# Measurements of Higgs boson decaying into tau leptons using 139 $\rm fb^{-1}$ at the ATLAS experiment

Antonio De Maria Nanjing University

Higgs potential and BSM opportunities



 $\bullet\,$  The SM Higgs boson couplings can be summarised in the Lagrangian

$$\mathcal{L} = -\frac{m_f}{v} f \bar{f} H + \frac{m_H^2}{2v} H^3 + \frac{m_H^2}{8v^2} H^4 + \delta_V V_\mu V^\mu \left(\frac{2m_V^2}{v} H + \frac{m_V^2}{v^2} H^2\right)$$

- Coupling with SM particles proportional to:
  - *m<sub>F</sub>* for fermions → main couplings with third generation of quark and leptons (*b* and *τ*)
  - $m_V^2$  for bosons  $\rightarrow$  main couplings with W and Z
- Coupling as function of particle mass in good agreement with SM prediction over 3 order of magnitude





# Higgs boson production modes





 $^*$  predicted cross section for m\_{H}{=}125 GeV at  $\sqrt{s}{=}13$  TeV

### Higgs boson decay branching ratios





- Larger branching ratio (BR) for  $H \rightarrow b\bar{b}, H \rightarrow WW^*$  and  $H \rightarrow \tau\tau$ , however poor mass resolution and large background contamination
- *H* → γγ and *H* → *ZZ*\*(→ 4*I*) have lower BR, but high mass resolution; can be used for precision measurements
- $H \rightarrow Z\gamma$  and  $H \rightarrow \mu\mu$  becoming now accessible thanks to large Run 2 dataset and the good detector performance

### H ightarrow au au measurements - (Atlas-conf-2021-044)



- In the SM,  $H \rightarrow \tau \tau$  is currently the only accessible decay at LHC to establish Higgs-Yukawa coupling to leptons
- Consider all main Higgs boson production modes
- Aim to measure full cross-section, as well as cross section in the *STXS* framework



23%,  $\tau_h \tau_\mu$ 

|                                            | $	au_{lep}	au_{lep}$    | aulep $	au$ had                                                                                                                  | auhad $	au$ had                                                                                           |
|--------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| VBF inclusive                              |                         | sub-leading jet $p_T > 30 \text{ GeV}$<br>$m_{jj} > 350 \text{ GeV},  \Delta \eta_{jj}  > 3$<br>$\eta(j_0) \times \eta(j_1) < 0$ |                                                                                                           |
|                                            | lepton centrality: visi | ble decay products of the $\tau$ leptons                                                                                         | between VBF jets                                                                                          |
| VH inclusive                               |                         | $60 \text{ GeV} < m_{jj} < 120 \text{ GeV}$<br>sub-leading jet $p_{\text{T}} > 30 \text{ GeV}$                                   |                                                                                                           |
| $tt(0L)H \to \tau_{\rm had}\tau_{\rm had}$ |                         |                                                                                                                                  | # of jets $\ge 6$ and # of <i>b</i> -jets $\ge 1$<br>or # of jets $\ge 5$ and # of <i>b</i> -jets $\ge 2$ |
| Boost inclusive                            |                         | Not VBF inclusive<br>Not VH inclusive<br>$p_{\rm T}({\rm H}) > 100 {\rm GeV}$                                                    |                                                                                                           |
|                                            | Α.                      | De Maria                                                                                                                         |                                                                                                           |

# Tau Reconstruction/Identification

- Attempt to reconstruct only hadronically decay taus
- Tau candidates are seeded by anti- $k_t$  LC jets with a distance parameter R = 0.4
- Track selected in the core (0 <  $\Delta R$  < 0.2) and isolation (0.2 <  $\Delta R$ < 0.4) regions around the tau candidate axis.
- Identification algorithm based on RNN to reject background from  $q/g\ jets$ 
  - RNN trained using track and cluster information
  - highly supersede performance from BDT based identification



| had $	au$ Decay Mode         | BR (%) |
|------------------------------|--------|
| $h^{\pm}$                    | 11.5   |
| $h^{\pm}\pi^{0}$             | 30.0   |
| $h^{\pm} \geqslant 2\pi^0$   | 10.6   |
| $3h^{\pm}$                   | 9.5    |
| $3h^{\pm}\geqslant 2\pi^{0}$ | 5.1    |





- MC based except for misidentified  $\tau$ , which is data-driven
- Z $\rightarrow \tau \tau$  (70-90%) : validated + normalised using embedded Z $\rightarrow$  // CRs
- Misidentified  $\tau$  (5-20 %) : estimated using Matrix Method ( $\tau_{lep}\tau_{lep}$ ) and Fake Factor Method ( $\tau_{lep}\tau_{had}$  and  $\tau_{had}\tau_{had}$ )
- Top ( <5% but 35-50% in ttH SRs) : validated in Top CRs
- Other backgrounds : small, evaluated through MC





