Search for Resonant/Non-resonant VHH with the ATLAS Detector

Zhongyukun Xu, Tong Li, Lianliang Ma Shandong University

Higgs potential and BSM opportunity 27-31 August, Nanjing University at ZOOM

Overview

- Analysis targets either resonant or non-resonant models with a W/Z and two SM higgs bosons (hh) in the final state.
- Only $h \rightarrow bb$ is considered, for simplicity and for the sake of high statistics.
- Relatively broad strategy, considering multiple final states(Zvv/Wlv/Zll) and multiple resonant and non-resonant signal models
- ◆ Three signal models: Non-resonant production with varied hh and vvhh couplings, resonant VH(hh), and resonant A→ZH(hh)
- Feynman diagram examples as below:

Object selection

Signal object definitions:

Object	p_{T}	η	ID	Isolation
jets	> 20 GeV	< 4.5	Tight JVT	Ν
photon	> 150 GeV	$ \eta < 1.37$ or $1.52 < \eta < 2.37$	tight IsEM	FixedCutHighPtCaloOnly
electron	> 7 GeV	$ \eta < 2.47$	Medium LLH	FCLoose
muon	> 7 GeV	$ \eta < 2.5$	Loose ID	FCLoose
taus	> 20 GeV	$ \eta < 1.37 \text{ or } 1.52 < \eta < 2.5$	Medium RNN	

Particle-flow jets, DL1r for b-tagging with 85% efficiency working point*

- Single lepton triggers used in 1/2-lepton channels
- ◆ MET triggers in 0-lepton channels
- Single photon trigger used in photon+jets control region

*corresponding c-jet rejection factor ~3, light-jet rejection factor ~60

Dataset

Background

MC-based:

- W/Z+jets: Sherpa 2.2.1 NNLO with CRs
- ttbar: PowhegPythia8 with CRs
- Single top: PowhegPythia8 NLO
- Photon+jets: Sherpa 2.2.2 NNLO
- ttH: PowhegPythia8
- ttX: PowhegPythia8 NLO
- VVV: Sherpa 2.2.2/2.2.1 NNLO

Data-driven:

Multi-jet: estimated by MJCR

Data: 2015-2018 140 fb^-1

Signal: MadgraphPythia 8 NLO

Event selection

Preselection:

- \geq 4 jets, *p*T > 20 GeV and $|\eta| < 2.5$
- ≥ 4 85% b-jets with *p*T > 20 GeV and |η| <
 2.5, tagged with DL1r
- Higgs candidate jets required to be 4 jet candidates with leading pseudo continuous b-tagging scores.
- If four more jets satisfy, then four Higgs
 candidate jets minimize |m(J1,J2) 120 GeV|
 - + | m(J3,J4) 120 GeV| is selected
- leading higgs candidate chosen as jet pair with leading pT

Pseudo continuous b-tagging score:

- 0 for jets failing the 85% WP
- + 1 for jets passing the 85% WP but failing the 77% WP
- + 2 for jets passing the 77% WP but failing the 70% WP
- + 3 for jets passing the 70% WP but failing the 60% WP
- 4 for jets passing the 60% WP

Event Categorization

Signal Region(SR)

- ➢ OL SR(for ZvvHH signals)
- 1L SR(for WIvHH signals)
- > 2L SR(for ZllHH signals)

Control Region(CR)

- e/mu CR (to constrain ttbar)
- Photon CR (to constrain Vjets)

Multi-jet(MJ) Region

- IL MJ (for MJ yield and shape in SR)
- Photon+jets MJ (for MJ shape in CR)

Validation Region(VR)

- > OL (validate BDT modeling in SR)
- 1L (validate BDT modeling in SR)
- 2L (validate BDT modeling in SR)
- ≻ e/mu

