Composite Higgs and Dark Matter

Chengfeng Cai

School of Physics, Sun Yat-Sen University

Collaborators: H-H. Zhang, G. Cacciapaglia, M. Rosenlyst, M.T. Frandsen

August 29, 2021

O Title page

Introduction

Composite Higgs Models

Conclusion

The Standard Model

What we know from the Standard Model (SM):

- Fermionic fields: $q, l, v \longrightarrow Matter$,
- Vector fields: γ , W^{\pm} , Z, $g \rightsquigarrow$ Force,
- Scalar fields: *H* ---→ origin of mass.

What we don't know from the SM:

- Why $m_h \ll \Lambda_{GUT}$? (Hierarchy problem),
- Dark energy, dark matters,
- Neutrino masses and oscillation,
- Matter-antimatter asymmetry,
- Strong CP problem,...

$\begin{aligned} \mathcal{L} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i F \mathcal{D} \mathcal{Y} + h.c. \\ &+ \mathcal{X}_{i} \mathcal{Y}_{ij} \mathcal{X}_{j} \mathcal{P} + hc. \end{aligned}$ + Dal2_1/10

New physics are needed!

	00	0000000000	0	0
Oark matter				
Dark matter Evidences for dark Galaxy rotation CMB, Bullet cluster, Properties of DM: Weakly interact Massive, proba Stable. Detections: Direct detectio A famor	matter (DM): n curve, ting, bly cold, n, indirect detection us candidate: \	n, collider.	Dark Matter 26.8% Drdinary Matter 4.9% Dark Energy 68.3%	DM
				DM n
Chengfeng Cai (SYSI))	СН & DM	Διισ 2021	3 / 15

Г

o oo o			
Title page Introduction Composite Higgs Models Conclusion	Conclusion	OO	l itle page

Fundamental Composite Higgs Model

- $2N_f$ Weyl spinors ψ^i charged under some gauge Group G_{TC} .
- Global symmetry $G_F = SU(2N_f)$ or $SU(N_f) \times SU(N_f)$,
- Non-abelian G_{TC} , asymptotic freedom $\Rightarrow \psi^i$ condensates in the IR,

$$\langle \psi^i \psi^j \rangle \sim \Sigma^{ij} \neq 0 \quad \Rightarrow \quad G_F \to H$$
 (1)

where H is a subgroup of G_F .

- ψ^i : real reps. of $G_{TC} \Rightarrow SU(2N_f) \rightarrow SO(2N_f)$,
- ψ^i : pseudo-real reps. of $G_{TC} \Rightarrow SU(2N_f) \rightarrow Sp(2N_f)$.
- ψ^i : complex reps. of $G_{TC} \Rightarrow SU(N_f) \times SU(N_f) \rightarrow SU(N_f)$.
- If Higgs doublet \subset pNGBs, protected by shift symmetry
- SU(4)/Sp(4): minimal model [E. Katz (2005), B. Gripaio (2009), M. Frigerio (2012), G. Cacciapaglia, F. Sannino (2014)],
- SU(6)/Sp(6): 2 types.

Title page	Introduction	Composite Higgs Models	Conclusion
$SU(6) \rightarrow Sp(6)$ co	mposite model		

- 6 left-handed Weyl spinors ψ , fundamental reps of $G_{TC} = SU(2)$.
- In the IR, $\langle \psi^i \psi^j \rangle \sim \Sigma^{ij}$ antisymmetric, SU(6) \rightarrow Sp(6).
- NGBs: d.o.f = 35 21 = 14, decomposition: (SU(2)₁, SU(2)₂, SU(2)₃)

$$14_{\text{Sp}(6)} \to (2,2,1) \oplus (2,1,2) \oplus (1,2,2) \oplus (1,1,1) \oplus (1,1,1) \tag{2}$$

Case		$SU(2)_L$	$U(1)_{\gamma}$	$SU(2)_L$	Y	Higgs
	ψ_1	2	0			
А	ψ_2	1	$\pm 1/2$	$SU(2)_1$	$T_2^3 + T_3^3$	(2, 2, 1) + (2, 1, 2)
	ψ_3	1	$\pm 1/2$			
	ψ_1	2	0			
В	ψ_2	1	$\pm 1/2$	$SU(2)_1 + SU(2)_3$	T_{2}^{3}	(2, 2, 1) + (1, 2, 2)
	ψ_3	2	0			

[C. Cai, G.Cacciapaglia, H.H. Zhang, JHEP01(2019)130]

Chengfeng Cai (SYSU)

Title page ○	Introduction	Composite Higgs Models	Conclusion
The Model A			

• Before EW symmetry breaking,

$$i\Pi(\phi') \cdot \Sigma_0 = \frac{1}{2} \begin{pmatrix} S_1 & H_1 & H_2 \\ -H_1^T & S_2 & G \\ -H_2^T & -G^T & S_3 \end{pmatrix}$$
(3)

• $H_1 \sim (2,2,1), H_2 \sim (2,1,2); G \sim (1,2,2); S_{1,2,3}: (1,1,1) \oplus (1,1,1).$

