Measurements of Higgs boson production using decays to two c-quarks with the ATLAS detector

Tao Wang (University of Science and Technology of China)

Higgs potential and BSM opportunity, Aug 27-31, 2021

Motivation for H→cc

- Coupling between Higgs boson and all 3rd generation quarks has been measured.
- For the 2nd generation quarks, the Yukawa coupling is still not measured, yet not confirmed.
- In the rest coupling constants to be measured, $Y_c(*)$ is the largest.
- H→cc is the most direct channel to measure κ_{c.}
 - $\circ~~\kappa_c$ can be modified in BSM models (2HDM, HVT, ...)

(*) Charm quark Yukawa coupling constant

Previous H→cc search results

VH→cc

Phys. Rev. Lett. 120 (2018) 211802

- Previous ATLAS Z(I+I-)Hcc result with 36.1 fb⁻¹ \sqrt{s} = 13 TeV data
- Observed (expected) limit of $\mu_{\rm ZHcc}$ is **110** (150⁺⁸⁰₋₄₀)

JHEP 03 (2020) 131

- Previous CMS VHcc result with 35.9 fb⁻¹ $\sqrt{s} = 13$ TeV data
- O Using 3 channels: W→Iv, Z→II, Z →vv
- Both resolved and boosted (2 charm jets merged into one fat jet due to large boost) regions are used
- Observed (expected) limit of $\mu_{\rm VHcc}$ is **70** (37^{+15.4})

• $H \rightarrow J/\psi + \gamma, J/\psi \rightarrow \mu^+\mu^-$, 36 fb⁻¹Run 2, ATLAS **125x** SM <u>Phys. Lett. B 786 (2018) 134</u>, CMS 642x SM <u>Phys.</u> Lett. B 797 (2019) 134811 $\begin{array}{l} \mbox{1 lepton candidate event W(ev)H(cc)} \\ \Delta \phi = -1.37 \\ m_{CC} = 124.29 \ GeV \\ p_{TJ1} = 111.6 \ GeV \\ p_{TJ2} = 81.27 \ GeV \\ \eta_{J1} = 0.83 \\ \eta_{J2} = 0.52 \end{array}$

Run: 329964 Event: 500775771 2017-07-18 06:31:13 CEST

VH(H→cc) analysis syllables

VH(H→cc) search strategy

- Use 139 fb⁻¹ full Run 2 data recorded by ATLAS
- Cut-based analysis: final discriminant is m_{cc}
- 1 and 2 c-tag (defined using tagging algorithms) categories and several pTV and nJet bins:

	1 c-tag		2 c·	-tag
75 < p _T ^V < 150 GeV (*)	2 jet	3(+) jet	2 jet	3(+) jet
p_T^V >150 GeV	2 jet	3(+) jet	2 jet	3(+) jet

pTV – transverse momentum of the vector boson (*) only in 2 lepton channel

Tagging

Event selection

Region-specific selections

Common selections

Common Selections				
Central jets	≥ 2			
Signal jet $p_{\rm T}$	\geq 1 signal jet with $p_{\rm T}$ > 45 GeV			
<i>c</i> -jets	1 or 2 <i>c</i> -tagged signal jets			
<i>b</i> -jets	No <i>b</i> -tagged non-signal jets			
Jets	2, 3 (0- and 1-lepton), $2, \ge 3$ (2-lepton)			
$p_{\rm T}^V$ regions	75–150 GeV (2-lepton) > 150 GeV			
ΔR (jet 1, jet 2)	$\begin{array}{l} 75 < p_{\rm T}^V < 150 \; {\rm GeV} \colon \Delta R \le 2.3 \\ 150 < p_{\rm T}^V < 250 \; {\rm GeV} \colon \Delta R \le 1.6 \\ p_{\rm T}^V > 250 \; {\rm GeV} \colon \Delta R \le 1.2 \end{array}$			

0 Lepton			
Trigger	$E_{ m T}^{ m miss}$		
Leptons	0 <i>loose</i> leptons		
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 150 GeV		
$p_{\rm T}^{\rm miss}$	> 30 GeV		
$\dot{H_{ m T}}$	> 120 GeV (2 jets), > 150 GeV (3 jets)		
$\min \Delta \phi(E_{\rm T}^{\rm miss}, {\rm jet}) $	$> 20^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets})$		
$ \Delta \phi(E_{\rm T}^{\rm miss}, H) $	> 120°		
$ \Delta \phi$ (jet1, jet2)	< 140°		
$ \Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, p_{\mathrm{T}}^{\mathrm{miss}}) $	< 90°		
1 Lepton			
	<i>e</i> sub-channel: single electron		
Irigger	μ sub-channel: $E_{\rm T}^{\rm miss}$		
Leptons	1 <i>tight</i> lepton and no additional <i>loose</i> leptons		
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 30 GeV (e sub-channel)		
$m_{\mathrm{T}}^{\mathrm{W}}$	< 120 GeV		
2 Lepton			
Trigger	single lepton		
Lentons	2 <i>loose</i> leptons		
Leptons	Same flavour, opposite-charge for $\mu\mu$		
m _{ll}	$81 < m_{ll} < 101 \text{ GeV}$		