Used in final statistic fits

Not included in fits, but used to extract yields or templates used in final fits

Provide uncertainties to be used in SR fits

0/1/2 lepton signal region

Three SRs, orthogonally with different lepton multiplicity

2 lepton

1 lepton

- Exactly 2 same-flavor opposite-sign baseline light, Exactly 1 charged light leptons
- $81 < m_{ll} < 101 \text{ GeV}$

charged leptons $(e^+e^-or\mu^+\mu^-)$

- Exactly 0 taus
- $E_T^{miss} > 30 \text{ GeV}$

0 lepton

- Exactly 0 charged leptons (including taus)
- $E_{\rm T}^{\rm miss} > 150 \text{ GeV}$
- $E_T^{miss,sig} > 12$
- $|\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, h1)| > 1$
- $|\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, h2)| > 1$

Control regions

- Two CRs (not including MJ CRs), for constraining main analysis backgrounds
- e/mu CR for constraining ttbar, γ+jets CR for constraining V+jets
- Only use b-tagging info in CRs, to constrain flavor composition uncertainties

$e/\mu CR$

- Exactly 2 different-flavor opposite-sign baseline light, charged leptons $(e^+\mu^- or e^-\mu^+)$
- No requirement on *m*_{ll}

γ+jets CR

- Exactly 0 charged leptons
- Exactly 1 photon
- $p_{T,\gamma} > 150 \text{ GeV}$
- HLT_g140_loose

Multi-jet estimation

- Estimate Multi-jet in OL, 1L, and γ+jets channels
- For OL, Multi-jet is not explicitly included as a background in the OL region in the fits, but it is implicitly included as an uncertainty, due to the validation region non-closure uncertainties.
- For 1L, Multi-jet CR provide both MJ yields and shape
- For **y**+jets CR, Multi-jet CR provide a template which is float in fit.

0 lepton

• Exactly 0 charged leptons (including taus)

• $E_{\rm T}^{\rm miss} > 150 \text{ GeV}$

1 lepton

the same definition as the 1L SR, except inverting the isolation cut (requiring fail the isolation WP).

γ+jet

the same definition as the γ+jets CR, except inverting the isolation cut (requiring fail the isolation WP).

BDT

- BDTs for discriminating background and signal in each channel
- ~15 variables per channel as listed

	NR 0L	Hhh OL	AZH 0L	NR 2L	VH(hh) 2L	AZH 2L	NR 1L	Hhh 1L
mh1 + mh2	Х	Х	Х	Х	Х	Х	Х	Х
mh1 - mh2	Х	Х	Х	Х	Х	Х	Х	Х
nJets	Х	Х	Х	Х	Х	Х	Х	Х
HT_Ex	Х	Х	Х	Х	Х	Х	Х	Х
Σ (b-tag scores)	Х	Х	Х	Х	Х	Х	Х	Х
p_T^V				Х	Х		Х	Х
$p_T^{\hat{h}h}$	Х	Х		Х	Х		Х	Х
m ^{hh}	Х			Х			Х	
$cosh(\Delta\eta h1) - cos(\Delta\phi h1)$	Х	Х		Х	Х		Х	Х
$cosh(\Delta\eta h2) - cos(\Delta\phi h2)$	Х	Х		Х	Х		Х	Х
$\Delta y(h1,h2)$	Х	Х		Х	Х		Х	Х
$ \Delta y(V,hh) $				Х	Х			
mh1_fsr8	Х	Х	Х	Х	Х	Х	Х	Х
mh2_fsr8	Х	Х	Х	Х	Х	Х	Х	Х
E ^{miss} _T	Х	Х		Х	X	Х	Х	Х
mTVJ							Х	

0L/1L BDT distribution, good separation and no overtraining

Status

BDTs (Non-resonant)

R30

20

10

0

-10

-20

-30H

ATLAS Internal

BDT (all)

- One BDT per-channel
- For each BDT, train background against sum of SM-only, C3only, and C2V-only signals
- Right plot shows signal efficiency for 98% background rejection
- ROC BDT curves shown below with different training
- Resonant BDT follows similar strategy.

