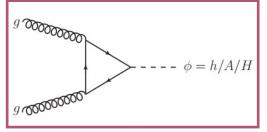
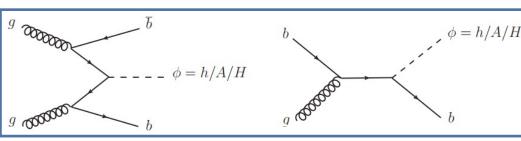
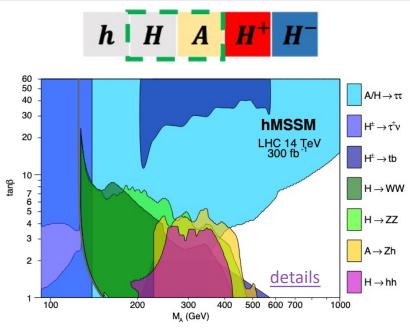


Search for heavy neutral Higgs bosons in $\tau\tau$ final states

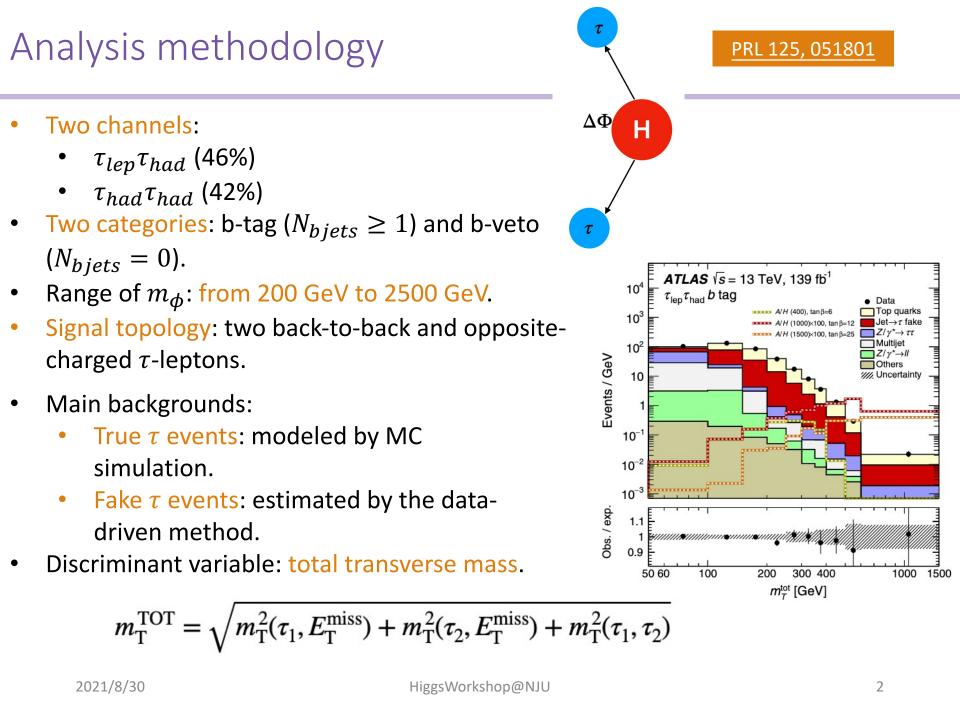
Hanfei Ye, Xiaozhong Huang, Lei Zhang, Shenjian Chen


On behalf of the analysis team


30th August,2021


Introduction

- 2HDMs extend the Higgs sector of the SM and predict additional neutral and charged Higgs bosons:
 - h, H, A, H^{\pm}
 - MSSM is a concrete realization of 2HDM.
- At tree level, described by
 - m_A and $\tan\beta$
 - At large $\tan \beta$, coupling to τ enhanced.
- Search for H/A in $\tau\tau$ final states.
 - Dominant sensitivity at the most of the parameter space.
 Run2 @ 13 TeV
 - Gluon-gluon fusion and b-associated $\mathcal{L} = 139 \text{ fb}^{-1}$ groduction.



