

Combined neasurement of Hggs coupling properties and constraints on the Higgs self-coupling in the ATLAS experiment

Kunlin Ran

Higgs potential and BSM opportunity

Nanjing University

August 28, 2021

Standard model

- The Standard Model (SM) is one of the most successful theories in particle physics
- It introduces the electroweak spontaneous symmetry breaking trough the Higgs mechanism, predicts the existence of the Higgs boson, and gives masses of element particles

2021/8/28

Higgs production/decay

Higgs major production modes in pp collisions at LHC

Higgs decay

Previous coupling combination

- Following the discovery of the Higgs by the ATLAS and CMS, its coupling properties to other SM particles can be precisely probed in comprehensive ways, therefore providing stringent tests of the SM validity, which is the one of most important goals in the High Energy Physics
- Run2 coupling combination measurements at ATLAS with dataset up to 80 fb⁻¹, <u>Phys. Rev. D 101 (2020) 012002</u>
 - **Global** $\mu = 1.11^{+0.09}_{-0.08}$

The measurements are consistent with the SM prediction

The scalar sector and the self-coupling

- Higgs mechanism: a scaler potential with a vacuum expectation value ≠ 0 originates a spontaneous breaking of the electroweak symmetry
- $V(H) = \frac{1}{2}m_{H}^{2}H^{2} + \lambda_{HHH}vH^{3} + \frac{1}{4}\lambda_{HHHH}H^{4} \frac{\lambda}{4}v^{4}$
- To probe the properties of the scaler sector and to precisely describe the Higgs potential shape are very important for verifying the SM and for discovering new physics
- While the trilinear self-coupling is unconstrained in the LHC measurements
- Measuring the Higgs self-coupling is also one of the main goals of HL-LHC and future colliders

Constrain self-coupling in the HH measurement

• The non-resonant HH production processes (ggF) provide a unique chance to probe $\kappa_{\lambda} = \lambda_{HHH} / \lambda_{HHH}^{SM}$ with direct measurements

Constrain the κ_{λ} by estimating the upper limits of the HH production (assuming SM H decay) with CLs approach **CMS** preliminary 35.9 fb⁻¹ (13 TeV)

Combined Higgs boson measurements and constraints on the Higgs self-coupling at ATLAS

Outline

- The coupling combination measurements are extended using the Run 2 dataset up to 139 fb⁻¹, to probe Higgs properties more precisely [<u>ATLAS-</u> <u>CONF-2020-027</u>, <u>ATLAS-CONF-2020-053</u>]
- To constrain Higgs self-coupling by the NLO EW correction in the single-Higgs measurements and in the combination of the single-Higgs and di-Higgs measurements with Run 2 dataset up to 80 fb⁻¹ [ATL-PHYS-PUB-2019-009, ATLAS-CONF-2019-049]

Combined production modes/decays

- Large BR
- low mass resolution
- $H \rightarrow ZZ^* \rightarrow 4l, H \rightarrow \gamma\gamma$
 - Low BR
 - Excellent mass resolution
 - High precision channels

2021/8/28

Global signal strength

• Global signal strength μ : a common scaling of the expected Higgs boson yield, showing the overall sensitivity

$$\mu = \frac{(\sigma \times B)_H}{(\sigma \times B)_H^{SM}}$$

• $\mu = 1.06 \pm 0.07 = 1.06 \pm 0.04(stat.) \pm 0.03(exp.)^{+0.05}_{-0.04}(sig.th.) \pm 0.02(bkg.th.)$

- 14% improvement in accuracy comparing to <u>80 fb⁻¹</u> combined measurement, <u>31%</u> improvement comparing to <u>Run1</u> result
- Consistent with the SM: $p_{SM} = 40\%$
- The precision is dominantly constrained by the systematical uncertainties

Production cross sections

Measure the Higgs 5 main production cross sections

2021/8/28

Combined Higgs boson measurements and constraints on the Higgs self-coupling at ATLAS

