Search for doubly and singly charged Higgs bosons decaying into vector bosons in multilepton final states with the ATLAS detector using pr oton--proton collisions at $\sqrt{s} = 13$ TeV

Hanlin Xu

University of Science and Technology of China Centre de Physique des Particules de Marseille

The Standard Model (SM)

- Matter particles (fermions).
 - Leptons and quarks.
- Interactions (bosons).
 - W/Z, photons (γ), gluons (g)
- Higgs mechanism:

_

- To generate masses of these particles.
- Demonstrated huge successes in describing experimental measurements.
 - W/Z mass.

Neutrino Oscillations

- In the SM, neutrinos are massless.
- Neutrino oscillations observed.
 - Flavor eigen states \neq mass eigen states.
 - Neutrinos are massive.
- How to give neutrinos masses?
 - No charge, and very light.
 - Yukawa form: right-handed neutrino.
 - Majorana fermion.

Extensions of the Standard Model

Doublet Triplet Higgs Model (DTHM) <u>Phys.Rev.D 84 (2011) 095005</u>

- Add SU(2)_L triplet Δ .
- Neutrino masses:
 - $m_v \sim \mu \mathbf{v}^2 / M_\Delta^2$. $(M_\Delta: \text{mass of } \Delta)$.
 - Seesaw mechanism.

Electro-Weak Symmetry Breaking

- Happens at $\mathbf{v}_{d(oublet)}$, $\mathbf{v}_{t(riplet)}$.
- **v**: v.e.v of Higgs field.
- 7 scalar bosons: H^{±±}, H[±], A⁰, H⁰, and the SM h(125).

Param. In the Higgs Potential

- Original: λ , λ_{1-4} , M_h , M_{Δ} , μ .
- Instead: <u>details</u>
 - $m_{BSM-Higgs}$, $\sin \alpha$, \mathbf{v}_{d} , \mathbf{v}_{t}
 - $\sin \alpha$: mixing between H⁰, h.

Previous Analysis

Leptonic: *Eur.Phys.J.C* 78 (2018) 3, 199

- LRS Model: $H_L^{\pm\pm}$ is similar as $H^{\pm\pm}$ in DTHM.
- v_t = 0.001 GeV.

- Excluded at $m_{H^{\pm\pm}} < 770 \text{ GeV}$
- Only $pp \to H^{++}H^{--}$.
- Bosonic: *Eur.Phys.J.C* 79 (2019) 1, 58
 - $-v_t = 0.1 \text{ GeV}.$
 - With ¼ dataset.
 - Excluded at $m_{H^{\pm\pm}}$ < 220 GeV.
 - Only $pp \to H^{++}H^{--}$.

Years	2015	2016	2017	2018
Lumi [fb ⁻¹]	3.2	32.6	44.4	58.5

Data Samples

Signal Production		
Production Information:	 ME LO + PDF LO with MG5_AMC. k-factor = 1.25 is applied for NLO. m_{H^{±±}} = 200, 300, 400, 500, 600 GeV. 	
Production modes:	• Pair. prod: $m_{H^{\pm}} > m_{H^{\pm\pm}}$ (> 100 GeV). • Asso. prod: $m_{H^{\pm}} \sim m_{H^{\pm\pm}}$ (< 5 GeV diff.).	
Three channels:	 2ℓ^{sc} : Two same-charge leptons. 3ℓ : Three leptons. 4ℓ : Four leptons. 	

Pair-production

$m_{H^{\pm\pm}}$ (GeV)	200	300	400
xsec (fb)	81.04	16.48	4.883

	1	
$m_{H^{\pm\pm}}$ (GeV)	200	300
$m_{H^{\pm}}$ (GeV)	196	295
xsec (fb)	88.66	9.463

Signal Topology

- $\blacksquare \hspace{0.1 in} H^{\pm\pm} \to W^{\pm}W^{\pm} \to \ell \nu \ell \nu$
- The other W bosons decay to:
 - Jets: $2\ell^{sc}$.
 - Lepton + ν + jets : 3ℓ .
 - Leptons + ν : 4 ℓ .
 - Special cases for associateproduction: <u>back up</u>.
- Main background:
 - Prompt Leptons (Diboson).
 - Electron charge flip (*Z*+jets).
 - Non-prompt leptons $(t\overline{t})$.

Event Selection

Z-veto Trigger • $|m_{ee} - m_Z| > 10 \text{ GeV} (2\ell^{sc}, \text{ charge})$ • Single lepton triggers. flip). • $|m_{OC} - m_Z| > 10 \text{ GeV}, m_{OC} > 15 \text{ GeV}$ Leptons $(3\ell, 4\ell).$ • 2*l*^{sc}, 3*l*, 4*l*. • $m_{4l} > 100 \text{ GeV} (4\ell, ZZ).$ E_T^{miss} , to suppress Z+jets(γ) Jets • $N_{bjets} = 0 \ (t\overline{t}).$ • > 70 GeV $(2\ell^{sc})$, > 30 GeV $(3\ell, 4\ell)$. • $N_{jets} >= 3 (2\ell^{sc}), >= 2 (3\ell), = 0 (4\ell).$

•3 <i>ℓ</i> :	•2ℓ ^{sc}
•Has SFOC pairs? (Same flavor opposite charge) •Ves: SFOC12 / No: SFOC0	•ее, еµ, µµ •Л.£
	-11

Background Categories

Prompt Background

- $W/Z \rightarrow \ell + X$.
- MC simulation.
- WZ normalization
 - Control region.
 - Norm Factor
 - NF = $\frac{N_{data} N_{noWZ}}{N_{(MC)WZ}}$

Electron charge-flip

- Mis-identify the electron charge.
- Data-based likelihood method. (2ℓ^{sc}).