# Kinematic Embedding procedure



- Select  $Z {\rightarrow} \ {\it II} + jets$  events in CRs defined orthogonal to the signal region
- Unfold  $Z \rightarrow II$  events taking into account lepton reconstruction efficiencies
- Mimic Z  $\rightarrow \tau \tau$  events through kinematic parameterisation of  $\tau$  decay products



• Procedure validated in different kinematic phase spaces



# Misidentified $\tau$ background estimation



- Aim to estimate jet mis-identified as  $\tau$ (light leptons) in  $\tau_{lep}\tau_{had}$  and  $\tau_{had}\tau_{had}$  $(\tau_{lep}\tau_{lep})$  final states
- Validated in dedicated CRs and residual mis-modelling assigned as systematic uncertainty





# Fit Model





- VBF, VH(had) and ttH signal regions split using taggers
- Boost region split according to the STXS scheme
- Use di-au mass (MMC) as fit variable in the SRs
- Use embedded Zightarrow // (Top) CRs to normalize Zightarrow au au (Top) background

### Inclusive cross section measurement





- Largest sensitivity from  $\tau_{lep}\tau_{had}$  and  $\tau_{had}\tau_{had}$  final states
  - expected from  $H \rightarrow \tau \tau$  branching ratios
- Sensitivity driven by VBF and Boost categories
  - expected from Higgs boson production mode cross-section
- Lower sensitivity from V(had)H and ttH categories
  - First attempt to define these categories for this analysis

### **Postfit distributions**





• Clear signal excess over background prediction in the most sensitive region



| Source of uncertainty                          | Impact on $\Delta$<br>Observed | $\sigma \sigma / \sigma (pp \to H \to \tau \tau) $ [%] Expected |
|------------------------------------------------|--------------------------------|-----------------------------------------------------------------|
| Theoretical uncertainty in signal              | 8.1                            | 8.6                                                             |
| Jet and $\vec{E}_{\mathrm{T}}^{\mathrm{miss}}$ | 4.2                            | 4.1                                                             |
| Background sample size                         | 3.7                            | 3.4                                                             |
| Hadronic $\tau$ decays                         | 2.0                            | 2.1                                                             |
| Misidentified $\tau$                           | 1.9                            | 1.8                                                             |
| Luminosity                                     | 1.7                            | 1.8                                                             |
| Theoretical uncertainty in Top processes       | 1.4                            | 1.2                                                             |
| Theoretical uncertainty in Z+jets processes    | 1.1                            | 1.1                                                             |
| Flavor tagging                                 | 0.5                            | 0.5                                                             |
| Electrons and muons                            | 0.4                            | 0.3                                                             |
| Total systematic uncertainty                   | 11.1                           | 11.0                                                            |
| Data sample size                               | 6.6                            | 6.3                                                             |
| Total                                          | 12.8                           | 12.5                                                            |

- Total uncertainty  $\simeq$  13%;  $\simeq$  factor 2 improvement respect to previous publication
- Uncertainty dominated by systematic component
- Largest source of uncertainty from Theory,  $Jet/E_T^{miss}$  and MC sample statistics

## Production and STXS measurement





- STXS bins definition: maximize sensitivity, minimize theory dependence
- Bins defined to enrich events of certain production mode

#### A. De Maria

# Production mode measurement results

- Observation of the VBF  $H \rightarrow \tau \tau$  with significance of 5.3 (6.2)  $\sigma$  observed (expected)
- Evidence of the ggH H $\rightarrow \tau \tau$  with significance of 3.9 (4.6)  $\sigma$  observed (expected)
- All the measurements in agreement with SM prediction

| Production Mode    | SM prediction       | Result            | Stat. unc.  | Syst. unc. [pb] |             |             |
|--------------------|---------------------|-------------------|-------------|-----------------|-------------|-------------|
|                    | [pb]                | [pb]              | [pb]        | Th. sig.        | Th. bkg.    | Exp.        |
| $t\overline{t}H$   | $0.031 \pm 0.003$   | $0.048\pm0.045$   | $\pm 0.027$ | $\pm 0.011$     | $\pm 0.027$ | $\pm 0.018$ |
| VH                 | $0.118 \pm \ 0.003$ | $0.11  \pm 0.04 $ | $\pm 0.02$  | $\pm 0.02$      | $\pm 0.01$  | $\pm 0.02$  |
| ggF                | $2.8 \pm 0.1$       | $2.7  \pm 0.9 $   | $\pm 0.4$   | $\pm 0.6$       | $\pm 0.1$   | $\pm 0.5$   |
| VBF                | $0.22 ~\pm~ 0.01$   | $0.196 \pm 0.040$ | $\pm 0.026$ | $\pm 0.024$     | $\pm 0.005$ | $\pm 0.016$ |
| $pp \rightarrow H$ | $3.15 ~\pm~ 0.09$   | $2.90 \pm 0.40$   | $\pm 0.22$  | $\pm 0.26$      | $\pm 0.06$  | $\pm 0.22$  |