Simplified template cross section

- A new scheme in Run2, defined trough a partition of the phase space of the Higgs production process, independently of the Higgs decay process, aim to
 - Have good sensitivity
 - Avoid large theory uncertainties
 - Approximately match experimental selections, to minimize model-dependent extrapolations
- Merged Stage 1.2

STXS measurements

2021/8/28

κ framework

• To measure **Higgs coupling strengths directly,** and to test deviations from SM

- *κ* framework
 - Coupling modifiers to productions and decays

•
$$\sigma_i \times B_f = \frac{\sigma_i(\kappa) \times \Gamma_f(\kappa)}{\Gamma_H}, \ \kappa_i^2 = \frac{\sigma_i}{\sigma_i^{SM}}, \ \kappa_f^2 = \frac{\Gamma_f}{\Gamma_f^{SM}}$$

•
$$\kappa_H^2(\kappa, B_{inv}, B_{undet}) = \frac{\sum_j B_f^{SM} \kappa_j^2}{(1 - B_{inv} - B_{undet})}$$

- B_{inv} : ~0.1% from $H \rightarrow ZZ^* \rightarrow 4\nu$
- B_{undet} : non-sensitive analyses: H \rightarrow light quarks, H \rightarrow BSM particles, etc.

	Production	Loops Interference	Interference	Effective	Resolved modifier	
			interference	modifier	Resolved modifier	
	$\sigma(ggF)$	\checkmark	t-b	κ_g^2	$1.04 \kappa_t^2 + 0.002 \kappa_b^2 - 0.04 \kappa_t \kappa_b$	
	$\sigma(\text{VBF})$	-	-	_	$0.73 \kappa_W^2 + 0.27 \kappa_Z^2$	
	$\sigma(qq/qg \to ZH)$	-	-	-	κ_Z^2	
	$\sigma(gg \to ZH)$	\checkmark	t-Z	$\kappa_{(ggZH)}$	$2.46\kappa_Z^2 + 0.46\kappa_t^2 - 1.90\kappa_Z\kappa_t$	
	$\sigma(WH)$	-	-	-	κ_W^2	
	$\sigma(t\bar{t}H)$	-	-	-	κ_t^2	
	$\sigma(tHW)$	-	t-W	-	$2.91\kappa_t^2 + 2.31\kappa_W^2 - 4.22\kappa_t\kappa_W$	
l	$\sigma(tHq)$	-	t-W	-	$2.63\kappa_t^2 + 3.58\kappa_W^2 - 5.21\kappa_t\kappa_W$	
l	$\sigma(b\bar{b}H)$	-	-	-	κ_b^2	
l	Partial decay width	l				
l	Γ^{bb}	-	-	-	κ_{b}^{2}	
l	Γ^{WW}	-	-	-	κ_W^2	
l	Γ^{gg}	\checkmark	t–b	κ_g^2	$1.11 \kappa_t^2 + 0.01 \kappa_b^2 - 0.12 \kappa_t \kappa_b$	
l	$\Gamma^{\tau\tau}$	-	-	-	κ_{τ}^2	
l	Γ^{ZZ}	-	-	_	κ_Z^2	
l	Γ^{cc}	-	-	-	$\kappa_c^2 (= \kappa_t^2)$	
l	Γγγ	\checkmark	t-W	κ_{γ}^2	$1.59 \kappa_W^2 + 0.07 \kappa_t^2 - 0.67 \kappa_W \kappa_t$	
l	$\Gamma^{Z\gamma}$	\checkmark	t-W	$\kappa^2_{(Z\gamma)}$	$1.12 \kappa_W^2 - 0.12 \kappa_W \kappa_t$	
l	Γ^{ss}	-	-	-	$\kappa_s^2 (= \kappa_b^2)$	
l	$\Gamma^{\mu\mu}$	÷	-	-	κ_{μ}^2	
l	Total width $(B_{inv} =$	$B_{undet} =$	0)			
l					$0.58 \kappa_{h}^{2} + 0.22 \kappa_{W}^{2}$	
l					$+0.08 \kappa_{g}^{2} + 0.06 \kappa_{\tau}^{2}$	
	Γ_H	\checkmark	-	κ_{H}^{2}	$+0.03 \kappa_{z}^{2} + 0.03 \kappa_{c}^{2}$	
					$+0.0023 \kappa_{y}^{2} + 0.0015 \kappa_{(Z_{2})}^{2}$	
					$+0.0004 \kappa_s^2 + 0.00022 \kappa_u^2$	
					~ <i>µ</i>	