Non-prompt leptons

- Hadrons -> leptons
- Data-based fake factor method. (2ℓ^{sc}, 3ℓ).
- Semi-data-based fake scale factor method. (4ℓ).

BACKGROUND SUMMARY

Generally good agreement.

Signal Optimization

Cut Optimization Provided by TMVA.

- Rectangular cuts optimization (cut-flow).
- Maximizes the background rejection $(1/eff_{bkg})$ at given signal efficiency.
- Simulate Anneal algorithm.

100 cut sets will be proposed.

Additional selection.

- Use signal significance (Cowan).
- All cuts are rounded.
- Stability checks were <u>performed</u>.

Optimization were done per mass point, per sub-channel. (500 GeV results will be applied to 600 GeV

signal.)

Signal Regions ($m_{H^{\pm\pm}} = 300 \text{ GeV}$)

 E_T^{miss} cuts relaxed E_T^{miss} distribution. Vertical red dashed line indicates the E_T^{miss} cut.

Signal Regions

 No significant excess in any of the signal regions.

 Data is used to constrain the signal model.

Systematic Uncertainties

Theoretical. (Background Norm.)

- PDF, QCD scale and showering for signal. (~11% for signal)
- PDF, QCD scale for background. ($\sim 1.8\%$ to 50% for processes)
- *WZ* data-driven in *N_{jets}*>1 regions. (9.0% for *WZ*)

Experimental. (For all MC processes.)

- Luminosity (1.7%)
- Electron/muon (~5%)
- pile-up modelling (~2%)
- Jet energy, E_T^{miss} (~10%)

Charge-flip.

• 20–30% for charge flip component.

Non-prompt leptons.

• 25–90% for non-prompt lepton component.

Charge-flip Unct. are small.

Non-prompt leptons statistical Unct. and background normalization Unct. are large.

Limits On Cross-sections

- Profiling likelihood ratio test.
 - Each channel as an individual bin of a histogram.
 - Parameter of interest (POI) is the signal strength (μ).
 - Systematics uncertainties were treated as nuisance parameters (θ).
- Cross-section times branching fraction.
- For the pair-production:
 - $m_{H^{++}}$ < 350 GeV is excluded.
- For the associate-production:
 - $m_{H^{++}} < 230$ GeV is excluded.

Summary

- Run-2 139 fb⁻¹ version of the analysis is finalized.
- The pair-production scenario:
 - Excluded for $m_{H^{\pm\pm}}$ < 350 GeV with 95% CL.
 - Increase from the previous analysis by approximately 130 GeV.
- The associate-production scenario:
 - Excluded for $m_{H^{\pm\pm}}$ <230 GeV with 95% CL.
 - The $m_{H^{\pm\pm}}$ exclusion applies also to $m_{H^{\pm}}$.
 - The associated production of $H^{\pm\pm}$ and H^{\pm} bosons is explored.

Back Up

Pair. (36.1 fb ⁻¹)	200	300	400
All combined	0.89 (0.69)	3.09 (3.34)	11.32 (8.05)
Pair. (139.0 fb ⁻¹)	200	300	400
All combined	0.19 (0.19)	0.59 (0.58)	1.52 (1.39)
ee	0.80 (0.81)	3.38 (2.23)	9.48 (5.42)
еμ	0.33 (0.49)	1.07 (1.57)	2.48 (3.95)
μμ	0.35 (0.37)	1.72 (1.13)	2.91 (2.82)
SFOC0	0.65 (0.52)	1.24 (1.62)	6.30 (4.41)
SFOC12	0.42 (0.42)	1.25 (1.36)	3.42 (3.51)
4ℓ	1.12 (0.90)	2.20 (2.94)	5.29 (8.04)
Asso. (139.0 fb ⁻¹)	200	300	400
All combined	0.45 (0.49)	2.86 (2.51)	6.44 (5.83)
ee	1.83 (1.85)	11.96 (7.85)	34.56 (19.50)
еμ	0.74 (1.07)	4.00 (5.88)	9.26 (14.76)
μμ	0.74 (0.78)	6.49 (4.24)	10.65 (10.32)
SFOC0	2.35 (1.86)	7.72 (10.06)	37.24 (26.01)
SFOC12	1.49 (1.49)	7.09 (7.71)	18.95 (19.46)
4ℓ	10.82 (8.53)	21.84 (29.27)	31.62 (48.17)

Limits on signal strength (μ)

- Separated channels.
- Observed (Expected).
- Improvement:
 - Pure statistical ~ 2
 - Analytical ~2-3
- Improved object selections.
- Finer background estimation.
- More stable and harmonized signal regions.
- Constraint of *WZ*.

Neutrino Experiments

- Atmospheric:
 - Super-Kamiokande Observatory
- Accelerator:
 - K2K and MINOS
 - T2K
- Solar:
 - Super Kamioka
 - Sudbury Neutrino Observatories
- Reactor:
 - Double Chooz
 - Daya Bay
 - RENO

Large Hadron Collider (LHC)

Proton-Proton collision

- $\sqrt{s} = 13$ TeV.
- Lumi. = $2*10^{34}$ cm⁻² s⁻¹

Four main experiments

- ATLAS, CMS.
- ALICE, LHCb.
- Search for new physics.
- Precise measurement.

ATLAS Detector

Atlas Detector: Objects

Leptons

- Electrons and muons.
- Different criteria for analysis.

Jets

• Initiated by quarks and gluons.

 E_T^{miss}

- Missing Transverse Energy.
- Transverse momentum imbalance.

WZ Norm. Results

NF = 0.83 ± 0.07 (stat. + syst.)		
Measurement Application		
WZ Control Region	3ℓ selection	
Z-selection	Z-veto	
Normalized WZ in $N_{jets} > 1$	Good estimation	

Systematic uncertainties include:

- Fit statistics uncertainty: 8.4%.
- Shape uncertainty from the <u>QCD scale variations</u>: 5%.

