

中國科學院為能物路納完備 Institute of High Energy Physics Chinese Academy of Sciences

Search for Higgs boson pair production in $\gamma\gamma$ bb final state in *pp* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

Zihang Jia^{1,2}

¹*IHEP*, ²*Nanjing University*

Outline

- Motivation
- Analysis overview
- Categorization
- Signal and backgound modeling
- Results
- Summary

<u>ATLAS-CONF-2021-016</u> (this talk) <u>JHEP 11 (2018) 040</u> (ATLAS 36 fb^{-1}) <u>JHEP 03 (2021) 257</u> (CMS)

ATLAS-PHYS-PUB-2021-031 (HH summary)

Motivation – HH production

HHyybb Analysis overview

Search for Non-resonant and Resonant HH production in $\gamma\gamma bb$ channel (full Run2 data, 139 fb^{-1}).

One of the most sensitive HH final states:

- Large branching ratio for $H \rightarrow bb$
- Excellent photon resolution and relatively small background for $H \rightarrow \gamma \gamma$

Main backgrounds

- Non-resonant $\gamma\gamma$ backgrounds
- Single Higgs production

Common Preselection

- Triggered by the presence of 2 photons
- 105 GeV < $m_{\gamma\gamma}$ < 160 GeV
- Fewer than 6 central jets (reject ttH events)
- Exactly 2 b-tagged jets (77% DL1r b-tagging efficiency)
- Veto events containing an electron or muon

2021/8/28

Non-resonant analysis: target SM HH $\rightarrow \gamma\gamma bb$ processes, and possible modifications to κ_{λ} .

Target mainly ggF HH production, but VBF HH events also considered as signal

Signal regions defined using $m^*_{\gamma\gamma bb}$ and BDT score

- > Modified invariant mass $m^*_{\gamma\gamma bb} = m_{\gamma\gamma bb} m_{\gamma\gamma} m_{bb} + 250 \ GeV$
- Provides cancellation of experimental resolution effects
- Low and high mass categories provide enhanced sensitivity to κ_{λ}

Non-resonant analysis: target SM HH $\rightarrow \gamma\gamma bb$ processes, and possible modifications to κ_{λ} .

Target mainly ggF HH production, but VBF HH events also considered as signal

Signal regions defined using $m^*_{\gamma\gamma bb}$ and BDT score

Boosted Decision Tree

- Against $\gamma\gamma$ and single Higgs backgrounds
- BDT trained on photon, jet and missing transverse energy variables

Resonant analysis: target BSM HH $\rightarrow X \rightarrow \gamma \gamma bb$ processes, with $m_X \in [251, 1000]$ GeV.

Non-resonant SM HH production included as background

- Signal regions defined using $m^*_{\gamma\gamma bb}$ and BDT score
- Modified invariant mass
- 2σ window cut around each mass hypothesis of the resonance

Boosted Decision Tree

- Shared by all resonance masses to avoid lack of background at high mass
- BDTs trained on photon, jet and missing transverse energy variables
- Two BDTs against $\gamma\gamma$ + $tt\gamma\gamma$ and single Higgs backgrounds respectively
- For each m_X , cut on the combined BDT score.

7

Signal and background modeling

Maximum likelihood fit performed on $m_{\gamma\gamma}$ simultaneously with all the categories. (Non-resonant: 4 categories; Resonant: 1 category for each m_X)

Signal parameterization

Normalization fixed to SM, shape from a double sided crystal ball (DSCB) fit to MC

Non-resonant

• Fit to SM *HH* signal, model shared with *H* background

Resonant

• Fit to resonance signals, model shared with SM HH and H background

Background parameterization

Normalization floating, shape from a **exponential function** fit to data

• Function form determined from **spurious signal** studies

Observed (Expected) Results

Limits at 95%CL are set based on the profile likelihood ratio approach.

2021/8/28

Summary

Searches for non-resonant and resonant HH production are performed in the $bb\gamma\gamma$ final state (139 fb^{-1}). **No significant excess** with respect to the SM background expectation is observed.

Improvement compared to the previous ATLAS result based on 36 fb^{-1} of 13 TeV pp collisions

- Extends the data set by more than a factor of 4
- Incorporates a categorization based on $m^*_{\nu\nu bb}$ and multivariate event selections
- More precise object reconstruction and calibration

Publication of the Run 2 paper soon.

Preparing the dedicated analysis for VBFHH signal.

中國科學院為能物昭為完備 Institute of High Energy Physics Chinese Academy of Sciences

Thanks!

Motivation – Higgs self-coupling

- The Higgs boson completes the Standard Model of Particle Physics.
- However, the shape of **the Higgs potential** has yet to be measured.