Generic model assuming no new particles

- $\kappa_W, \kappa_Z, \kappa_t(\kappa_c), \kappa_b(\kappa_s), \kappa_\tau, \kappa_\mu$
- Assumption
 - All $\kappa \ge 0$
 - Only SM particle contribute to Higgs vertices

•
$$B_{inv} = B_{undet} = 0$$

SMEFT interpretations

- Model independent approach: EFT •
 - It's systematically improvable with higher-order perturbative calculations
- **SMEFT** parameterize large energy scale ($\Lambda \gg v$, $\Lambda = 1$ TeV used) BSM effects at low energies
- STXS measurements are helpful to constrain coefficients associated to SMEFT operators, thus put constraints on new physics at fixed scale Λ

HL-LHC projections

- Many open questions like hierarchy problem and the nature of dark matter are possible to be addressed by precise measurements of Higgs boson properties, which is a high priority at HL-LHC
- HL-LHC projection study with combined Run2 dataset up to 80 fb⁻¹ [ATL-PHYS-PUB-2018-054]
- $\mu = 1.000^{+0.038}_{-0.037}(1.000^{+0.025}_{-0.024})$, **S1: Same systematics** at Run2; **S2: Reduced** systematics expected at HL-LHC

Constraints on the Higgs self-coupling

Combine single-Higgs and double-Higgs together to maximize the sensitivity to constrain κ_{λ}

Indirect measurement in the single-H

- Single Higgs processes do not depend on λ_{HHH} at LO, while its contributions need to be taken into account for the complete NLO EWK corrections
- λ_{HHH} contributes via Higgs self energy loop corrections and additional diagrams

- An indirect constraint on λ_{HHH} can be extracted by comparing the single-Higgs measured results and the SM predictions corrected for the λ_{HHH} -dependent NLO EW effects
 - Signal strength: $\mu_{if}(\kappa_{\lambda}) = \mu_i(\kappa_{\lambda}) \times \mu_f(\kappa_{\lambda}) \equiv \frac{\sigma_i(\kappa_{\lambda})}{\sigma_{SM,i}} \times \frac{BR_f(\kappa_{\lambda})}{BR_{SM,f}}$

Theoretical model: production mode

$$\mu_i(\kappa_{\lambda},\kappa_i) = \frac{\sigma^{BSM}}{\sigma^{SM}} = Z_H^{BSM}(\kappa_{\lambda}) \left[\kappa_i^2 + \frac{(\kappa_{\lambda} - 1)C_1^i}{K_{EW}^i} \right]$$
$$Z_H^{BSM}(\kappa_{\lambda}) = \frac{1}{1 - (\kappa_{\lambda}^2 - 1)\delta Z_H}, \ \delta Z_H = -1.536 \times 10^{-3}$$

- $K_{EW}^i = \frac{\sigma_{NLO}^{SM,i}}{\sigma_{LO}^{SM,i}}$: Complete NLO EW correction for the production
- C_1^i : process and kinematics-dependent linear coefficient that provides the sensitivity of the measurement to κ_{λ}
- $\kappa_i^2 = \frac{\sigma_{LO,i}^{BSM}}{\sigma_{LO,i}^{SM}}$: Modifiers to other Higgs boson couplings in the κ -framework
 - Only κ_F (all fermions) and κ_V (all weak vector bosons) are considered

	arXiv: 1607.04251 arXiv: 1709.08649					
	production mode	ggF	VBF	ZH	WH	tīH
inclu	sive $C_1^i \times 100$	0.66	0.63	1.19	1.03	3.52
	$K^i_{ m EW}$	1.049	0.932	0.947	0.93	1.014
	κ _i ²	κ_F^2	κ_V^2	κ_V^2	κ_V^2	κ_F^2