Selection criteria	$2\ell^{sc}$	3ℓ	4ℓ	
Trigger	At least one <i>signal</i> lepton with $p_T^{\ell} > 30$ GeV that triggered the event			
N_{ℓ} (<i>Candidate</i>)	=2	=3	=4	
N_{ℓ} (<i>Candidate</i> [*])	_	_	=4	
N_{ℓ} (Signal)	=2	$\geq 2 \left(\ell_{1,2} ight)$	≥ 1	
$ \Sigma Q_\ell $	=2	=1	≠4	
Lepton $p_{\rm T}$	$p_{\rm T}^{\ell_1,\ell_2} > 30,20 { m ~GeV}$	$p_{\rm T}^{\ell_0,\ell_1,\ell_2} > 10,20,20 { m ~GeV}$	$p_{\rm T}^{\ell_1,\ell_2,\ell_3,\ell_4} > 10 { m GeV}$	
E_T^{miss}	> 70 GeV	> 30 GeV	> 30 GeV	
N _{jets}	≥ 3	≥ 2	-	
N _{b-jets}		=0		
Low SFOC $m_{\ell\ell}$ veto	_	$m_{\ell\ell}^{ m oc} > 15 { m ~GeV}$		
Z boson decays veto	$ m_{ee}^{\rm sc} - m_Z > 10 {\rm GeV}$	$ m_{\ell\ell}^{\rm oc} - m_Z > 10 { m GeV}$		
			$m_{4\ell} > 100 \text{ GeV}$	

- Events are collected by lowest un-prescaled **single** lepton triggers.
- $2\ell^{sc} \rightarrow ee, e\mu, \mu\mu$ sub-channels.
- $3\ell \rightarrow$ SFOC0, SFOC12 sub-channels (same-flavor opposite charge).
- In 3ℓ channel, two same charge lepton were named ℓ_1 and ℓ_2 .

Electron Charge-flip

Use opposite charged events with flip rates (ϵ)

•
$$N_{sc} = N_{oc} * \frac{\epsilon^{\ell_1} + \epsilon^{\ell_2}}{1 - \epsilon^{\ell_1} - \epsilon^{\ell_2}}, N_{tot} = N_{oc} + N_{sc}$$

Flip rates measured from $Z \rightarrow ee$ events.

• Data-driven likelihood method.

$$\operatorname{n} \mathcal{L}(\varepsilon | N_{tot}, N_{sc}) = \sum_{i,j} \ln \left[N_{tot}^{i,j}(\varepsilon_i + \varepsilon_j) \right] N_{sc}^{i,j} - N_{tot}^{i,j}(\varepsilon_i + \varepsilon_j)$$

• flip rates (*ε*) results: 0.002%~3.14%

~30% Statistical and systematics uncertainties.

- Kinematics differences among processes.
- Background contamination.

Lepton Definition

Baseline

- Minimum requirement.
- For E_T^{miss} calculation.

Candidate

- No isolation requirement.
- For background estimation.

Candidate*

- With loose isolation requirement.
- For low statistics channel (4ℓ) .

Signal

- Most strong, with a GBDT isolation tool.
- For main analysis, to remove no prompt ℓ .

Details.

Non-prompt leptons $(2\ell^{sc} \text{ and } 3\ell)$

Non-prompt leptons in 2^lsc

- *p*_{*T*} bins: [20, 40, 60, inf) [GeV]
- $\bullet \quad \theta = N_{\ell\ell} / N_{\ell\ell}.$
 - ℓ : lower p_T , assumed to be non-prompt.
- Uncertainties from $N_{Prompt}/N_{charge flip}$ will be extrapolated.
- Method syst:
 - MC-based uncertainty for misclassification (6~82%).
 - For basic assumption (19% for *e*, 7% for μ).
 - Test between low E_T^{miss} and high E_T^{miss}

Non-prompt leptons in 3ℓ

- Same charged pairs $(\ell \ell)$ are used.
- For 3ℓ channel, the ℓ^0 only needs to pass *candidate*.
- $\bullet \quad \theta = N_{(\ell)\ell\ell} / N_{(\ell)\ell\ell}$
- Method syst:
 - MC-based uncertainty for prompt OC *l* assumption (20%).
 - MC-based uncertainty for basic assumption (15%)
 - Test between $N_{jets} = 1$ and $N_{jets} > 1$.
- SFOC0 and SFOC12 are merged in measurement.

Non-prompt leptons in 4²

- Not enough statistics.
- MC yields corrected with scale factors (SFs).
- $\square \quad N = \lambda_{HF} N_{HF} + \lambda_{LF} N_{LF}$
 - HF: Heavy flavor non-prompt.
 - LF: Light Flavor.
- Two factors, two regions.
 - $t\overline{t}$ enriched by HF.
 - *Z*+jets enriched by LF. (Found negligible for μ .)
- Component ratios depend on selections.
- Uncertainties include:
 - Jet and p_T selection impact.
 - Statistics and Prompt MC subtraction.