Background Control Regions

top control region

High ΔR control region

- 0 c-tag control region
 - None of the two leading jets is c-tagged
- Top control region
 - The third jet is b-tagged
 - Only for 1 c-tag
- Top eµ control region
 - One bin, only for 2 lepton region
- High ΔR control region
 - Inverse the ΔR cut

Background composition

0 Lepton, $pTV \ge 150 \text{ GeV}$

2 Lepton, $pTV \ge 150 \text{ GeV}$

Z+jets (OL, 2L), W+jets (OL, 1L) and top backgrounds (OL, 1L) are the major backgrounds

Uncertainties

Experimental uncertainties:

- Luminosity and Pile-up Simulation
- Lepton triggers
- MET trigger
- Lepton and MET Reconstruction
- Jet Energy Scale and Resolution
- Flavour Tagging
- Truth Tagging

Simultaneous profile likelihood binned fit to all regions

- Control regions are not shown
- 3 parameters of interest (POIs): $\mu_{VH(cc)}$, $\mu_{VZ(cc)}$, $\mu_{VW(cq)}$
- The free-floating normalization factors are not listed in the formula:
 - \circ top background which decay into one **b quark** and one other quark (or tau lepton) (bc, bl, bb, bt)
 - top background which decay into one **c quark or light flavor quark** and one other quark (cl, l, cc)
 - ttbar (2L)
 - \odot Wmf, Zmf (bc, bl, cl and W(tv)+b, W(tv)+c in OL)
 - Whf, Zhf (cc, bb)
 - \circ WI, ZI (W(τv)+I in OL)

Best-fit Results

- Signal strengths from the 3 POI fit:
 - VH(cc): -8.58 +/- 15.14
 - VW(cl): 0.83 +/- 0.24
 - VZ(cc): 1.16 +/- 0.48
- All signal strengths in agreement with SM comb. within 1σ
- Compatibility with SM (μ=1): 84%

H(cc) in combined fit and decorrelated across channels

Diboson POIs in 3 POI fit

Post-fit plots and normalization factors

Limits and significances

- Observed VH(cc) limit of 26 x SM (31 x SM expected)
 - Highest sensitivity in 0 lepton channel
- Diboson
 - \circ VW(cl) significance of **3.84 o** (4.60 o expected)
 - VZ(cc) significance of **2.61** σ (2.24 σ expected)
- Uncertainties
 - Dominated by statistics
 - As for systematic uncertainty, modelling uncertainty for Z+jets is dominant

	Expected	Observed
VH(cc) limit	$31.1^{+12.2}_{-8.7}$	26.0

First in	VW(cl) significance	4.60 σ	3.84 σ
ATLAS	VZ(cc) significance	2.24 σ	2.61 σ

Expected and observed limit in combined fit and with POI decorrelated into channels

$\kappa_{\rm c}$ interpretation

•
$$\mu(\kappa_c) = \frac{\kappa_c^2}{B(H \to c\bar{c})\kappa_c^2 + (1 - B(H \to c\bar{c}))}$$

(other coupling modifiers set to 1)

- Expected limit on κ_c at 95% CL in combined fit $|\kappa_c| < 12.4$
- Observed best fit $\kappa_c = 0$
- Current best limit on $\kappa_c @ 95\%$ CL with $|\kappa_c| < 8.5$

Combined fit	68% CL	95% CL
Expected	[-4.9, 4.9]	[-12.3, 12.4]
Observed	[-3.5, 3.5]	[-8.5, 8.5]

Summary

- Full Run 2 VH, H→cc search is performed, with all three lepton channels and background control regions compared to previous ZH(cc) 36 fb⁻¹ analysis
- Diboson measurements:
 - \circ VW(cl): 3.84 σ obs (4.60 σ exp)
 - \circ VZ(cl): 2.61 σ obs (2.24 σ exp)
- Observed limit of 26 x SM on VH(cc) (for 31 x SM expected) Current best limit on VH(cc)
- $\kappa_c @ 95\%$ CL with $|\kappa_c| < 8.5$