V

V

• We can probe the Higgs potential by measuring the Higgs self-coupling (λ) .

$$\begin{aligned} f(\phi) &= -\mu^2 \phi^2 + \lambda \phi^4 \\ (\nu + h) &= V_0 + \frac{1}{2} m_h^2 h^2 + \lambda v h^3 + \lambda h^4 + \dots \\ & \uparrow & \uparrow & \uparrow \\ H & H & H \\ H & H & H \\ H & H & H \\ \hline \kappa_\lambda &= \frac{\lambda_{HHH}}{\lambda_{HHH}^{SM}} \end{aligned}$$

Background Samples

Table 1: Summary of single Higgs boson background samples, split by production modes, and continuum background samples. The generator used in the simulation, the PDF set, and tuned parameters (tune) are also provided.

Process	Generator	PDF set	Showering	Tune
ggF	NNLOPS [65–67] [68, 69]	PDFLHC [42]	Рутніа 8.2 [70]	AZNLO [71]
VBF	Powheg Box v2 [39, 66, 72–78]	PDFLHC	Рутніа 8.2	AZNLO
WH	Powheg Box v2	PDFLHC	Рутніа 8.2	AZNLO
$qq \rightarrow ZH$	Powheg Box v2	PDFLHC	Рутніа 8.2	AZNLO
$gg \rightarrow ZH$	Powheg Box v2	PDFLHC	Рутніа 8.2	AZNLO
tĪH	Powheg Box v2 [73–75, 78, 79]	NNPDF3.0nlo[80]	Рутніа 8.2	A14 [<mark>81</mark>]
bbH	Powheg Box v2	NNPDF3.0nlo	Рутніа 8.2	A14
tHqj	MadGraph5_aMC@NLO	NNPDF3.0nlo	Рутніа 8.2	A14
tHW	MadGraph5_aMC@NLO	NNPDF3.0nlo	Рутніа 8.2	A14
$\gamma\gamma$ +jets	Sherpa v2.2.4 [56]	NNPDF3.0nnlo	Sherpa v2.2.4	_
$t\bar{t}\gamma\gamma$	MadGraph5_aMC@NLO	NNPDF2.310	Рутніа 8.2	-

Common selections

On top of the trigger requirements, events are selected if:

- there are at least two photons passing the object selection criteria detailed in Section 4.1;
- the di-photon invariant mass, built with the two leading photons, satisfies $105 \text{ GeV} < m_{\gamma\gamma} < 160 \text{ GeV}$;
- the leading (sub-leading) photon $p_{\rm T}$ is larger than 35% (25%) of the mass of the di-photon system;
- there are exactly two *b*-tagged jets;
- no electrons or muons are present;
- fewer than six central ($|\eta| < 2.5$) jets are required, to help rejecting $t\bar{t}H$ events where the top quarks decay hadronically.

H(bb̄)

- PFlow jets (AntiKt4PFlowCustomVtxHggJets) with pT > 25 GeV and $|\eta|$ <2.5 passing JetVertexFraction (JVT) tight and Jet cleaning
- Exactly 2 b-jets passing the 77% DL1r b-tagging WP and ranked by pT
 mbb resolution improved by a muon-in-jet correction, as well as a pT-reco correction to account for pT loss due to neutrinos and objects outside of the jet cone.
 - Resolution improves by about 22%

- $p_T^{\gamma 1} > 35 \; GeV, \, p_T^{\gamma 2} > 25 \; GeV$
- Photon Tight ID, FixedCutLoose
- $105 < m_{\gamma\gamma} < 160 \, GeV$
- $p_T^{\gamma 1}/m_{\gamma \gamma} > 0.35, p_T^{\gamma 2}/m_{\gamma \gamma} > 0.25$
- $N_{photon} \ge 2$
- $N_{b77 \ jets} = 2$
- $N_{lepton} = 0$
- N_{central jets} < 6

Non-resonant BDT variables

Table 2: Variables used in the BDT for the non-resonant analysis. The *b*-tag status identifies the highest fixed *b*-tag working point (60%, 70%, 77%) that the jet passes. All vectors in the event are rotated so that the leading photon ϕ is equal to zero.