 $N = N_{data} - N_{Prompt}$

 $N^{Z} = \lambda_{HF} N_{HF}^{Z} + \lambda_{LF} N_{LF}^{Z}$

 $N^T = \lambda_{HF} N_{HF}^T + \lambda_{LF} N_{LF}^T$

Signal Topology 3*1*

Signal Topology 4*ℓ*

A

Signal Topology 4*1*

A

LHC RUN-3

DTHM Masses

$$m_{H^{\pm\pm}} = \frac{\sqrt{2}\mu v_{\rm d}^2 - \lambda_4 v_{\rm d}^2 v_{\rm t} - 2\lambda_3 v_{\rm t}^3}{2v_{\rm t}}$$
(2.41)

$$m_{H^{\pm}} = \frac{(v_{d}^{2} + v_{t}^{2})[2\sqrt{2\mu} - \lambda_{4}v_{t}]}{4v_{t}}$$
(2.42)

$$m_{H} = \frac{\lambda v_{d}^{2}}{4} - \sqrt{2}\mu v_{t} + \frac{\lambda_{1} + \lambda_{4}}{2}v_{t}^{2}$$
(2.39)

$$M_{\Delta} = \frac{2\mu v_{d}^{2} - \sqrt{2}(\lambda_{1} + \lambda_{4})v_{d}^{2}v_{t} - 2\sqrt{2}(\lambda_{2} + \lambda_{3})v_{t}^{3}}{2\sqrt{2}v_{t}}$$
(2.40)

$$\mathcal{M}_{CP_{even}}^{2} = \begin{pmatrix} \frac{\lambda v_{d}^{2}}{2} & v_{d}(-\sqrt{2}\mu + (\lambda_{1} + \lambda_{4})v_{t}) \\ v_{d}(-\sqrt{2}\mu + (\lambda_{1} + \lambda_{4})v_{t} & \frac{\sqrt{2}\mu v_{d}^{2} + 4(\lambda_{2} + \lambda_{3})v_{t}^{3}}{2v_{t}} \end{pmatrix}$$
(2.43)

$$\mathcal{M}_{CP_{odd}}^2 = \begin{pmatrix} 2v_t & -v_d \\ -v_d & v_d^2/2v_t \end{pmatrix}$$
(2.44)

Diagonalizing these matrices gives the mass eigenstates. The mass eigenstates for the CP_{even} mass states is found to be,

$$\binom{h^0}{H^0} = \begin{pmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{pmatrix} \binom{h}{\xi^0}; \ \binom{A^0}{G^0} = \begin{pmatrix} -\sin\beta & \cos\beta \\ \cos\beta & \sin\beta \end{pmatrix} \binom{Z_1}{Z_2};$$
(2.45)

Parameters represented by experimental
measurable $v_d^2 = \frac{\sin^2 \theta_W}{\pi \alpha_{QED}} (2M_W^2 - \cos^2 \theta_W M_Z^2)$ $v_t^2 = \frac{\sin^2 \theta_W}{2\pi \alpha_{QED}} (\cos^2 \theta_W M_Z^2 - M_W^2)$

$$\lambda_1 = -\frac{2}{v_d^2 + 4v_t^2} . m_A^2 + \frac{4}{v_d^2 + 2v_t^2} . m_{H^{\pm}}^2 + \frac{\sin 2\alpha}{2v_d v_t} . (m_{h^0}^2 - m_{H^0}^2)$$
(2.44)

$$\lambda_2 = \frac{1}{v_t^2} \left\{ \frac{s_\alpha^2 m_{h^0}^2 + c_\alpha^2 m_{H^0}^2}{2} + \frac{1}{2} \cdot \frac{v_d^2}{v_d^2 + 4v_t^2} \cdot m_A^2 - \frac{2v_d^2}{v_d^2 + 2v_t^2} \cdot m_{H^\pm}^2 + m_{H^{\pm\pm}}^2 \right\}$$
(2.45)

$$\lambda_3 = \frac{1}{v_t^2} \{ \frac{-v_d^2}{v_d^2 + 4v_t^2} . m_A^2 + \frac{2v_d^2}{v_d^2 + 2v_t^2} . m_{H^{\pm}}^2 - m_{H^{\pm\pm}}^2 \}$$
(2.46)

$$\lambda_4 = \frac{4}{v_d^2 + 4v_t^2} . m_A^2 - \frac{4}{v_d^2 + 2v_t^2} . m_{H^{\pm}}^2$$
(2.47)

$$\lambda = \frac{2}{v_d^2} \{ c_\alpha^2 m_{h^0}^2 + s_\alpha^2 m_{H^0}^2 \}$$
(2.48)

$$\mu = \frac{\sqrt{2}v_t}{v_d^2 + 4v_t^2} . m_A^2 \tag{2.49}$$

Constraints

$$\equiv \frac{M_W^2}{M_Z^2 \cos^2 \theta_W}$$

$$M_Z^2 = \frac{(g^2 + {g'}^2)(v_d^2 + 4v_t^2)}{4} = \frac{g^2(v_d^2 + 4v_t^2)}{4\cos^2\theta_W}$$
$$M_W^2 = \frac{g^2(v_d^2 + 2v_t^2)}{4}$$

whence the modified form of the ρ parameter:

$$\rho = \frac{v_d^2 + 2v_t^2}{v_d^2 + 4v_t^2} \neq 1$$

3 Miscellaneous constraints

3.1 Constraints from electroweak precision measurements

- 3.2 Absence of tachyonic modes
- 3.3 The vacuum structure

From Eq. (2.31), the requirement that m_A^2 should be positive implies $\mu v_t > 0$. The same positivity requirement in the singly charged and doubly charged sectors, Eqs. (2.13, 2.11), together with our phase convention $v_t > 0$ discussed in section 2, lead to the following bounds on μ :

$$\begin{split} \mu &> 0 & (3.57) \\ \mu &> \frac{\lambda_4 v_t}{2\sqrt{2}} & (3.58) \\ \mu &> \frac{\lambda_4 v_t}{\sqrt{2}} + \sqrt{2} \frac{\lambda_3 v_t^3}{v_d^2} & (3.59) \end{split}$$

potential stability constraints	
$\lambda \geq 0 \& \lambda_2 + \lambda_3 \geq 0 \& \lambda_2 + \frac{\lambda_3}{2} \geq 0$	(6.1)
Δ	

$$\& \lambda_1 + \sqrt{\lambda(\lambda_2 + \lambda_3)} \ge 0 \& \lambda_1 + \sqrt{\lambda(\lambda_2 + \frac{\lambda_3}{2})} \ge 0$$
(6.2)

$$\& \lambda_1 + \lambda_4 + \sqrt{\lambda(\lambda_2 + \lambda_3)} \ge 0 \& \lambda_1 + \lambda_4 + \sqrt{\lambda(\lambda_2 + \frac{\lambda_3}{2})} \ge 0$$
(6.3)

unitarity:

BFB:

(3.53)

(3.54)

(3.55)

$ \lambda_1 + \lambda_4 \le \kappa \pi$	(6.4)
$ \lambda_1 \le \kappa \pi$	(6.5)
$ 2\lambda_1 + 3\lambda_4 \le 2\kappa\pi$	(6.6)
$ \lambda \le 2\kappa\pi$	(6.7)
$ \lambda_2 \le \frac{\kappa}{2} \pi$	(6.8)
$ \lambda_2 + \lambda_3 \le \frac{\kappa}{2}\pi$	(6.9)
$ \lambda + 4\lambda_2 + 8\lambda_3 \pm \sqrt{(\lambda - 4\lambda_2 - 8\lambda_3)^2 + 16\lambda_4^2} \le 4\kappa\pi$	(6.10)
$ 3\lambda + 16\lambda_2 + 12\lambda_3 \pm \sqrt{(3\lambda - 16\lambda_2 - 12\lambda_3)^2 + 24(2\lambda_1 + \lambda_4)^2} \le 4\kappa\pi$	(6.11)
$ 2\lambda_1 - \lambda_4 \le 2\kappa\pi$	(6.12)
$ 2\lambda_2 - \lambda_3 \le \kappa \pi$	(6.13)

Masses were chosen to satisfy not-EWscale constraint.

The Atlas experiment parameters

Parameters	2015 - 2018	Design
Beam Energy [TeV]	6.5	7
Integrated Luminosity [fb ⁻¹]	156	
Max Peak Luminosity [10 ³⁴ cm ⁻² s ⁻¹]	2.14	1
Bunch Spacing [ns]	25/50	25

Table 3.1: Status of the LHC as of 2019 and its running parameters. Taken from Ref. [92]. In early 2015 the bunch spacing was set as 50 ns to re-establish operation at high stored energies [93].

Table 3.2: Resolution goals and pseudorapidity coverage of the sub-systems of the ATLAS detector. Numbers for energy and transverse momentum are in units of GeV. Taken from Table 1.1 in Ref. [40].

Sub-detector	required resolution	η -coverage	
		measurement	trigger
Inner Detector	$\sigma_{p_{\rm T}}/p_{\rm T} = 0.05\% \ p_{\rm T} \oplus 1\%$	$ \eta < 2.5$	
Electromagnetic LAr calorimeter	$\sigma_E/E = 10\%/\sqrt{E} \oplus 0.7\%$	$ \eta < 3.2$	$ \eta < 2.5$
Hadronic calorimeter			
Barrel and end-cap	$\sigma_E/E = 50\%/\sqrt{E} \oplus 3\%$	$ \eta $	< 3.2
Forward	$\sigma_E/E = 100\%/\sqrt{E} \oplus 10\%$	$3.1 < \eta $	< 4.9
Muon Spectrometer	$\sigma_{p_{\rm T}}/p_{\rm T}$ = 10% at $p_{\rm T}$ = 1 TeV	$ \eta < 2.7$	$ \eta < 2.4$

Object

Lepton definitions details.

Lepton	Electrons						
Category	Baseline	Candidate	Signal				
$ z_0 \sin \theta $	< 0.5 <i>mm</i>						
$ d_0 /\sigma(d_0)$		< 5					
Identification	LOOSE TIGHT						
Isolation	No Loose Prompt lepton BD						
Electron charge identification	No Yes						
Lepton			Muons				
Category	Baseline	Candidate	Candidate*	Signal			
$ z_0 \sin \theta $		< 0.5 <i>mm</i>					
$ d_0 /\sigma(d_0)$	< 10	10 < 3					
Identification	MEDIUM						
Isolation	1	No	Loose	Prompt lepton BDT			

All prompt situation

DEV: Object Selection Improvement

Trigger

2015	Description
HLT_e26_lhmedium_L1EM20VH	\geq 1 electron with $p_{\rm T}$ >26 GeV, MEDIUM identification and L1 $p_{\rm T}$ >20 GeV
HLT_e60_lhmedium	≥ 1 electron with $p_{\rm T} > 60$ GeV, MEDIUM identification
HLT_e120_lhloose	≥ 1 electron with $p_{\rm T} > 120$ GeV, Loose identification
HLT_mu20_iloose_L1MU15	\geq 1 CB muon with $p_{\rm T}$ >20 GeV, Loose isolation and L1 $p_{\rm T}$ >15 GeV
HLT_mu50	$\geq 1 \text{ CB}$ muon with $p_{\text{T}} > 50 \text{ GeV}$
2016-2018	Description
HLT_e26_lhtight_nod0_ivarloose	\geq 1 electron with $p_{\rm T}$ >26 GeV, TIGHT identification and Loose isolation
HLT_e60_lhmedium_nod0	≥ 1 electron with $p_{\rm T} > 60$ GeV, MEDIUM identification
HLT_e140_lhloose_nod0	≥ 1 electron with $p_{\rm T} > 140$ GeV, Loose identification
HLT_mu26_ivarmedium	\geq 1 CB muon with $p_{\rm T}$ >26 GeV, Medium isolation
HLT_mu50	$\geq 1 \text{ CB}$ muon with $p_{\text{T}} > 50 \text{ GeV}$