Backup

Higgs production mechanisms and H→cc search strategies

Main Higgs production processes (Production cross section: $\sigma_{\rm H}$ = 56 pb at 13 TeV)

(a) Gluon fusion (87% of σ_{H})

- Large QCD background
- (b) Vector boson fusion (VBF) (7% of σ_H) • S/B is small
- (c) Associated production with W/Z (4% of σ_H)
 W/Z leptonic decay can be used to trigger the signal
- (d) Associated production with ttbar (1% of σ_{H})
 - Semi-leptonic decay product of top can be used to trigger the signal

Samples

• Data

- pp collision data recorded by the ATLAS detector during Run 2 of LHC from 2015 to 2018 at a centre-of-mass energy of 13 TeV
- $\circ~$ Corresponding to integrated luminosity of 139 \pm 2.4 fb^{-1}
- Collected with a suite of MET (0L, 1L), single-electron and single-muon triggers (1L, 2L)
- Events are required to be of good quality and recorded while all relevant detector components were in operation

• MC

Process	ME generator	ME PDF	PS and hadronisation	Tune	Cross-section order
$\begin{array}{c} q q \rightarrow V H \\ (H \rightarrow c \bar{c} / b \bar{b}) \end{array}$	Powheg-Box v2 + GoSam + MiNLO	NNPDF3.0NLO	Рутніа 8.212	AZNLO	NNLO(QCD) +NLO(EW)
$\begin{array}{c} gg \rightarrow ZH \\ (H \rightarrow c \bar{c} / b \bar{b}) \end{array}$	Powheg-Box v2	NNPDF3.0NLO	Рутніа 8.212	AZNLO	NLO+NLL
tī	Powheg-Box v2	NNPDF3.0NLO	Рутніа 8.230	A14	NNLO +NNLL
<i>t/s</i> -channel single top	Powheg-Box v2	NNPDF3.0NLO	Рутніа 8.230	A14	NLO
<i>Wt</i> -channel single top	Powheg-Box v2	NNPDF3.0NLO	Рутніа 8.230	A14	Approx. NNLO
V+jets	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NNLO
$qq \rightarrow VV$	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NLO
$gg \rightarrow VV$	Sherpa 2.2.2	NNPDF3.0NNLO	Sherpa 2.2.2	Default	NLO

All samples of simulated events were passed through the ATLAS detector simulation, based on Geant4 and were reconstructed using standard ATLAS reconstruction software

Object and event selection – Object selection

• Leptons

• Electron

- pT > 7 GeV and |η| < 2.47
 - loose identification (0L, 2L)
 - tight identification (1L)
- Muon
 - pT > 7 GeV and |η| < 2.5
 - loose identification (0L, 2L)
 - medium identification (1L)
- Hadronically decaying tau
 - pT > 20 GeV and |η| < 2.5 except
 1.37 < |η| < 1.52
 - medium identification

- Jets
 - $\circ~$ reconstructed using anti-kt with R=0.4 $\,$
 - forward jet
 - pT > 30 GeV and $2.5 < |\eta| < 4.5$
 - central jet
 - pT > 20 GeV and |η| < 2.5
 - $\circ~$ Overlap removal to avoid double counting
 - \circ $\,$ Tagging applied
- MET
 - $\circ \vec{E}_T^{\text{miss}} = -\sum (\vec{p}_{T,\text{elec}} + \vec{p}_{T,\text{muon}} + \vec{p}_{T,\text{hardronic}-\tau} + \vec{p}_{T,\text{jet}} + \vec{p}_{T,\text{soft term}})$
 - $\circ \vec{p}_T^{
 m miss}$ track-based MET using all ID tracks associated to the primary vertex

Object and event selection – Tagging

- **DL1** as a c-tagger
- b-veto using MV2c10 70% WP
- Dedicated optimization of WP:
 - o c-jets (27%), b-jets (8.3%), light-jets (1.7%)

Low statistics

Instead of **D**irectly **T**agging (DT) events, weighting events by the probabilities for each jet to be c-tagged, based on its flavor label, doing *Truth Tagging* (TT)

(*) ΔR dependent correction

Uncertainties

Major uncertainties:

- Data statistics is the largest
- Z+hf mcc shape (related to Z+bb, Z+cc shape)
- Top(bq) TopCR extrapolation (component peak under VH(cc) signal)
- W/Z+cc 2 jet TT dR (related to W/Z+jets dR correction)
- W+hf mCC shape (related to W+bb, W+cc shape)

Breakdown of uncertainties

- Uncertainty on VH(cc) ~ 15.3
- Stat and systematic uncertainties of the same order
- Largest contributions to systematic uncertainties:
 - o Z+jets
 - Тор
 - Flavour tagging