Chengfeng Cai (SYSU)

Title page	Introduction	Composite Higgs Models	Conclusion
Composite inert	2HDM		

• A special vacuum: all fermions couple to the same $SU(2)_{R1}$ leading to

$$\beta = 0, \quad \delta = 0, \quad \theta \neq 0 \tag{4}$$

• $SU(2)_{R2}$ is only broken by gauging $T_{R2}^3 \sim Y$, to a remnant $U(1)_{DM}$.

$$Q_{DM} = 1 \text{ fields}: \quad (H_2^+, H_2^0) \in (2, 1, 2), \quad \eta^+, \ \eta^0 \in (1, 2, 2)$$
(5)

- A mixture of H_2^0 and η^0 can be DM candidate.
- Direct detection bound: $\sigma_{\chi N} \sim 10^{-45} \text{ cm}^2$ for $m_{\chi} \sim 1$ TeV (XENON1T,PANDAX-II,LUX).
- $\chi \chi Z$ coupling leads to a χN scattering cross-section:

$$\sigma_{Z,\chi N} \approx \frac{(1-c_{\theta})^2 g^4 m_N^4}{16\pi c_W^2 m_Z^2} \frac{1}{2} \left(\frac{1}{4}\right)^2 \sim 5 \cdot 10^{-40} (1-c_{\theta})^2 \text{cm}^2 \Rightarrow s_{\theta} \lesssim 0.01 \quad (6)$$

 Title page
 Introduction
 Composite Higgs Models
 Conclusion

 0
 00
 0000000000
 0

The Model B: Higgs boson emerging from the dark

 6 technifermions are assigned with quantum number of SU(2)_{L,1} × SU(2)_R × SU(2)_{L2}⊂ Sp(6) as follows

$$\Psi^{1} = \begin{pmatrix} \psi^{1} \\ \psi^{2} \end{pmatrix} \sim (2, 1, 1), \Psi^{2} = (\chi^{1}, \chi^{2}) \sim (1, 2, 1), \Psi^{3} = \begin{pmatrix} \psi^{3} \\ \psi^{4} \end{pmatrix} \sim (1, 1, 2),$$

• \mathcal{G}/\mathcal{H} coset structure

$$\begin{pmatrix} \mathcal{G}_0/\mathcal{H}_0 & \mathbb{Z}_2\text{-odd} \\ pNGBs \\ \mathbb{Z}_2\text{-odd} & \mathbb{Z}_2\text{-even} \\ pNGBs & pNGBs \end{pmatrix},$$

where $\mathcal{G}_0/\mathcal{H}_0 = SU(4)/Sp(4)$ in this case.

[C. Cai, H-H. Zhang, G. Cacciapaglia, M. Rosenlyst, M.T. Frandsen, PRL.125.021801]

itle	page	

pNGB contents in different phases

- An EW anomalous $U(1)_X \Rightarrow Asymmetric DM$
- High-T: $\theta = \pi/2$, U(1)_X is preserved, DM annihilation, frozen.
- Low-T: $0 < \theta < \pi/2$, U(1)_X is broken, DM splits \Rightarrow loose DD bound.

	Higgs vacuum $\theta \sim 0$	HL vacuum $ heta=\pi/2$	Q_X
$rac{\mathcal{G}_0}{\mathcal{H}_0}$	$H_1 = 2_{1/2}$ $\eta = 1_0$	$\phi_X = (h + i\eta)/\sqrt{2}$ $\omega^{\pm}, \ z^0$	1 0
\mathbb{Z}_2 –odd pNGBs	$H_2 = 2_{1/2}$ $\Delta = 3_0$ $\varphi = 1_0$	$ \begin{array}{l} \Theta_1 = -H_2^0 + \frac{\Delta_0 + i\varphi_0}{\sqrt{2}} \\ \Theta_2 = (H_2^0)^* + \frac{\Delta_0 - i\varphi_0}{\sqrt{2}} \\ \Theta_1^- = \Delta^ H^- \\ \Theta_2^+ = \Delta^+ + H^+ \\ + {\rm c.c.} \end{array} $	$\frac{1}{2}$
\mathbb{Z}_2 –even pNGBs	$\eta'=1_0$	η'	0

le page	Introduction	Composite Higgs Models	Conclusion
	00	000000000	

Temperature dependent vacuum

The vacuum alignment is temperature dependent if the potential has a form

$$V(\theta,T) = -a(T) \sin^2 \theta + \frac{1}{2}b(T) \sin^4 \theta.$$
(7)

If a(T)/b(T) > 1 in high T, the sin θ is stuck at 1 and v(T) = f (HL vac.). If a(T)/b(T) < 1 in low T, sin $\theta < 1$ and $v(T) \rightarrow v_{SM}$ in the present T_0 .