# **STXS** measurement results





- Measurement performed in 9 STXS bins
- Largest sensitivity from ggH with high  $p_T^H$  and VBF bins



- The most recent measurements in the H  $\!\!\!\rightarrow \tau \tau$  channels have been presented
- Aim was to measure the inclusive, production mode and STXS bins cross-sections
- Inclusive cross-section measured with  $\simeq 13\%$  uncertainty and in agreement with SM prediction
  - uncertainty by systematic uncertainty from Theory,  ${\rm Jet}/{\rm E}_{T}^{\it miss}$  and MC sample statistics
- Observation (evidence) of the VBF (ggH) production mode with observed significance of 5.3 (3.9)  $\sigma$
- Cross-section measured also in 9 STXS bins with best results from ggH with high  $p_{T}^{H}$  and VBF bins

# Thanks For Your Attention

# Backup



| STXS bin         |                       |                            | SM prediction  | Result              | Stat. unc.                                                   | Syst. unc. [pb] |             |             |             |
|------------------|-----------------------|----------------------------|----------------|---------------------|--------------------------------------------------------------|-----------------|-------------|-------------|-------------|
| Process          | $m_{jj}~[{ m GeV}]$   | $p_{\rm T}(H)~[{\rm GeV}]$ | $N_{\rm jets}$ | [pb]                | [pb]                                                         | [pb]            | Th. sig.    | Th. bkg.    | Exp.        |
| H(t)             | [0, 350] <sup>♠</sup> | [60, 120]                  | $\geq 1$       | $0.39 ~\pm ~ 0.06$  | $0.17 \pm 0.39$                                              | $\pm 0.22$      | $\pm 0.06$  | $\pm 0.15$  | $\pm 0.29$  |
| ō<br>↑           |                       | [120, 200]                 | = 1            | $0.047 \pm \ 0.011$ | $0.018 \pm 0.030$                                            | $\pm 0.018$     | $\pm 0.004$ | $\pm 0.004$ | $\pm 0.019$ |
| -)Z (            | [0, 350]              | [120, 200]                 | $\geq 2$       | $0.059 \pm \ 0.020$ | $0.036 \pm 0.039$                                            | $\pm 0.027$     | $\pm 0.009$ | $\pm 0.009$ | $\pm 0.025$ |
| ÷ 6.             |                       | [200, 300]                 | $\geq 0$       | $0.030 \pm \ 0.009$ | $0.031 \pm 0.011$                                            | $\pm 0.009$     | $\pm 0.003$ | $\pm 0.001$ | $\pm 0.006$ |
| + 9              |                       | $[300, \infty[$            | $\geq 0$       | $0.008 \pm \ 0.003$ | $0.009 \pm 0.004$                                            | $\pm 0.003$     | $\pm 0.001$ | $\pm 0.000$ | $\pm 0.001$ |
| 58 F             | $[350, \infty[$       | [0, 200]                   | $\geq 2$       | $0.055 \pm \ 0.013$ | $0.14 \hspace{0.2cm} \pm \hspace{0.2cm} 0.11 \hspace{0.2cm}$ | $\pm 0.05$      | $\pm 0.06$  | $\pm 0.01$  | $\pm 0.07$  |
| FWK              | [60, 120]             |                            | $\geq 2$       | $0.033 \pm 0.001$   | $0.031 \pm 0.020$                                            | $\pm 0.017$     | $\pm 0.003$ | $\pm 0.001$ | $\pm 0.010$ |
| LWK              | $[350, \infty[$       |                            | $\geq 2$       | $0.090 \pm \ 0.002$ | $0.071 \pm 0.017$                                            | $\pm 0.014$     | $\pm 0.010$ | $\pm 0.002$ | $\pm 0.006$ |
| $t\overline{t}H$ |                       |                            |                | $0.031 \pm 0.003$   | $0.047\pm0.046$                                              | $\pm 0.032$     | $\pm 0.011$ | $\pm 0.027$ | $\pm 0.018$ |