2021/8/30

HiggsWorkshop@NJU

PRL 125, 051801

$\tau_{lep}\tau_{had}$

- Single lepton trigger
- $p_T^l >$ 30 GeV, $p_T^\tau >$ 25 GeV
- At least one isolated lepton, and medium BDT-based Tau ID WP.
- Opposite sign between l and τ .
- $\Delta \phi(l,\tau) > 2.4$
- Suppress W+jets: $m_T(l, E_T^{miss}) <$ 40 GeV.
- Suppress $Z \rightarrow ee$: visible mass not in [80,100] GeV.

$\tau_{had}\tau_{had}$

- Single τ_{had} trigger
- $p_T^{\tau_1} > 85/130/185 \text{ GeV}, p_T^{\tau_2} > 65$ GeV
- Medium (for τ_1) and loose (for τ_2) BDT-based Tau ID WP.
- Opposite sign between τ_1 and τ_2 .
- $\Delta \phi(\tau_1, \tau_2) > 2.7$
- Veto leptons

Overview of background estimation

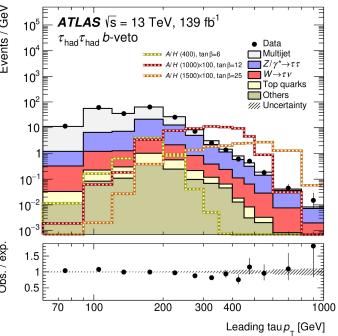
Type I: real τ_h or lepton faking τ_h

$Z/\gamma^* \rightarrow \tau \tau$ (b-veto) $t/t\bar{t}$ (b-tag) Diboson	real τ_h	MC simulation with data driven corr.
$Z/\gamma^* \to l^+ l^- (\tau_{\rm lep} \tau_{\rm had})$	lepton faking τ_h	

Type II: one jet faking τ_h

W+jets (b-veto) <i>t/tī</i> (b-tag)	jet faking τ_h	Data driven method (FF/FR)	
--	---------------------	----------------------------	--

Type III: two jets faking l/τ_h


Multijet $\int C I a K \ln g t a \ln t_h$ Data driven method (FF)		Multijet	jet faking l and τ_h	Data driven method (FF)
---	--	----------	-----------------------------	-------------------------

Fake estimation in $\tau_{had} \tau_{had}$

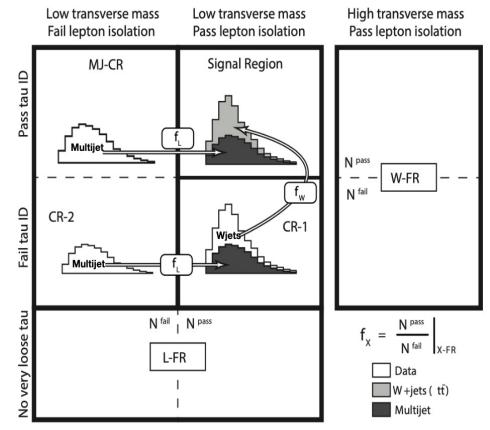
- Multi-jet fakes in SR (region A) is estimated from region C by applying a transfer factor, named as fake factor (FF).
- Defined as: $f_{\tau-\mathrm{ID}}(p_{\mathrm{T}}, N_{\mathrm{track}}) \equiv \left. \frac{N^{\mathrm{pass} \tau-\mathrm{ID}}(p_{\mathrm{T}}, N_{\mathrm{track}})}{N^{\mathrm{fail} \tau-\mathrm{ID}}(p_{\mathrm{T}}, N_{\mathrm{track}})} \right|_{\mathrm{di-jet}}$
- Calculated in a background-enriched region (DiJet CR).
- a cut of 0.03 on BDT score is applied to make DiJet CR similar to SR.

Fake estimation in $\tau_{had} \tau_{had} \qquad \stackrel{\tau^1_{had}}{\longleftarrow} \qquad \checkmark$

- The processes with largest contribution of jet faking τ are W+jet $(t\overline{t}/t)$ events.
- Fake rate method is used to estimate these fake τ backgrounds.
- A control region is defined to measure fake rates:
 - Tag lepton: single muon trigger, $p_T(\mu) > 55$ GeV, pass medium lepton ID, isolated
 - Probe τ : only $p_T(\tau) > 50 \text{ GeV}$
 - $\Delta \varphi(\mu, \tau) > 2.4$
- Fake rates are binned in $\tau_{had} p_T$, the number of associated tracks of τ_{had} and the charge product of μ and τ_{had} .