Variable	Definition
Photon-related kine	ematic variables
$p_{\rm T}/m_{\gamma\gamma}$	Transverse momentum of the two photons scaled by their invariant mass $m_{\gamma\gamma}$
η and ϕ	Pseudo-rapidity and azimuthal angle of the leading and sub-leading photon
Jet-related kinemat	tic variables
<i>b</i> -tag status	Highest fixed <i>b</i> -tag working point that the jet passes
p_{T},η and ϕ	Transverse momentum, pseudo-rapidity and azimuthal angle of the two jets with the highest <i>b</i> -tagging score
$p_{\mathrm{T}}^{bar{b}},\eta_{bar{b}}$ and $\phi_{bar{b}}$	Transverse momentum, pseudo-rapidity and azimuthal angle of <i>b</i> -tagged jets system
$m_{b\bar{b}}$	Invariant mass built with the two jets with the highest b -tagging score
$H_{ m T}$	Scalar sum of the $p_{\rm T}$ of the jets in the event
Single topness	For the definition, see Eq. (1)

Missing transverse momentum-related variables

$E_{\rm T}^{ m miss}$ and $\phi^{ m miss}$	Missing transverse momentum and its azimuthal a	angle
--	---	-------

$$Z = \sqrt{2 * [(s+b) * \log (1 + s/b) - s]}$$

Low mass region

High mass region

Resonant BDT variables

Table 4: Variables used in the BDT for the resonant analysis. For variables depending on *b*-tagged jets, only jets *b*-tagged using the 77% working point are considered as described in Section 4.1.

Variable	Definition
Photon-related kinematic variable	es
$p_{\rm T}^{\gamma\gamma}, y^{\gamma\gamma}$	Transverse momentum and rapidity of the di-photon system
$\Delta \phi_{\gamma\gamma}$ and $\Delta R_{\gamma\gamma}$	Azimuthal angular distance and ΔR between the two photons
Jet-related kinematic variables	
$m_{b\bar{b}}, p_{\rm T}^{b\bar{b}}$ and $y_{b\bar{b}}$	Invariant mass, transverse momentum and rapidity of the <i>b</i> -tagged jets system
$\Delta \phi_{b\bar{b}}$ and $\Delta R_{b\bar{b}}$	Azimuthal angular distance and ΔR between the two <i>b</i> -tagged jets
$N_{\rm jets}$ and $N_{b-\rm jets}$	Number of jets and number of <i>b</i> -tagged jets
H_{T}	Scalar sum of the $p_{\rm T}$ of the jets in the event
Photons and jets-related kinemat	ic variables
$m_{bar{b}\gamma\gamma}$	Invariant mass built with the di-photon and <i>b</i> -tagged jets system
$\Delta y_{\gamma\gamma,b\bar{b}}, \Delta \phi_{\gamma\gamma,b\bar{b}}$ and $\Delta R_{\gamma\gamma,b\bar{b}}$	Distance in rapidity, azimuthal angle and ΔR between the di-photon and the <i>b</i> -tagged jets system

 $BDT_{tot} = \frac{1}{\sqrt{C_1^2 + C_2^2}} \sqrt{C_1^2 \left(\frac{BDT_{\gamma\gamma} + 1}{2}\right)^2 + C_2^2 \left(\frac{BDT_{Single}H + 1}{2}\right)^2}$

Signal modeling - DSCB

<u>A Gaussian core + asymmetric power law tails</u>

where N is a normalization factor and the six parameters are

- μ_{CB} and σ_{CB} describe the mean and the width of the Gaussian core, which are combined in $t = (m_{\gamma\gamma} \mu_{CB}) / \sigma_{CB};$
- α_{low} and α_{high} are the positions of the transitions with respect to μ_{CB} from the Gaussian core to power-law tails, in unit of σ_{CB} , on the low and high mass sides respectively;
- n_{low} and n_{high} are the exponents of the low and high mass tails. With the α 's, they define $R_{low} = \frac{n_{low}}{\alpha_{low}}$ and R_{high} similarly.

 $m_{\gamma\gamma}$ [GeV]

Diphoton background decomposition

Reconstructed $\gamma\gamma$ events is mainly composed of $\gamma\gamma$, γ -jets and jet-jet events, where the jet(s) fake(s) a real photon. The 2x2D sideband method is developed using the discriminating power of photon identification and isolation criteria. The event yields in the signal region and the 15 sidebands can be expressed as **functions** of <u>the photon efficiencies</u>, jet fake rates and correlation coefficients.

CC	CD	DC	DD
CA	CB	DA	DB
AC	AD	BC	BD
AA	AB	BA	BB

Reference

Suffers from low statistics, not used in constructing the background templates for the spurious signal procedure.

Spurious signal

Spurious signal: bias estimated from a signal + background fit to a background-only MC template.

Selection criteria:

□ The function should satisfy at least one of the following criteria:

• $N_{s,exp}$ = expected SM signal events

- σ_{bkg} = stat. uncertainty on Nsig when fitting the sig+bkg model to the asimov dataset
- Δ_{MC} = local statistical fluctuation of the MC background template

D The function must satisfy a simple χ^2 requirement in a background-only fit to the MC template:

 $p - value(\chi^2) > 1\%$

The χ^2 is computed with a background template uniformly binned over 105 < $m\gamma\gamma$ < 160 GeV.

- The least number of parameters is preferred.
- > The **smaller systematic uncertainty** (spurious signal) is preferred.