Zhongyukun Xu

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Efficiency

Validation Regions

- Each of the three SRs (OL, 1L, and 2L) and each of the CRs (e/μ and γ +jets), not including the MJCR, has a corresponding VR, to validate the data/MC modeling in the SRs).
- VRs require at least 4 jets, exactly 3 of which are b-tagged with the 85% WP (instead of the usual 4). The fourth signal jet (used to build all the kinematic variables) is taken to be the highest *p*T central non-b-jet in the event.
- Non-closure in VRs taken as uncertainty in the SRs
- BDT distributions shown below in VRs, for H(hh) BDTs

AZH large width signal interpolation

- For AZH large width signal , not all width (2%~20%) samples are available.
 Interpolation is needed to smear some width samples.
- Use Log-normal-Breit-Wigner function convolutes with narrow width signal to interpolate large width signal.

$$g_L = (f * g_N)(x)$$

$$f = \frac{e^{\frac{-(\ln(x-x_0) - \ln(m)^2)}{2 \times \ln(s)^2}}}{\sqrt{2\pi}(x-x_0)\ln(s)} \times \frac{1}{x^2 + 0.25w^2}$$

- The parameter x0,m,s is derived with 20% large width sample and convolution distribution by narrow width samples.
- Right plot shows large and narrow signal mVHH distribution comparison

AZH large width signal interpolation

- The narrow convoluted distribution is consistent with the large width signal MC distribution (left plot)
- The BDT non-closure test show large width signal shares same distribution with narrow signal(right plot)

Systematic (object)

		Name	Number of parameters	notes
	N	FT EFF B [0-1] lup	2	-
Flavour-tagging		FT EFF C [0-2] lup	3	2
		FT EFF Light [0-3] lup	4	
		Muon Eff. TTVA STAT	1	-
		Muon Eff. Reco Syst. Low PT	1	2
		Muon Eff. Reco Syst.	1	2
		Muon Eff. Reco Stat. Low PT	1	2
Muon		Muon Eff. Reco Stat.	1	2
IVIUON		Muon Eff. TTVA Sys.	1	2
_		Muon Eff, ISO Sys.	1	
uncertainty		Muon Eff. Iso Stat.	1	
ancertainty		Muon ID	1	-
		Muon Sagitta Rho	1	-
		Muon MS	1	-
		Muon Scale	1	-
		Muon Sagitta Res Bias	1	
Electron		EL Eff. Reco. Total 1 NP Corr + UnCorr	i	
		EL Eff. ID Total 1 NP Corr + UnCorr	1	
uncortainty		EL Eff. Iso Tot. 1 NP Corr + UnCorr	1	
uncertainty		EL Eff. Trigger Tot. 1 NP Corr + UnCorr	i	
		EG Scale All	1	
		EG Resolution All	1	
		PH Eff. ID Uncertainty	1	2
		Let IVT Eff	1	
		let GR let Pile-up Offset Mu	1	
		let GR let Pile-up Offset NPV	î.	
_		let GR Jet Pile-un Rho Topology	1	2
let		Jet GR Jet Eff. NP [1-7]	7	2
001		let GR let Eff. NP 8 rest Term	1	
up o o rtointu		Jet GR Jet Eta Inter-Calibration Modelling	i	2
uncertainty		Jet GR Jet Eta Inter-Calibration Tot. Stat.	i	
5		Jet GR Jet Eta Inter-Calibration Non-Closure pos. Eta	i	
		let GR let Eta Inter-Calibration Non-Closure 2018 Data	1	-
		let GR let Eta Inter-Calibration Non-Closure high-E	i	
		let GR let Eta Inter-Calibration Non-Closure neg-Eta	i	2
		Jet GR Jet B-IES Response	i	
		Jet GR Jet Single Particle High PT	i	
		Jet GR Jet Flavor Composition	i	
		let GR let IER Eff. NP [1-6]	6	-
		Jet GR Jet JER Eff. NP 7 rest Term	1	-
		Jet GR Jet Pileup PT Term	i	-
		let GR let Flavor Response	i	
		JET GR Jet Rel. NonClosure AFII	1	AFII samples only
		let GR let IER Data vs. MC AFII	1	AFII samples only
		Jet GR Jet Punch Through AFII	î	AFII samples only
_		MET Soft Trk Reso Perp	1	-
uncertainty		MET Soft Trk Reso Para	1	2
uncertainty		Lumi	1	2
		PRW Data SF	i	