Set of NPs	Impact	Experimental Syst
Total	± 15.3	(except FTAG)
Data Stat	± 10.0	Lepton
Data stat only	± 7.9	MET
Float. norm	± 5.1	JET
Full Syst	+ 11 5	Pile-up/Lumi
VH(cc) modelling	+ 2 1	FTAG + TT
Background modelling	± 2.1	FTAG (b-jet)
	± 0.0	FTAG (c-jet)
vv+jets	± 2.9	FTAG (I-iet)
Z+jets	± 7.0	
Тор	± 3.9	FTAG (tau-jet)
Diboson	+ 1.00	TT ΔR
Multi-jet	+ 0.98	DT norm
Multi-jet	± 0.90	MC Stat
Hbb	± 0.78	NO Stat

 ± 2.96

 ± 0.49

± 0.18

 ± 2.84

 ± 0.29

 ± 4.29

± 1.11

± 1.67

± 0.35

 ± 0.33

 ± 3.33

 ± 1.74

± 4.23

Comparison VHcc 139/fb vs ZHcc 36/fb

	2015+2016 (36 /fb)	Full Run 2
Flavour tagging	c-tagging (MV2 based)	c-tagging + b-tag veto (DL1 vs MV2 based)
Jets categories	2+jets	2 and 3+jets
pTV	Low and high pTV	Low and high pTV
SRs	1 c-tag and 2 c-tag	1 c-tag and 2 c-tag
CRs	Top emu	Top emu, High dR CR, 0 c-tag
VH(bb) treatment	SM bkg SR Overlap	SM bkg Orthogonality in SR
VH(bb) fraction in 2 c-tag	6%	0,7%
Truth tagging	ΔR(jet1,jet2)	Min ΔR(tagged jet, closest jet2)
FTAG calibrations	36/fb	140/fb, 80/fb for c-jets
Modelling	36/fb	140/fb

Object and event selection – Object Selection – Jets

Muon-in-jet correction

- Apply the correction if
 - \circ muon pT > 4 GeV, $|\eta| < 2.7$
 - pass Medium quality cut
 - \circ $\Delta R(jet, muon) < min(0.4, 0.04+10/p_T^{\mu})$
- Improve VH(cc) signal resolution up to 6%

Add the muon 4-vector to the jet 4-vector, and remove the energy deposited by the muon from the jet 4-vector $vec_{jet} = vec_{jet} + vec_{muon} - dep_{muon}$

Background subtracted plots

Background subtracted mass spectrum from unconditional 3 POI fit to data

Good Data/MC post-fit agreement

Background subtracted plots

Background subtracted mass spectrum from unconditional 3 POI fit to data

Good Data/MC post-fit agreement

dR selection

Overlap removal

• tau-electron: If $\Delta R(\tau, e) < 0.2$, the τ lepton is removed.

• tau-muon: If $\Delta R(\tau, \mu) < 0.2$, the τ lepton is removed, with the exception that if the τ lepton has $p_T > 50$ GeV and the muon is not a combined muon, then the τ lepton is not removed.

• electron-muon: If a combined muon shares an ID track with an electron, the electron is removed. If a calo-tagged muon shares an ID track with an electron, the muon is removed.

• electron-jet: If $\Delta R(\text{jet}, e) < 0.2$ the jet is removed. For any surviving jets, if $\Delta R(\text{jet}, e) < \min(0.4, 0.04 + 10 \text{ GeV}/p_T^e)$, the electron is removed.

• **muon-jet** If $\Delta R(jet, \mu) < 0.2$ or the muon ID track is ghost associated to the jet, then the jet is removed if the jet has less than three associated tracks with $p_T > 500$ MeV (NumTrkPt500PV^{jet} < 3) or both of the following conditions are met: the p_T ratio of the muon and jet is larger than 0.5 ($p_T^{\mu}/p_T^{jet} > 0.5$) and the ratio of the muon p_T to the sum of p_T of tracks with $p_T > 500$ MeV associated to the jet is larger than 0.7 ($p_T^{muon}/SumPtTrkPt500PV^{jet} > 0.7$).

For any surviving jets, if $\Delta R(\text{jet}, \mu) < \min(0.4, 0.04 + 10 \text{ GeV}/p_T^{\mu})$, the muon is removed.

• tau-jet: If $\Delta R(\tau, \text{jet}) < 0.2$, the jet is removed.