 $FR_{\tau-\mathrm{ID}}(p_{\mathrm{T}}, N_{\mathrm{track}}) \equiv \left. \frac{N^{\mathrm{pass}\ \tau-\mathrm{ID}}(p_{\mathrm{T}}, N_{\mathrm{track}})}{N^{\mathrm{fail}\ \tau-\mathrm{ID}}(p_{\mathrm{T}}, N_{\mathrm{track}}) + N^{\mathrm{pass}\ \tau-\mathrm{ID}}(p_{\mathrm{T}}, N_{\mathrm{track}})} \right|_{\mathrm{W}(\to\mu\nu)+\mathrm{jets}\ \mathrm{Top}}$

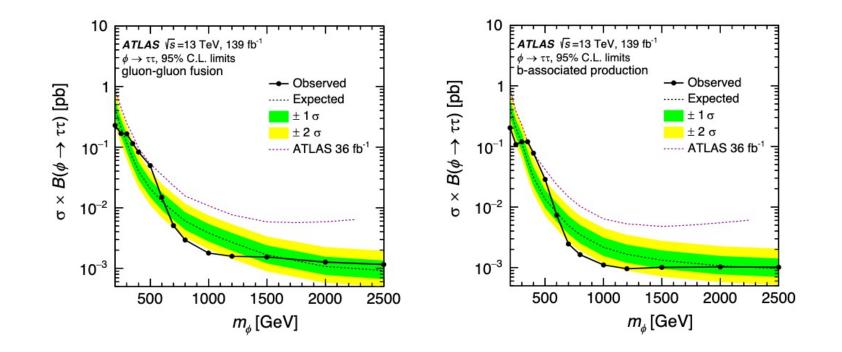
- Determined by applying the ID requirement on probe τ candidates with Medium ID + Trigger or Loose ID WPs


Fake estimation in $\tau_{lep}\tau_{had}$

- Multi-jet events are estimated by lepton fake factors (LFFs).
- LFFs: derived from lepton fake regions (LFRs).

 $FF = \frac{N(\text{pass "gradient" lepton isolation})}{N(\text{fail "gradient" lepton isolation})}$

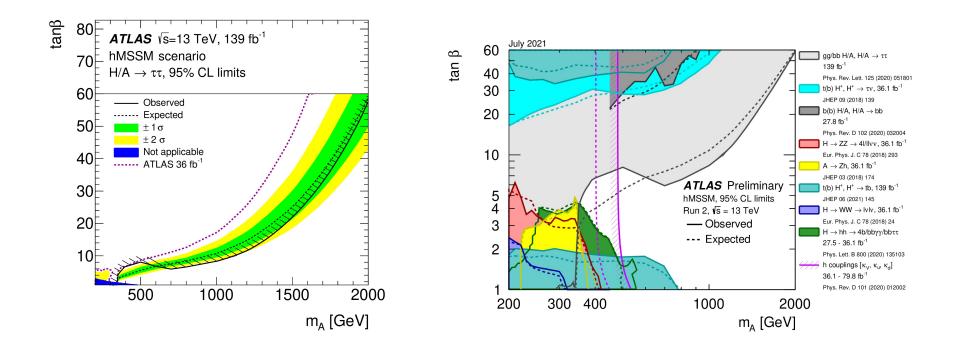
- Fake τ events are estimated by τ fake factors.
- τ fake factors: derived from W fake regions (WFRs).