Systematic(normalization)

	Name	Shape or Norm.	Channels	Samples	Size
	$\mu(t\bar{t}+\ge 1b)$	Norm	All	$t\bar{t} + \ge 1b$	floating
	$\Delta\mu(t\bar{t}+0b+0c)$	Norm	All	$t\overline{t} + 0b + 0c$	10%
	$\Delta\mu(t\bar{t} + 0b + \ge 1c)$	Norm	All	$t\overline{t} + 0b + \ge 1c$	100%
	$\mu(V+\geq 3b)$	Norm	All	$Z/W/\gamma + \ge 3b$	floating
	$\Delta\mu(V+\le 2b+\ge 1c)$	Norm	All	$Z/W/\gamma + \le 2b + \ge 1c$	100%
	$\Delta\mu(V+\le 2b+0c)$	Norm	All	$Z/W/\gamma + \le 2b + 0c$	10%
	$\Delta\mu(Z+\geq 3b)$	Norm	All	$Z+ \ge 3b$	20%
	$\Delta \mu(Z + \le 2b + \ge 1c)$	Norm	All	$Z + \le 2b + \ge 1c$	20%
	$\Delta\mu(Z+\le 2b+0c)$	Norm	All	$Z+\leq 2b+0c$	20%
Background I	$\Delta\mu(W+\geq 3b)$	Norm	All	$W+ \ge 3b$	30%
	$\Delta\mu(W+\le 2b+\ge 1c)$	Norm	All	$W+ \le 2b+ \ge 1c$	30%
	$\Delta\mu(W+\le 2b+0c)$	Norm	All	$W+ \leq 2b+0c$	30%
normalization [$\Delta\mu(t\bar{t}+V/t/t\bar{t})$	Norm	All	$t\bar{t} + V/t/t\bar{t}$	20%
	$\Delta \mu(t)$	Norm	All	t	20%
	$\Delta \mu(VV)$	Norm	All	VV	20%
	$\Delta \mu(t\bar{t}h)$	Norm	All	tth	20%
	$\Delta \mu(fakelepton)$	Norm	1L+,1L-	1L MJ	100%
	$\Delta \mu (fake\gamma)$	Norm	Ŷ	fakey	100%
	L0 trig eff.	Shape+Norm.	0L	All backgrounds	
	L0_TT_up	Shape+Norm.	0L	$tt/Z/W + 0b + \ge 1c, tt/Z/W + 0b + 0c, t$	
	L1_TT_up	Shape+Norm.	1L+,1L-	$tt/Z/W + 0b + \ge 1c, tt/Z/W + 0b + 0c, t$	
	L2_TT_up	Shape+Norm.	2L	$tt/Z/W + 0b + \ge 1c, tt/Z/W + 0b + 0c, t$	
ſ	HighPtExtrapB_up	Shape+Norm.	All	All	5 501
	VROL Non-closure, norm.	Norm.	OL OL	All backgrounds	5.5%
	VROL Non-closure, snape	Shape.		All backgrounds	41 601
Malialatian na sian	VR2L Non-closure, norm.	Shana	21	All backgrounds	41.0%
validation region	VR2L Non-closure, shape	Norm	2L 1L	All backgrounds	11 70%
~ ~	VR1L + Non-closure, norm.	Shape	11.+	All backgrounds	11.770
uncortainty I	VR1L - Non-closure, norm	Norm	1L+ 1L-	All backgrounds	11 4%
	VR1L - Non-closure, horn.	Shape	1L-	All backgrounds	11.4 /0
	VRFMU Non-closure norm	Norm	e/mu	All backgrounds	7 4%
	VRGAMMA Non-closure, norm	Norm	gamma	All backgrounds	20.5%
-	Δu (fake lepton shape())	Shape	1L+.1L-	1L MJ	2010 10
	Δu (fake lepton shape1)	Shape	1L+.1L-	1L MJ	
	$\Delta \mu$ (fake γ contam)	Shape	γ	fakey	