19

κ

Theoretical model: decay rate

Higgs boson decay rates

arXiv: 1607.04251

<u>arXiv: 1709.08649</u>

$$\mu_f(\kappa_{\lambda},\kappa_f) = \frac{BR_f^{BSM}}{BR_f^{SM}} = \frac{\kappa_f^2 + (\kappa_{\lambda} - 1)C_1^f}{\sum_j BR_j^{SM} [\kappa_j^2 + (\kappa_{\lambda} - 1)C_1^j]}$$

• C_1^f : linear coefficient provides the sensitivity to κ_{λ}

decay mode	$H ightarrow \gamma \gamma$	$H \to WW^*$	$H \to Z Z^*$	$H \to b \bar{b}$	$H \to \tau \tau$
$C_{1}^{f} \times 100$	0.49	0.73	0.82	0	0
κ_f^2	$1.59\kappa_V^2 + 0.07\kappa_F^2 - 0.67\kappa_V\kappa_F$	κ_V^2	κ_V^2	κ_F^2	κ_F^2

Theory model and interpretation in the double-Higgs

• The double-Higgs production

- The amplitude of the HH production can be parameterized as a function of ttH coupling $\kappa_t = g_{ttH}/g_{ttH}^{SM}$ and HHH coupling $\kappa_{\lambda} = g_{HHH}/g_{HHH}^{SM}$ $A(\kappa_t, \kappa_{\lambda}) = \kappa_t^2 B + \kappa_t \kappa_{\lambda} T$
- Omitting the integral on the final phase space and on the PDFs for simplicity
- $\sigma(pp \to HH) \sim \kappa_t^4 \left[|B|^2 + \frac{\kappa_\lambda}{\kappa_t} (B^*T + TB^*) + \left(\frac{\kappa_\lambda}{\kappa_t}\right)^2 |T|^2 \right]$
- κ_t^4 appears in the normalization, the signal acceptance depends only from $\kappa_{\lambda}/\kappa_t$
- When estimating $\sigma(pp \to HH)$, global normalization factors (κ_t^4) don't play a role
 - ⇒ HH-only measurement can't measure κ_{λ} and κ_t at the same time, κ_t is fixed to the SM in HH analysis alone

Data and input measurement

Constrain Higgs self-coupling in the combination using datasets up to 80 fb⁻¹

Analysis	Integrated luminosity (fb ⁻¹)
$H \rightarrow \gamma \gamma$	79.8
$H \rightarrow ZZ^* \rightarrow 4\ell \text{ (including } t\bar{t}H, H \rightarrow ZZ^* \rightarrow 4\ell)$	79.8
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$	36.1
$H \to \tau \tau$	36.1
$VH, H \rightarrow b\bar{b}$	79.8
$t\bar{t}H, H \rightarrow b\bar{b}$ and $t\bar{t}H$ multilepton	36.1
$HH \rightarrow b\bar{b}b\bar{b}$	27.5
$HH \rightarrow b \bar{b} \tau^+ \tau^-$	36.1
$HH \rightarrow b\bar{b}\gamma\gamma$	36.1

- Within each of the single-Higgs and the double-Higgs analyses all the categories are orthogonal by definition
- The single-Higgs and double-Higgs categories are not all orthogonal
 - The overlap has been studied, the $ttH(\gamma\gamma)$ categories have been removed as they show large overlap with the $HH \rightarrow bb\gamma\gamma$ categories
 - Also the impact on the combined limits of removing $ttH(\gamma\gamma)$ categories is smaller w.r.t removing $HH \rightarrow bb\gamma\gamma$ categories

