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Figure 2: Upper limits at 95% CL on the cross-section of the ggF SM HH production normalised to its SM
expectation �SM

ggF(pp ! HH) from the bb̄⌧+⌧�, bb̄bb̄, bb̄��, W
+
W

�
W
+
W

�, W
+
W

��� and bb̄W
+
W

� searches, and
their statistical combination. The column “Obs.” lists the observed limits, “Exp.” the expected limits with all
statistical and systematic uncertainties, and “Exp. stat.” the expected limits obtained including only statistical
uncertainties in the fit.

the ⌧-lepton reconstruction and identification. When removed the limit reduces by 5%, 3% and 2%,
respectively.

5 Constraints on the Higgs boson self-coupling

The results in Figure 2 show that the sensitivity of the SM HH search is driven by the final states bb̄bb̄,
bb̄⌧+⌧� and bb̄��. These final states are used to set constraints on the Higgs boson self-coupling modifier
� = �HHH/�SM

HHH
. After setting all couplings to fermions and bosons to their SM values, a scan of the

self-coupling modifier � is performed. The � factor a�ects both the production cross-section and the
kinematic distributions of the Higgs boson pairs, by modifying the A2 production amplitude. It can also
a�ect the Higgs boson branching fractions due to NLO electroweak corrections [20], but this dependence
is neglected in the following.

The signal used in the � fit was simulated according to the following procedure. For each value
of � the mHH spectrum is computed at the generator-level, using the leading-order (LO) version of
M��G����5_�MC@NLO [59] with the NNPDF 2.3 LO [65] PDF set, together with P����� 8.2 [66] for
the showering model using the A14 tune [67]. Because only one amplitude of Higgs boson pair production
depends on �, linear combinations of three LO samples generated with di�erent values of � are su�cient
to make predictions for any value of �. Binned ratios of the mHH distributions to the SM distribution are
computed for all � values and then used to reweight the events of NLO SM HH signal samples, generated
using the full detector simulation. This procedure is validated by comparing kinematic distributions
obtained with the reweighting procedure applied to the LO SM sample and LO samples generated with the
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NEW PHYSICS BEYOND SM

• Dark Matter Candidates?
• Dark Energy?
• Gravity?
• Fermion Generation?
• Strong CP problem?
• Neutrino mass?
• Muon g-2?
• Hierarchy?
• ……



EXTRA HIGGS CAN BE ONE ANSWER FOR NEW PHYSICS

Extra Higgs how to answer New Physics

• One complex scalar for ∆𝒂𝒆/𝝁
• A Light Scalar Explanation of 𝒈 − 𝟐𝝁and the KOTO Anomaly
• A Light Higgs at the LHC and the B-Anomalies

How to looking for extra Higgs

• Long Lived particle search at HGCAL
• Triple Higgs search at LHC



ONE COMPLEX SCALAR FOR ∆𝒂𝒆/𝝁

✤Scalar contribution to ∆𝒂𝒆/𝝁

muon. To be specific, for a scalar coupling to leptons both with scalar and pseudo-scalar as,

S ¯̀(gR + igI�5) `, it can contribute to the anomalous magnetic dipole moment as [59, 60]

�a` =
1

8⇡2

Z
1

0

dx
(1� x)2 ((1 + x)g2R � (1� x)g2I )

(1� x)2 + x (mS/m`)
2

. (3)

However, if a real scalar has both non-zero gR and gI , the CP is violated and lepton

electric dipole moment will be generated. To avoid this constraint, we use one pseudo-scalar

�I couples to electron and one CP-even scalar couples to muon as

Lint = ig
e
�I
�I ē�5e+ g

µ
�R
�Rµ̄µ. (4)

We show the parameter space for �ae/µ in Eq. (1) and Eq. (2) in Fig. 1 and also the

relevant constraints for the couplings are added in the plot.

For coupling to electron, the beam dump experiments E137 [61], E141 [62], and Orsay

[63] produce scalar via Bremsstrahlung-like process using electron beam. The scalar travels

macroscopic distance and decay back to electron pair and results the orange shaded exclusion

region [53, 57] in Fig. 1 (a). The JLab experiment HPS [64] projection for scalar [53] is

plotted as dot-dashed dark cyan as well.

The BaBar collaboration searches the dark photon through the process e+e� ! �A
0 [65],

where A
0
! `

+
`
� decays democratically. Ref. [66] recast the results and give constraint for

scalar via e
+
e
�
! �S, which is shown in green shaded region in Fig. 1 (a). In the BaBar

study, A0
! µ

+
µ
� channel is more sensitive than e

+
e
�. The constraint for scalar from [66]

applies for BR(S ! µ
+
µ
�) � BR(S ! e

+
e
�), which is the case for coupling proportional

to lepton mass. If the scalar decays to e
+
e
� dominantly, the limit will be weaker by an order

one factor. The process e+e� ! �S has also been used to set limit for Belle-II [67, 68] as

future projection by Ref. [53], which is plotted as dot-dashed green line in Fig. 1 (a).

For coupling to muon, the BaBar collaboration searches the dark photon with muonic

coupling only via e
+
e
�
! µ

+
µ
�
A

0 process [69], with A
0
! µ

+
µ
�. It has been re-casted by

[53, 70] for a scalar with muonic coupling and we plotted the excluded region in Fig. 1 (b)

in shaded green. The future projection for Belle-II [68, 70] is plotted as dot-dashed green

line.