A simplified	l situation		
l itle page	Introduction 00	Composite Higgs Models	Conclusion
		Composite Higgs Medale	

- Assuming $m_W^{HL} < M_{\Theta_1} \ll M_{\Theta_2}$, Θ_2 , Θ_2^+ decouples much earlier.
- Relevant fields and couplings

$$\mathcal{L} \supset -i\frac{g}{\sqrt{2}}W_{\mu}^{+} \left(\Theta_{1}^{*}\overleftarrow{\partial^{\mu}}\Theta_{1}^{-}\right) + \frac{\xi}{2}f \phi_{X}^{*}\Theta_{1}\Theta_{1} + \text{h.c.}$$
$$-\frac{g^{2}}{2} \phi_{X}^{*}\phi_{X}\left(W_{\mu}^{+}W^{-,\mu} + \frac{1}{2}Z_{\mu}Z^{\mu}\right) + \dots$$
(8)

• Dominant Θ # changing process, $\Theta_1 + W^+ \rightarrow \phi_x + \Theta_1^+$ etc. decouples at T_{dc} .

0	00	00000000000	0
Title page	Introduction	Composite Higgs Models	Conclusion

The equations of chemical potential

• The charges

$$B = 2(5 + \sigma_t)\mu_{uL} + 6\mu_W \tag{9}$$

$$L = 3\mu_l - 3\mu_W \tag{10}$$

$$X = (2N_{TC}\sigma_{\psi} + 4\sigma_{x} + \sigma_{+} + \sigma_{-} + \sigma_{1} + \sigma_{2})\mu_{\Theta} - (\sigma_{+} - \sigma_{-})\mu_{W} (11)$$

$$0 = \mu_{1} + \mu_{2} + 3(\mu_{uL} + 2\mu_{dL}) + \sum_{f} \mu_{\nu_{f}L}$$
(12)

- Solution: $\frac{X}{B} = -4$, $\frac{L}{B} = \frac{3}{4}$.
- Most of X number is stored in ϕ_x , which will finally decay.
- The temperature T_{dc} can be fixed by the DM relic density for each M_{Θ} :

$$\frac{\Omega_{\Theta}}{\Omega_{b}} \approx \frac{M_{\Theta}}{m_{p}} \left| \frac{X}{B} \right| \frac{\Delta n_{\Theta}(T_{dc})}{n_{X}(T_{dc})} \approx \frac{M_{\Theta}}{1 \text{ GeV}} \times 4 \times e^{-M_{\Theta}/m_{W}^{\text{HL}}} \times 6\left(\frac{x_{dc}}{2\pi}\right)^{2} e^{-x_{dc}} \approx 5, (13)$$

page

Introductio

Composite Higgs Models

Conclusion

Estimating the coupling ξ

Introduction

Title page

Conclusion

Explaining XENON1T data by the ALP η

A light scalar boson, $\eta,$ is always predicted. It can probably explain the XENON1T data. Interactions:

$$\mathcal{L}_{\text{WZW}} = \frac{d_{\psi} \cos\theta}{64\sqrt{2}\pi^2 f} \eta \left(g^2 W^a_{\mu\nu} \tilde{W}^{a,\mu\nu} - g'^2 B_{\mu\nu} \tilde{B}^{\mu\nu} \right)$$
(14)

10-5

 η is photophobic. Its coupling to the fermions are generated in loop levels.

Excluded (solar v) The data implies 10-6 $36 < \frac{f}{T_{oV}} < 55$ Excluded (LUX) Prediction: Z boson decay 10-7 **XENON1T** g^{eff}an $6 < \frac{Br(Z \to \gamma + \eta)}{10^{-12}} < 14$ 10-8 Prediction: K-meson decay $1.17 < \frac{Br(K_L \rightarrow \pi + inv)}{Br(K_L \rightarrow \pi + inv)|_{rev}} < 1.4$ Our model 10-9 **10**⁻¹⁰ [C. Cai et al., PRD.102, 075018] n 1 2 3 |g_{ae}| [x 10⁻¹²] Aug. 2021 Chengfeng Cai (SYSU) CH & DM 14 / 15

Title page ○	Introduction OO	Composite Higgs Models	Conclusion
Conclusion			

- SU(6)/Sp(6) CHM can (partially) solve the Hierarchy problem and provide a DM candidate.
- In SU(6)/Sp(6) model B, DM can be asymmetrically produced.
- The Higgs boson becomes a part of the dark sector, protected by a $U(1)_X$ in HL vacuum.
- The vacuum departure from the HL phase in low T, $U(1)_X$ is broken and the Higgs boson emerges.
- A light boson η is always predicted, and it can explain the XENON1T result.
- The model can be tested in future Z boson factory.

Title page ○	Introduction OO	Composite Higgs Models	Conclusion
Conclusion			

- SU(6)/Sp(6) CHM can (partially) solve the Hierarchy problem and provide a DM candidate.
- In SU(6)/Sp(6) model B, DM can be asymmetrically produced.
- The Higgs boson becomes a part of the dark sector, protected by a $U(1)_X$ in HL vacuum.
- The vacuum departure from the HL phase in low T, $U(1)_X$ is broken and the Higgs boson emerges.
- A light boson η is always predicted, and it can explain the XENON1T result.
- The model can be tested in future Z boson factory.

Thank you for listening!