Signal Branch Ratios

Signal Production Information

$H^{\pm\pm}H^{\mp\mp} \rightarrow$	$4W \rightarrow$	BR (in %)
$4 W \rightarrow j j$	$0\ell + 8$ jets	20.1
$3 W \rightarrow jj, 1 W \rightarrow \nu \ell$	$1\ell + E_T^{miss} + 6$ jets	39.7
$2 \: W \to jj, 2 \: W \to \nu\ell$	$2\ell + E_T^{miss} + 4$ jets	29.3 (2 <i>l</i> ^{sc} : 14.7)
$1 \: W \to jj, 3 \: W \to \nu\ell$	$3\ell + E_T^{miss} + 2$ jets	9.6
$4 W \rightarrow \nu \ell$	$4\ell + E_T^{miss} + \text{no jets}$	1.2

H^{++} mass (GeV)	200	300	400	500	600
cross section (fb)	81.04	16.48	4.883	1.766	0.726
filter efficiency	0.1089	0.1161	0.1198	0.1249	0.1237

Table: Cross sections (ME LO + PDF LO, k-factor = 1.25 is applied for NLO correction), filter efficiencies of the AFII signal samples (pair-production $pp \rightarrow H^{\pm\pm}H^{\mp\mp}$).

$H^{\pm\pm}H^{\mp} \rightarrow$	$WWWZ \rightarrow$	BR (in %)
$3 W \rightarrow jj, Z \rightarrow jj$	$0\ell + 8$ jets	22.0
$3 W \rightarrow jj, Z \rightarrow vv$	$0\ell + E_T^{miss} + 6$ jets	6.3
$2 W \to jj, 1 W \to v\ell, Z \to jj$	$1\ell + E_T^{miss} + 6$ jets	31.1
$2 W \to jj, 1 W \to \nu\ell, Z \to \nu\nu$	$1\ell + E_T^{miss} + 4$ jets	8.9
$3 W \rightarrow jj, Z \rightarrow \ell\ell$	$2\ell + 6$ jets	$3.1 (2\ell^{sc}: 0)$
$1 W \to jj, 2 W \to v\ell, Z \to jj$	$2\ell + E_T^{miss} + 4$ jets	14.6 (2 <i>l</i> ^{sc} : 4.7)
$1 W \to jj, 2 W \to \nu\ell, Z \to \nu\nu$	$2\ell + E_T^{miss} + 2$ jets	4.2 (2l ^{sc} : 1.4)
$2 W \to jj, 1 W \to v\ell, Z \to \ell\ell$	$3\ell + E_T^{miss} + 4$ jets	4.4
$3 W \rightarrow v\ell, Z \rightarrow jj$	$3\ell + E_T^{miss} + 2$ jets	2.3
$3 W \rightarrow v\ell, Z \rightarrow vv$	$3\ell + E_T^{miss}$	0.7
$1 W \to jj, 2 W \to \nu\ell, Z \to \ell\ell$	$4\ell + E_T^{miss} + 2$ jets	2.1
$3 W \to \nu \ell, Z \to \ell \ell$	$5\ell + E_T^{miss} + \text{no jets}$	0.3

H^{++} mass (GeV)	200	300	400	500	600
H^+ mass (GeV)	196	295	395	496	602
cross section (fb)	88.66	9.463	2.988	1.175	0.513
filter efficiency	0.2573	0.2814	0.2997	0.3178	0.3278

sections (ME LO + PDF LO, k-factor = 1.25 is applied for NLO correction), filter f the AFII signal samples (associate-production $pp \rightarrow H^{\pm\pm}H^{\mp}$).

Background MC

Process	ME Generator	Parton Shower	PDF	Tune
tĪH	Роwнед [146]	Рутніа 8 [43]	NNPDF30ME [147]	A14 [44]
VH	Ρύητια 8	Pythia 8	NNPDF23LO	A14
tŦW	MG5_AMC	Pythia 8	NNPDF 3.0 NLO/2.3 LO	A14
$t\bar{t}(Z/\gamma^*)$	MG5_AMC	Ρυτηία 8	MEN30NLO	A14
$t(Z/\gamma^*)$	MG5_AMC	Ρυτηία 8	NNPDF 3.0 LO	A14
tī	Роwнед [146]	Ρυτηία 8	NNPDF 3.0 NLO/2.3 LO	A14
s-, t-channel,	Powheg [148, 149]	Pythia 8	NNPDF 3.0 NLO/2.3 LO	A14
Wt single top				
VV, qqVV, VVV	Sherpa 2.2.2 [150]	Sherpa	NNPDF30NNLO	SHERPA default
$Z \to \ell^+ \ell^-$	Sherpa 2.2.2	Sherpa	NNPDF 3.0 NNLO	SHERPA default
$W \to \ell \nu$	Sherpa 2.2.2	Sherpa	NNPDF 3.0 NNLO	SHERPA default
$Z\gamma / W\gamma$	Sherpa 2.2.4/2.2.2	Sherpa	NNPDF 3.0 NNLO	Sherpa default
tīttī, tīt	MG5_AMC	Рутніа 8	NNPDF 2.3 LO	A14
$t\bar{t}W^+W^-$	MG5_AMC	Ρυτηία 8	NNPDF 2.3 LO	A14
$tW(Z/\gamma^*)$	MG5_AMC	Pythia 8	NN30NNLO	A14

WZ QCD shape uncertainty

ChargeFlip Unct

(c) Opposite-sign WW events

p_T binned fake factor motivation

Figure 7.7: $2\ell^{sc}$ channel. Leading lepton p_T and sub-leading lepton p_T distribution at event pre-selection stage. Data-driven fake results were applied with **inclusive fake factors**. The tension found in these distributions

Pt binned method unct

FF unct. Breakdown (2I)