κ_{λ} -only results

- A likelihood fit is performed to constrain κ_{λ} in the combination of single-Higgs and double-Higgs
- All other Higgs boson couplings are fixed to the SM ($\kappa_t = \kappa_b = \kappa_l = \kappa_W = \kappa_Z = 1$)

- $\kappa_{\lambda} = 4.6^{+3.2}_{-3.8} = 4.6^{+2.9}_{-3.5}(stat.)^{+1.2}_{-1.2}(exp.)^{+0.7}_{-0.5}(sig.th.)^{+0.6}_{-1.0}(bkg.th.)$ (obs.)
- $\kappa_{\lambda} = 1.0^{+7.3}_{-3.8} = 1.0^{+6.2}_{-3.0}(stat.)^{+3.0}_{-1.7}(exp.)^{+1.8}_{-1.2}(sig.th.)^{+1.7}_{-1.1}(bkg.th.)$ (exp.)

95% CL	Obs.	Exp.
H [ATL-PHYS-PUB-2019-009]	[-3.2, 11.9]	[-6.2, 14.4]
HH [arXiv:1906.02025]	[-5.0, 12.0]	[-5.8 <i>,</i> 12.0]
H+HH [ATLAS-CONF-2019-049]	[-2.3, 10.3]	[-5.1, 11.2]

• The combination can better constrain κ_{λ} by 17%-26%

Higgs production/decay contributions

Contributions from the different production and decay modes

- HH production is the most sensitive channel among all Higgs production processes, followed by SH, ggF
- $HH \rightarrow bb\gamma\gamma$, $HH \rightarrow bb\tau\tau$ give dominant contributions in constraining κ_{λ} , followed by $H \rightarrow \gamma\gamma$

Generic model

• To give the most generic measurement, a likelihood fit is performed to constrain simultaneously κ_{λ} , κ_{W} , κ_{Z} , κ_{t} , κ_{b} and κ_{l}

Only the single-Higgs and double-Higgs combination could give enough sensitivity to exploit the generic model

Latest κ_{λ} results/HL-LHC projections

95% CL	Obs.	Exp.
H+HH up to 80 fb ⁻¹	[-2.3, 10.3]	[-5.1, 11.2]
HH to bbyy @ 139 fb-1	[-1.5 <i>,</i> 6.7]	[-2.4, 7.7]

Scenario	lσ CI	2σ CI
Statistical uncertainties only	$0.4 \le \kappa_\lambda \le 1.7$	$-0.10 \le \kappa_{\lambda} \le 2.7 \cup 5.5 \le \kappa_{\lambda} \le 6.9$
Systematic uncertainties	$0.25 \le \kappa_\lambda \le 1.9$	$-0.4 \le \kappa_\lambda \le 7.3$

Summary

- Higgs coupling properties have been measured in ATLAS by combining Run2 data up to 139 fb⁻¹ [ATLAS-CONF-2020-027, ATLAS-CONF-2020-053]
- Global signal strength $\mu = 1.06 \pm 0.07$
 - 31% higher precision w.r.t <u>Run1</u>: 1.09^{+0.11}_{-0.10}
- Higgs production cross sections and decay BR are measured as well
 - Firstly observe WH mode in the ATLAS, all 5 prod modes are $> 5\sigma$
- Finest measurements of STXS stage 1.2 regions are performed
- Higgs couplings are directly measured within κ frameworks
- 2HDM, MSSM and EFT interpretations are performed, no derivations from the SM predictions are observed
- New round of coupling combination is ongoing by including full Run2 **HWW**, **Htautau**, **Hbb** channels (aiming to be public this year)
- Precise measurements of Higgs boson properties at HL-LHC are helpful to address open questions about the universe
 - The accuracies of Higgs production and decay mode measurements are largely improved, possible to observe Higgs rare decays (ie $H \rightarrow \mu\mu$, $H \rightarrow Z\gamma$)