Wald tests show that the data do not prefer a higher degree functional form with respect to the exponential form.

2021/8/28

 $N_{sp} = \max_{121 < m_H < 129 \ GeV} |N_s(m_H)|$

Systematic uncertainties

In general the analysis is almost completely statistically dominated with the Run 2 dataset

		Relative impact of the sys	stematic uncertainties in %
Source	Туре	Non-resonant analysis HH	Resonant analysis $m_X = 300 \text{ GeV}$
Experimental			
Photon energy scale	Norm. + Shape	5.2	2.7
Photon energy resolution	Norm. + Shape	1.8	1.6
Flavor tagging	Normalization	0.5	< 0.5
Theoretical			
Heavy flavor content	Normalization	1.5	< 0.5
Higgs boson mass	Norm. + Shape	1.8	< 0.5
PDF+ α_s	Normalization	0.7	< 0.5
Spurious signal	Normalization	5.5	5.4

Statistical model

Likelihood

$$\mathcal{L} = \prod_{c} \left(\operatorname{Pois}(n_{c} | N_{c}(\boldsymbol{\theta})) \cdot \prod_{i=1}^{n_{c}} \underline{f_{c}(m_{\gamma\gamma}^{i}, \boldsymbol{\theta})} \cdot G(\boldsymbol{\theta}) \right)$$

Event parameterization

$$N_{c}(\boldsymbol{\theta}) = \mu \cdot N_{HH,c}(\boldsymbol{\theta}_{HH}^{\text{yield}}) + N_{\text{bkg,c}}^{\text{res}}(\boldsymbol{\theta}_{\text{res}}^{\text{yield}}) + N_{\text{SS,c}} \cdot \boldsymbol{\theta}^{\text{SS,c}} + N_{\text{bkg,c}}^{\text{non-res}}$$

Model PDF

$$\frac{f_c(m_{\gamma\gamma}, \boldsymbol{\theta})}{f_c(m_{\gamma\gamma}, \boldsymbol{\theta})} = [\mu \cdot N_{HH,c}(\boldsymbol{\theta}_{HH}^{\text{yield}}) \cdot f_{HH,c}(m_{\gamma\gamma}, \boldsymbol{\theta}_{HH}^{\text{shape}}) + N_{\text{bkg,c}}^{\text{res}}(\boldsymbol{\theta}_{\text{res}}^{\text{yield}}) \cdot f_{\text{bkg,c}}^{\text{res}}(m_{\gamma\gamma}, \boldsymbol{\theta}_{\text{res}}^{\text{shape}}) \\ + N_{\text{SS,c}} \cdot \boldsymbol{\theta}_{HH}^{\text{SS,c}} \cdot f_{HH,c}(m_{\gamma\gamma}, \boldsymbol{\theta}_{HH}^{\text{shape}}) + N_{\text{bkg,c}}^{\text{non-res}} \cdot f_{\text{bkg,c}}^{\text{non-res}}(m_{\gamma\gamma}, \boldsymbol{\theta}_{\text{non-res}}^{\text{shape}})]/N_c(\boldsymbol{\theta}_{\text{non-res}}^{\text{yield}}).$$

κ_{λ} reweighting for ggF HH samples

The method derives the scale factors as a function of κ_{λ} in **bins of** m_{HH} by performing a linear combination of samples generated at $\kappa_{\lambda} = 0, 1, 20$.

$$\sigma(\kappa_t = 1, \kappa_{\lambda} = 0) \sim |\mathcal{A}_1|^2$$

$$\sigma(\kappa_t = 1, \kappa_{\lambda} = 1) \sim |\mathcal{A}_1|^2 + 2\Re \mathcal{A}_1^* \mathcal{A}_2 + |\mathcal{A}_2|^2$$

$$\sigma(\kappa_t = 1, \kappa_{\lambda} = 20) \sim |\mathcal{A}_1|^2 + 2 \cdot 20\Re \mathcal{A}_1^* \mathcal{A}_2 + 20^2 |\mathcal{A}_2|^2$$

$$\sigma(\kappa_{t},\kappa_{\lambda}) \sim \kappa_{t}^{2} \left[\left(\kappa_{t}^{2} + \frac{\kappa_{\lambda}^{2}}{20} - \frac{399}{380} \kappa_{\lambda} \kappa_{t} \right) |S(1,0)|^{2} + \left(\frac{40}{38} \kappa_{\lambda} \kappa_{t} - \frac{2}{38} \kappa_{\lambda}^{2} \right) |S(1,1)|^{2} + \left(\frac{\kappa_{\lambda}^{2} - \kappa_{\lambda} \kappa_{t}}{380} \right) |S(1,20)|^{2} \right]$$

HH summary

good sensitivity at low resonant masses