Sources	unct(%) [<i>e</i>]	$unct(\%) [\mu]$
charge flip	15.9	-
Monte-Carlo closure	19.1	7.3
Prompt-Monte-Carlo theory uncertainty	17.4	15.8
electron efficiency	7.43	-
electron resolution and scale	0.56	0.02
muon scale/ID/sagitta	0.01	0.54
muon efficiency	-	0.75
Pileup reweighting data-scale-factor	0.3	0.63
JET category reduction/energy scale/energy resolution	12.77	10.06
Flavor tagging	0.31	0.28
MET Variation	1.70	2.07
Total global unct	33.74	22.76

Event Selection Yields

	D	ata	Prompt		Fake	charge flip	Total background
ee	2	24	113.83±18.78		67.22±19.16	14.06±2.71	195.11±26.97
$\mu\mu$	2	75	160.37±24.4	6	93.92 ± 21.39	-	254.29±32.49
eμ	5	542 299.1±44.4		6	168.62±42.58	15.81±2.88	483.52±61.63
=		WZ V		W	W,ZZ,VH,VVV	ttX	νγ
-	ee 68.67±9.34			18.09±3.66	21.27±4.25	5.8±2.56	
	μμ 91.2±11.83		34.13±6.86		34.5 ± 6.89	0.55 ± 0.57	
	<i>e</i> μ 172.89±22.09			52.9±10.64	58.8±11.75	15.81±2.88	

	Data	Prompt	Fake	Total background
3ℓ	879	730.91 ± 92.71	109.05 ± 64.15	839.96 ± 112.74
Monte-Carlo Composition	WZ	WW,ZZ,VH,VVV	ttX	$V\gamma$
Yield	553.59 ± 57.13	83.6 ± 17.96	77.7 ± 15.63	16.03 ± 5.94

	Data	Prompt Monte-Carlo	Non-prompt Leptons	Total background
Pre-Selection	63	41.8 ± 5.38	24.75 ± 4.86	66.55 ± 7.25
Monte-Carlo	WZ	WW,ZZ,VH,VVV	tīX	$V\gamma$
Yield	2.9 ± 0.47	31.02 ± 3.66	7.23 ± 1.12	0.66 ± 0.39

Signal Optimization

Instead of ML technique, cut optimization **displays the signal region as a simple list of ranges** and **can be used to test other models.**

Cut Optimization Provided by TMVA.

- Rectangular cuts optimization.
- Maximizes the background rejection $(1/eff_{bkg})$ at given signal efficiency.
- Simulate Anneal algorithm.

100 cut sets will be proposed.

Additional selection.

- Use signal significance (Cowan).
- All cuts are rounded.
- Stability checks were <u>performed</u>.

Optimization were done per mass point, per sub-channel. (500 GeV results will be applied to 600 GeV signal.)

Signal regions

Charged Higgs	$m_{H^{\pm\pm}} = 200 GeV$	$m_{H^{\pm\pm}} = 300 GeV$	$m_{H^{\pm\pm}} = 400 GeV$	$m_{H^{\pm\pm}} = 500 GeV$ or $600 GeV$
boson mass	$m_{H^{\pm}} = 196 GeV$	$m_{H^{\pm}} = 295 GeV$	$m_{H^{\pm}} = 395 GeV$	$m_{H^{\pm}} = 496 GeV$ or $602 GeV$
Selection criteria	2 <i>lsc</i> channel			
m _{jets} [GeV]	[100, 450]	[100, 500]	[300, 700]	[400, 1000]
S [rad.]	< 0.3	< 0.6	< 0.6	< 0.9
$\Delta R_{\ell^{\pm}\ell^{\pm}}$ [rad.]	<1.9	<2.1	<2.2	<2.4
$\Delta \phi_{\ell\ell, E_{\mathrm{T}}^{\mathrm{miss}}}$ [rad.]	< 0.7	< 0.9	<1.0	<1.0
$m_{x\ell}$ [GeV]	[40, 150]	[90, 240]	[130, 340]	[130, 400]
$E_{\rm T}^{\rm miss}$ [GeV]	>100	>130	>170	>200
Selection criteria	3 <i>l</i> channel			
$\Delta R_{\ell^{\pm}\ell^{\pm}}$ [rad.]	[0.2, 1.7]	[0.0, 2.1]	[0.2, 2.5]	[0.3, 2.8]
$m_{x\ell}$ [GeV]	>160	>190	>240	>310
$E_{\rm T}^{\rm miss}$ [GeV]	>30	>55	>80	>90
$\Delta R_{\ell \text{jet}}$ [rad.]	[0.1, 1.5]	[0.1, 2.0]	[0.1,2.3]	[0.5, 2.3]
$p_{\rm T}^{\rm leadingjet}$ [GeV]	>40	>70	>100	>95
Selection criteria	4 <i>l</i> channel			
$m_{x\ell}$ [GeV]	>230	>270	>360	>440
$E_{\rm T}^{\rm miss}$ [GeV]	>60	>60	>60	>60
$p_{\mathrm{T}}^{\ell_1}$ [GeV]	>65	>80	>110	>130
$\Delta R_{\ell^{\pm}\ell^{\pm}}^{\min}$ [rad.]	[0.2, 1.2]	[0.2, 2.0]	[0.5, 2.4]	[0.6, 2.4]
$\Delta R_{\ell^{\pm}\ell^{\pm}}^{\tilde{m}a\tilde{x}}$ [rad.]	[0.3, 2.0]	[0.5, 2.6]	[0.4, 3.1]	[0.6, 3.1]

