不到发现的标准而只能给出产生截面的上限（标准模型所预言截面的3.7倍）

和自耦合的限制区域（自耦合大于-3小于11）

Summary



2.4 Machine learning for an ALP at LHC
Ren, Wang, Wu, JMY, Zhang,  2106.07018

photon-jet

SM backgrounds: 𝑽𝑽 + 𝜸𝜸, 𝑽𝑽 + 𝒋𝒋， QCD di-jets

How to distinguish a photon-jet from a single photon or QCD jet ?

We use convolutional neural network (CNN) to identify photon-jet



Attention obtained by the training samples for ALP of 3 GeV

Illustration of the jet-tagging CNN





Conclusion

Machine learning is useful for Higgs physics

-- Graph neural network (GNN) for 𝑯𝑯𝑯𝑯�̅�𝑯 production at LHC  
can help distinguish CP-even 𝒉𝒉 from CP-odd 𝑨𝑨

-- Graph neural network (GNN) for 𝑯𝑯𝑯𝑯 production at LHC
can enhance signal significance

-- Convolutional neural network (CNN)  for ALP production at LHC
can enhance signal significance
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