 $FF^{W+jets} = \frac{N(pass "medium" tau ID)}{N(fail "medium" tau ID and jet BDT score >0.01)}$

Source	ggF (400 GeV)	ggF (1 TeV)	bbH (400 GeV)	bbH (1 TeV)
Tau id. efficiency Tau energy scale Z+jets bkg. modeling Mis-id. $\tau_{had-vis}$ bkg. Others	$\begin{array}{c} 0.14 \\ 0.33 \\ 0.27 \\ 0.22 \\ 0.09 \end{array}$	0.16 0.09 0.19 0.01 0.04	$\begin{array}{c} 0.12 \\ 0.22 \\ 0.08 \\ 0.14 \\ 0.11 \end{array}$	$\begin{array}{c} 0.08 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.02 \end{array}$
Total	0.54	0.28	0.45	0.13

- Low mass:
 - ggF: dominant backgrounds are Z+jets and fakes.
 - bbH: dominant backgrounds are $t\bar{t}$ and fakes.
- High mass:
 - ggF: some contribution from Z+jets, signal efficiency becomes more important.
 - bbH: almost background-free, signal efficiency is the most important.

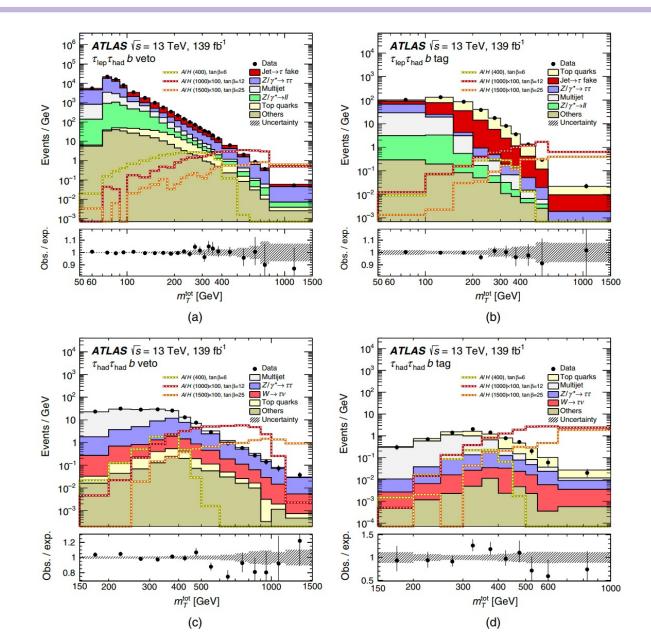

Upper limits

- No significant excess in data is seen.
- Compared to the previous results, upper limits are improved by a factor of 4-5 in the mass range of 700-2500 GeV.

Interpretation

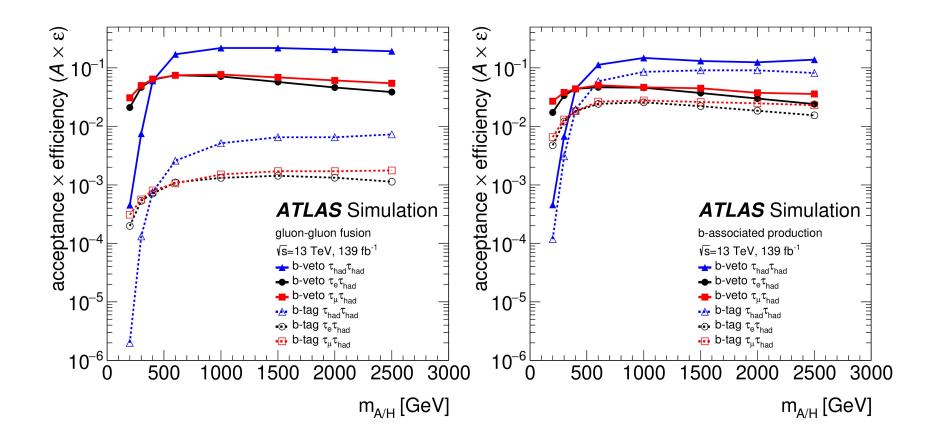
PRL 125, 051801

- Results are interpreted in different scenarios, e.g. hMSSM.
- Dominant contribution at high m_A and $\tan \beta$.