Theoretical Uncertainties $(m_{H^{\pm\pm}} = 300 \text{ GeV})$

Process	Theory uncertainty											
	$2\ell^{sc}$					3ℓ				4ℓ		
	ee		eμ		$\mu\mu$		SFOC0		SFOC12		4ℓ	
	QCD	PDF	QCD	PDF	QCD	PDF	QCD	PDF	QCD	PDF	QCD	PDF
WZ	9.0% 14.8% 0.11°										0.11%	
$t\bar{t}X$	13.0% for QCD, 4.0% for PDF											
ZZ	43.1%	7.7%	27.9%	1.4%	23.6%	1.3%	17.2%	2.1%	26.1%	1.2%	14.9%	2.1%
WW	31.3%	1.0%	24.5%	2.0%	34.1%	1.5%	17.2%	2.6%	41.0%	1.5%	-	-
$V\gamma$	-	-	40.7%	2.5%	-	-	-	-	15.3 %	1.9%	-	-
VVV	7.4%	2.3%	8.4%	2.6%	8.4%	1.3%	10.5%	1.7%	10.5%	1.4%	7.9%	1.4%
Rare process	50%											

Signal Region Stability Check

Significance =
$$\sqrt{2 * ((sig + bkg) * \log (1 + \frac{sig}{bkg}) - sig)}$$

Figure 8.1: $2\ell^{sc}$ channel. Expected significances (Cowan) for different working points (provided by TMVA CutsSA) of the signal selection for the 200 GeV mass point, Left: *ee* channel, Middle: *eµ* channel Right: $\mu\mu$ channel.

Figure 8.2: $2\ell^{sc}$ channel. Expected significances (Cowan) for different working points (by varying baseline cut value) of the signal selection for the 200 GeV mass point, Left: *ee* channel, Middle: *eµ* channel Right: *µµ* channel.

A "temperature for smoothing" is defined: the R.M.S. in the previous 5 points.

Profiling LLH checks ($m_{H^{\pm\pm}} = 300 \text{ GeV}$)

<mark>.</mark>	н.			1111	ttX PDF
	-			· · · ·	ttX Norm
			-		met_bin
					ZZ_PDF
	-				ZZ_Norm
			-		WZ_Norm
		+			VNorm
		+			Signal
	-				Rare_Norm
		•			PRW_DATASF1
		•			OtherBoson_PDF
		•			OtherBoson_Norm
					MISID
					MUON_SCALE_1
		1			MUON_SAGITTA_RESBIAS1
		1			MUON EEE BECO SYS 1
					MET SoftTrk Scale 1
					MET_SoftTrk_BesoPero_1
					MET SoftTrk ResoPara 1
					Lumi.
			_		JET CR JET Pileup RhoTopology 1
		_			JET CR JET Pileup PtTerm 1
			-		JET_CR_JET_Pileup_OffsetNPV1
		•			JET_CR_JET_Pileup_OffsetMu1
					JET_CR_JET_JER_EffectiveNP_7restTerm1
		+			JET_CR_JET_JER_EffectiveNP_61
		+	-		JET_CR_JET_JER_EffectiveNP_51
		•			JET_CR_JET_JER_EffectiveNP_41
		+			JET_CR_JET_JER_EffectiveNP_31
		•			JET_CR_JET_JER_EffectiveNP_21
		•	-		JET_CR_JET_JER_EffectiveNP_11
	-	•			JET_CR_JET_Flavor_Response1
			-		JET_CR_JET_Flavor_Composition_1
					JET_CR_JET_EtaIntercalibration_TotalStat1
					IET CR IET EffectiveNR Statistical6 1
					JET CR JET EffectiveNP Statistical5 1
					JET CB JET EffectiveNP Statistical4 1
					JET CB JET EffectiveNP Statistical3 1
					JET CR JET EffectiveNP Statistical2 1
		.			JET CR JET EffectiveNP Modelling4 1
		•			JET_CR_JET_EffectiveNP_Modelling31
		•			JET_CR_JET_EffectiveNP_Modelling21
			-		JET_CR_JET_EffectiveNP_Modelling11
		•			JET_CR_JET_EffectiveNP_Mixed31
		•			JET_CR_JET_EffectiveNP_Mixed21
		•			JET_CR_JET_EffectiveNP_Mixed11
		•			JET_CR_JET_EffectiveNP_Detector11
					JEI_CR_JEI_BJES_Response1
					Fake_SS2
					Fake_4
					ET EEE Eigen C 0 AntiKt/EMPElow lote PTagging2010
					FT_EEE_Eigen_B_2_Antikt4EMPFlowJets_BTagging2019
					FT EFE Figen B 1 AntiKt4EMPElow.lets BTagging2019
					FT FFF Figen B 0 AntiKt4EMPFlow.lets BTagging2019
					EL EFF Reco TOTAL 1NPCOR PLUS UNCOR 1
					EL EFF Iso TOTAL INPCOR PLUS UNCOR 1
					EL EFF ID TOTAL 1NPCOR PLUS UNCOR 1
	-				EG_SCALE_ALL_1
			1111	l i i i i	EG_RESOLUTION_ALL1
-2	_	1 0	1 3	2	

μ _{H++/H}	100.0	-11.2	-25.9	-12.4	-14.1	-10.1
ttX_Norm	-11.2	100.0	-0.4	0.2	0.2	0.4
WZ_Norm	-25.9	-0.4	100.0	0.2	-0.0	0.4
JET_CR_JET_Pileup_RhoTopology1	-12.4	0.2	0.2	100.0	0.2	-0.2
JET_CR_JET_Flavor_Composition1	-14.1	0.2	-0.0	0.2	100.0	-0.2
Fake_ss2l	-10.1	0.4	0.4	-0.2	-0.2	100.0
	μ	ttX_Norm	WZ_Norm	ET_CR_JET_Pileup_RhoTopology1	JET_CR_JET_Flavor_Composition1	Fake_ss2!