Summary

- The HH searches (up to 36.1 fb⁻¹) provide a unique chance to probe the Higgs self-coupling $\kappa_{\lambda} = \lambda_{HHH} / \lambda_{SM}$ with direct measurements, the observed 95% CL is [-5.0, 12.0]
- The single-Higgs analysis (up to 80 fb⁻¹) shows an alternative and complementary approach to constrain the Higgs self-coupling, providing similar sensitivity: [-3.2, 11.9] at 95% CL
- Furthermore, κ_λ is constrained by combining single-Higgs analyses and double-Higgs analyses, which improves the constraining power on κ_λ by 17%-26%: [-2.3, 10.3] at 95% CL
- The latest and **the most stringent** constraint on κ_{λ} is performed in the $HH \rightarrow bb\gamma\gamma$ analysis with full Run2 data at ATLAS: [-1.5, 6.7] at 95% CL
- The **combination** of full **Run2 HH analyses** (non-resonant $bb\tau\tau$, $bb\gamma\gamma$) is ongoing, expecting better constraints on κ_{λ} and other coupling parameters

Backup

Production cross sections × BR

Prob Higgs property in each production and Higgs decay: $(\sigma \times B)_{if}$ ^g ത്താറ $H \rightarrow WW/ZZ$ $H \rightarrow \gamma \gamma$ VBF ggF+bbH g QQQQQ 2000000 $H \rightarrow bb/\tau\tau$ HttH+tH W, Zg QQQQQQQ VH t h**ATLAS** Preliminary $\sqrt{s} = 13 \text{ TeV}, 24.5 - 139 \text{ fb}^{-1}$ ATLAS Preliminary Stat. Svst. SM $m_{\mu} = 125.09 \text{ GeV}, |y_{\mu}| < 2.5$ √s = 13 TeV, 24.5 - 139 fb $m_{H} = 125.09 \text{ GeV}, |y_{..}| < 2.5$ م ۳۳ م ۳۳ م ۳۳ م ۳۳ م p_{SM} = 87% 0.02 0.01 0.06 -0.11 0.01 0.01 0.00 0.01 -0.04 0.03 0.01 0.07 0.02 0.00 0.00 Total Stat. Syst. ± 0.11 (± 0.08 , +0.08 ggF yy 1.03 0.02 0.00 0.00 -0.21 0.00 0.01 0.00 0.01 -0.28 0.01 0.01 0.02 0.00 0.00 ggF ZZ 0.94 ± 0.10 , ± 0.04) 0.01 0.02 0.00 0.01 0.00 -0.08 0.01 0.01 0.00 -0.01 0.01 0.01 0.02 0.01 -0.01 , 0.6 ف(ع 4 0 ggF WW +0.191.08 ±0.11, ±0.15) -0.18 (ggF ττ + 0.60 + 0.39 - 0.38 1.02 0.04 0.03 0.03 -0.45 0.00 0.03 0.04 0.01 ττ 0.06 0.00 0.00 0.00 0.02 -0.02 0.01 ggF comb. 1.00 $\pm 0.07 (\pm 0.05 , \pm 0.05)$ Cross γγ -0.11 0.00 0.01 0.04 0.07 0.01 0.00 0.01 0.02 0.01 0.01 0.05 0.01 0.00 0.00 0.4 VBF γγ +0.26 -0.23 (+0.19 +0.18 -0.15) 1.31 contamination VBF ZZ + 0.50 (+ 0.48 + 0.12 ZZ* 0.01 -0.21 0.00 0.03 0.07 0.01 0.00 0.00 0.01 -0.04 0.01 0.00 0.00 0.00 0.00 1.25 in $H \rightarrow \tau \tau$ VBF WW +0.36 -0.34 (+0.29 , 0.60 ± 0.21) 0.2 WW* 0.01 0.00 -0.08 0.03 0.01 0.01 + 0.42 VBF ττ +0.57 -0.53 (+ 0.40 1.15 ττ VBF bb 3.03 + 1.67 + 1.63 + 0.38 0.00 0.01 0.01 -0.45 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0 + 0.18 - 0.17 (+ 0.12 VBF comb. 1.15 ±0.13, 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 bБ + 0.33 (+0.31 VH γγ 1.32 +0.11 -0.04 0.01 0.00 0.03 0.02 0.01 0.00 0.00 0.00 + 1.13 + 1.10 - 0.90 + 0.28 - 0.21 γγ 0.02 0.04 -0.04 0.01 0.00 0.00 VH ZZ -0.2 1.53 Y +0.18 +0.14 VH bb 1.02 ±0.11, 77* 0.03 -0.28 -0.01 0.04 0.01 -0.04 0.00 0.00 0.00 0.02 0.01 0.00 -0.07 0.03 0.00 VH comb. +0.16 +0.12 1.10 ±0.11, -0.4bb 0.01 0.01 0.00 0.00 +0.25 -0.23 + 0.09 - 0.06 ttH+tH γγ 0.90 +0.42 ttH+tH VV + 0.56 - 0.53 (+0.381.72 γγ 0.00 0.01 0.01 - 0.34 -0.6 ttH+tH + 1.07 - 0.93 + 0.81 + 0.70 - 0.57 ttH+tH ττ 1.20 VV^* 0.42 0.00 + 0.60 - 0.59 + 0.52 ttH+tH bb 0.79 ± 0.29 . -0.51-0.8 +0.16 -0.15, ttH+tH comb. + 0.21 - 0.20 (+0.14) ττ 0.01 1.10 bb _1 2 6 8 0 VV* TT bb γγ ZZ*WW* ττ γγ ZZ*WW* ττ bb γγ ZZ* bb γγ ggF VBF VH ttH+tH ttH (ML) $\sigma \times B$ normalized to SM $\sigma \times B^{\dagger}$