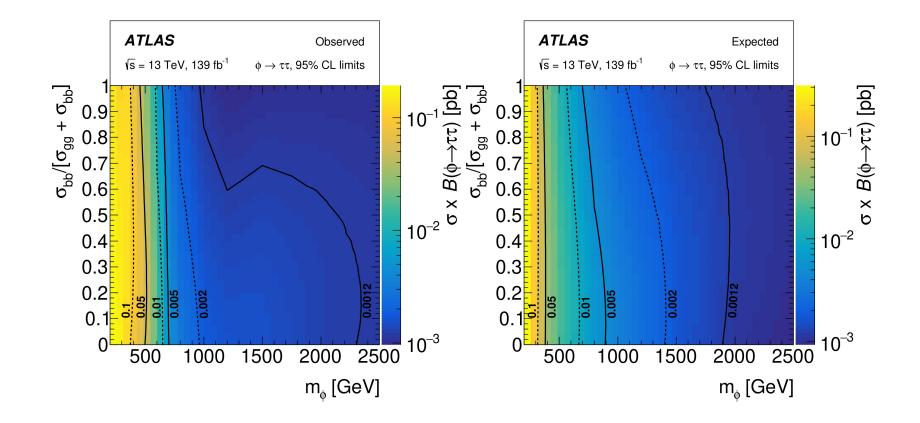

Summary

- This talk summarizes the latest search for heavy neutral Higgs bosons in $\tau\tau$ final states.
- No significant excess in data is seen.
 - Compared to the previous results, upper limits are improved by a factor of 4-5 at the high mass range.
- Results are also interpreted in different scenarios, like hMSSM.
- Significant update of constraints on BSMs.

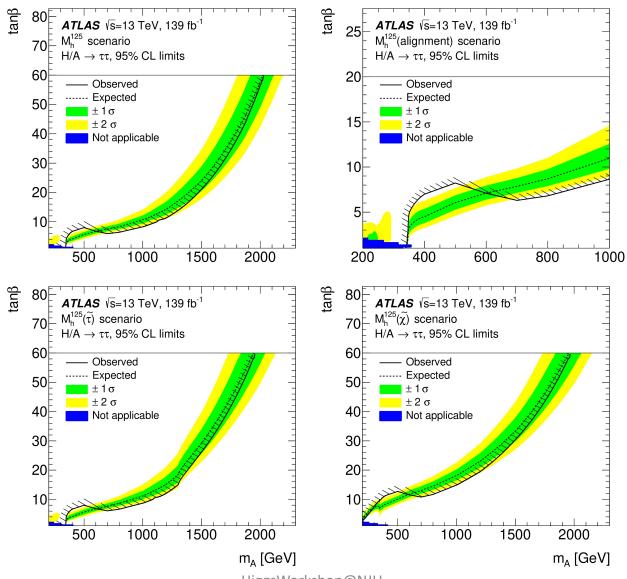
Thanks for listening!


Backups

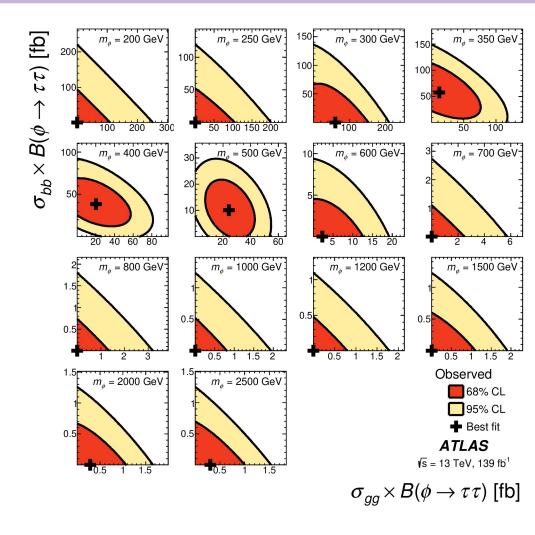
Post-fit plots



2021/8/30


Acceptance times efficiency

2D limits



Other interpretations

2D NLL Scan

- Observed two dimensional likelihood scans.
- Δ (NLL): the negative-log-likelihood (NLL) of the conditional fit to the observed data with σ_{gg} and σ_{bb} fixed to their values at the point and with the minimum NLL value at any point subtracted.