Systematic(theory)

		Name	Channels	Samples	Size
		Matching $(t\bar{t} + \ge 1b)$	All	$t\bar{t} + \ge 1b$	6.0%
		$Matching(t\bar{t} + 0b + \ge 1c)$	All	$t\bar{t} + 0b + \ge 1c$	7.3%
		$Matching(t\bar{t} + 0b + 0c)$	All	$t\overline{t} + 0b + 0c$	3.8%
		Shower($t\bar{t} + \ge 1b$)	All	$t\bar{t}+\geq 1b$	16.7%
		Shower $(t\bar{t} + 0b + \ge 1c)$	All	$t\bar{t} + 0b + \ge 1c$	19.5%
		Shower $(t\bar{t} + 0b + 0c)$ All $t\bar{t}$		$t\overline{t} + 0b + 0c$	0.3%
Tan		Matching(s-top) All t		t	5.4%
тор		Shower(s-top) All t		t	27.4%
(++barc top)		Interference(s-top) All t		t	12.0%
(llbar,s-lop)		s-top_Scale	All	t	
	4	ttbar2b_ISR_a_s_up	All	$t\overline{t} + 0b + 0c$	
		ttbar2b_FSR_up	All	$t\overline{t} + 0b + 0c$	
		ttbar2b1c_ISR_a_s_up	All	$t\bar{t} + 0b + \ge 1c$	
		ttbar2b1c_FSR_up	All	$t\bar{t} + 0b + \ge 1c$	
		ttbar4b_ISR_a_s_up	All	$t\bar{t} + \ge 1b$	
		ttbar4b_FSR_up	All	$t\bar{t}+\geq 1b$	
		ttbar2b_Scale_muRmuF_up	All	$t\overline{t} + 0b + 0c$	
		ttbar2b1c_Scale_muRmuF_up	All	$t\bar{t} + 0b + \ge 1c$	
		ttbar4b_Scale_muRmuF_up	All	$t\bar{t} + \ge 1b$	
		t_FSR	All	t	
		t_ISR_alpha_s	All	t	
		Z4b_Scale_muRmuF_up	All	$Z/W/\gamma + \geq 3b$	
Z+iets		Z2b1c_Scale_muRmuF_up	All	$Z/W/\gamma + \le 2b + \ge 1c$	
_ jete		Z2b_Scale_muRmuF_up	All	$Z/W/\gamma + \leq 2b + 0c$	
		vv_Scale_muRmuF_up	All	VV	
		qqgg	All	Vhh	

Fit Details

- Ten regions total for all fits
- SRs are further divided into Lowscore (BDT<0.3) and HighScore(BDT>0.3), Lowscore uses real data, HighScore is bilnded
- For 1L channel, split into W+/W- channels

Plots show mH=500GeV VH(hh) fit result

Expected signal strength(Non-resonant)

Expected signal strength as a function of each coupling parameter, fixing the other parameters to the SM expectation.

Expected Limit(Resonant VH(hh))

Expected limits as a function of true mH mass, for resonant VH(hh) production. Limit results from mH=260GeV to 1TeV, for the combination and for each process separately. ZHH gives main contribution in the process.

Summary

- New search for Vhh final states with 0L/1L/2L. Three different models are considered, either non-resonant production, or resonant production in the form of either VH(hh) or A→ZH(hh).
- The analysis is in the ATLAS internal review, expected to be published by early 2022.