C-tagging

Variable Name	Description
$L_{\rm xyz}$	Three-dimensional displacement of secondary vertex from the primary vertex
L_{xy}	Transverse displacement of the secondary vertex
$Y_{\text{trk}}^{\min}, Y_{\text{trk}}^{\max}, Y_{\text{trk}}^{\text{avg}}$	Min, Max and Avg. track rapidity of tracks in jet
$Y_{\text{trk}}^{\min}, Y_{\text{trk}}^{\max}, Y_{\text{trk}}^{\text{avg}}$ (2 nd vtx)	Min, Max and Avg. track rapidity of tracks at secondary vertex
m	Invariant mass of tracks associated to secondary vertex
E	Energy of charged tracks associated to secondary vertex
$\mathbf{f}_{\mathbf{E}}$	Energy fraction of charged tracks (from all tracks in the jet)
	associated to secondary vertex
N _{trk}	Number of tracks associated to the secondary vertex

Table 2: Summary of new input variables, used for charm tagging, in addition to those used by the baseline MV2 *b*-tagging algorithm [4]. The track pseudo-rapidity Y_{trk} is computed as $Y_{trk} \equiv -\log\left(\tan\left(\frac{\theta}{2}\right)\right)$, where θ is the angle between the track momentum and the hadron flight path reconstructed by JetFitter.

Tagging working point

	c-jets	b-jets	I-jets
ZH(cc) 36 /fb	41%	25%	5%
VH(cc) 139 /fb	27%	8%	1.6%
CMS VH(cc) 36 /fb	27%	17%	4%

Systematics pruning

- Neglect the normalization uncertainty for a given sample in a region if either of the following is true
 - \circ the variation is less than 0.5%
 - \circ $\,$ both up and down variations have the same sign
- Neglect the shape uncertainty for a given sample in a given region if the following is true
 - not one single bin has a deviation over 0.5% after the overall normalization is removed
 - if only the up or the down variation is non-zero and passed the previous pruning steps
- Neglect the shape and normalization uncertainties for a given sample in a given region if the sample is less than 2% of the total background
 - if the signal < 2% of the total background in all bins and the shape and normalization error are each < 0.5% of the total background
 - if at least one bin has a signal contribution > 2% of the total background, only in those bins where the shape and normalization error are each < 2% of the signal yield

Higgs Lagrangian

•
$$\mathcal{L}_{GM} = \frac{1}{4}g^2 v^2 W_{\mu}^+ W^{-\mu} + \frac{1}{8}v^2 (g^2 + {g'}^2) Z_{\mu} Z^{\mu} \Rightarrow m_Z = \frac{1}{2}v \sqrt{g^2 + {g'}^2}, \frac{m_W}{m_Z} = \cos \theta$$

• $\mathcal{L}_{Yukawa} = -\left[\frac{m_{li}}{v}\overline{l_i}l_i + \frac{m_{di}}{v}\overline{d_i}d_i + \frac{m_{ui}}{v}\overline{u_i}u_i\right] H - m_{li}\overline{l_i}l_i - m_{di}\overline{d_i}d_i - m_{ui}\overline{u_i}u_i$
 $m_{li} \equiv \frac{g_i^L}{\sqrt{2}}v, m_{di} \equiv \frac{g_i^d}{\sqrt{2}}v, m_{ui} \equiv \frac{g_i^u}{\sqrt{2}}v$

Anti QCD cuts

- $|\Delta \Phi(\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathbf{E}_{\mathrm{T, trk}}^{\mathrm{miss}})| < 90^{\circ}$
- $|\Delta \Phi(jet1, jet2)| < 140^{\circ}$
- $|\Delta \Phi(\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}, h)| > 120^{\circ}$
- $min[|\Delta \Phi(\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{pre-sel. \ jets})|] > 20^{\circ} \text{ for } 2 \text{ jets}, > 30^{\circ} \text{ for } 3 \text{ jets}.$

Run: 309892 Event: 4866214607 2016-07-16 06:20:19 CEST

.

Run: 350440 Event: 1105654304 2018-05-16 23:55:11 CEST "c-tag + b-veto" working point calibrated using the same control channels and methods used for official b-tagging calibrations (exactly the same code used)

- ♦ *b*-jets calibrated in $e^{\pm}\mu^{\mp}$ + 2 jets region pure in di-leptonic events, uncertainty dominated by modelling uncertainties
- ♦ c-jets calibrated in ℓ^{\pm} + 2 jets + 2 *b*-jets pure in semi-leptonic events (*W* → *cs*, *cd*), uncertainty dominated by modelling uncertainties
- light flavour jets calibrated in Z + jets events using "negative tag" method, uncertainty dominated by "extrapolation" uncertainty from negative tag approach
- $\diamond~ au$ -jets share scale factor derived for *c*-jets, with additional uncertainty of 22%

Single top