2021/8/28

Combined Higgs boson measurements and constraints on the Higgs self-coupling at ATLAS

Generic model with/without BSM contributions

- $\kappa_W, \kappa_Z, \kappa_t(\kappa_c), \kappa_b(\kappa_s), \kappa_\tau, \kappa_\gamma, \kappa_g, (B_{inv}, B_{undet})$
- All $\kappa \ge 0$ except κ_t without loss of generality

2HDM interpretations

Promising extension: $SM \Rightarrow 2HDM$ with an additional **doublet** of the complex field

Coupling scale factor

Type II

Lepton-specific

Flipped

Type I

- Neutral CP even: *h* (lighter, SM-like), *H* (heavier); Neutral CP odd: A; Charged: H^{\pm}
- Vacuum expectation: $v_1^2 + v_2^2 = v^2 \approx (246 \ GeV)^2$; $\tan \beta \equiv \frac{v_2}{v_1}$
- **Mixing angle** α of *h* and *H*
- $\kappa_{hVV} = \sin(\beta \alpha), \ \kappa_{HVV} = \cos(\beta \alpha)$

MSSM interpretations

• Model dependent approach: MSSM

• 6 scenarios: M_h^{125} , $M_h^{125}(\tilde{\chi})$, $M_h^{125}(\tilde{\tau})$, M_h^{125} (alignment), $M_{h,EFT}^{125}$, $M_{h,EFT}^{125}(\tilde{\chi})$ [Eur. Phys. J. C 79 (2019) 617, Eur. Phys. J. C 79 (2019) 279]

2021/8/28

Theoretical model and parameterization

 Parametrization of single Higgs is used consistently in double-Higgs analyses for single-Higgs backgrounds and Higgs decay branching ratios

2021/8/28

$\kappa_{\lambda} - \kappa_t$ measurement

• By fitting together double-Higgs and single-Higgs, κ_{λ} and κ_t can be constrained at the same time

ATLAS-CONF-2019-049

• The double-Higgs analysis alone doesn't have sensitivity to constrain κ_{λ} and κ_t simultaneously