At LHC Run-I, ATLAS collaboration has searched for exotic Z decay Z ! 4µ [71] with

both 7 TeV and 8 TeV data. It has been interpreted as a constraint on Z ! µ
+
µ
�
S

by Ref. [70], which is plotted in Fig. 1 (b) in shaded brown. Ref. [70] has also projected
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✤CP conservation

Since Schwinger’s first computation of the electron anomalous magnetic moment of the

electron, it was realized that its measurement can provide an accurate test of Quantum Elec-

trodynamics (QED), and subsequently of the SM, describing the interactions of fundamental

particles in nature. The QED contribution [2–19] to the anomalous magnetic moment of

the electron and the muon is today known up to 5-loop order [1, 20, 21].

The QED contribution, although dominant, is not the only one a↵ecting the anoma-

lous magnetic moments. The hadronic contributions [22–34] become quite relevant and can

be accurately computed from dispersion relations describing the electron-positron collisions

with hadrons in the final states. Moreover, the weak interaction e↵ects [35–40], although

suppressed by powers of the weak gauge boson masses, become also relevant at the level of

accuracy provided by today’s computations. Finally, there is a component of the hadronic

contribution, the so-called light-by-light contribution [31, 32, 41–49], which cannot be ob-

tained experimentally and hence has to be estimated by theoretical methods.

Quite importance for these determinations is an accurate measurement of the fine struc-

ture constant. The authors of Ref. [50] use the recoil frequency of Cesium-133 atoms in

a matter-wave interferometer to determine the mass of the Cs atom, and obtain the most

accurate value of the fine structure constant to date. By combining it with theory [51, 52],

they obtain the electron magnetic dipole moment to be

�ae ⌘ a
exp

e
� a

SM

e
= (�88± 36)⇥ 10�14

, (1)

which implies the deviation has a negative sign and presents a 2.4 � discrepancy [50, 53, 54]

between the SM prediction and experimental measurements [55, 56]. On the other hand,

the muon magnetic dipole moment has 3.7 � discrepancy with a positive sign, opposite to

the ae deviation [57, 58],

�aµ ⌘ a
exp

µ
� a

SM

µ
= (2.74± 0.73)⇥ 10�9

. (2)

The aµ deviation is of the same order of the weak corrections and hence can be naturally

explained by physics at the weak scale. As it was first stressed in Ref. [59], assuming similar

corrections to ae, due to the dependence on the square of lepton mass, they become of

the order of �ae ' 0.7 ⇥ 10�13. Therefore, they cannot lead to an explanation of the ae

anomaly. Moreover, if the interactions a↵ecting electron and muon sector would be the

same, one would expect deviations of the same sign and not of opposite signs as observed

experimentally, Eqs. (1) and (2).

3

Since Schwinger’s first computation of the electron anomalous magnetic moment of the

electron, it was realized that its measurement can provide an accurate test of Quantum Elec-

trodynamics (QED), and subsequently of the SM, describing the interactions of fundamental

particles in nature. The QED contribution [2–19] to the anomalous magnetic moment of

the electron and the muon is today known up to 5-loop order [1, 20, 21].

The QED contribution, although dominant, is not the only one a↵ecting the anoma-

lous magnetic moments. The hadronic contributions [22–34] become quite relevant and can

be accurately computed from dispersion relations describing the electron-positron collisions

with hadrons in the final states. Moreover, the weak interaction e↵ects [35–40], although

suppressed by powers of the weak gauge boson masses, become also relevant at the level of

accuracy provided by today’s computations. Finally, there is a component of the hadronic

contribution, the so-called light-by-light contribution [31, 32, 41–49], which cannot be ob-

tained experimentally and hence has to be estimated by theoretical methods.

Quite importance for these determinations is an accurate measurement of the fine struc-

ture constant. The authors of Ref. [50] use the recoil frequency of Cesium-133 atoms in

a matter-wave interferometer to determine the mass of the Cs atom, and obtain the most

accurate value of the fine structure constant to date. By combining it with theory [51, 52],

they obtain the electron magnetic dipole moment to be

�ae ⌘ a
exp

e
� a

SM

e
= (�88± 36)⇥ 10�14

, (1)

which implies the deviation has a negative sign and presents a 2.4 � discrepancy [50, 53, 54]

between the SM prediction and experimental measurements [55, 56]. On the other hand,

the muon magnetic dipole moment has 3.7 � discrepancy with a positive sign, opposite to

the ae deviation [57, 58],

�aµ ⌘ a
exp

µ
� a

SM

µ
= (2.74± 0.73)⇥ 10�9

. (2)

The aµ deviation is of the same order of the weak corrections and hence can be naturally

explained by physics at the weak scale. As it was first stressed in Ref. [59], assuming similar

corrections to ae, due to the dependence on the square of lepton mass, they become of

the order of �ae ' 0.7 ⇥ 10�13. Therefore, they cannot lead to an explanation of the ae

anomaly. Moreover, if the interactions a↵ecting electron and muon sector would be the

same, one would expect deviations of the same sign and not of opposite signs as observed

experimentally, Eqs. (1) and (2).

3

JHEP 03 (2019) 008



ONE COMPLEX SCALAR FOR ∆𝒂𝒆/𝝁



A LIGHT SCALAR FOR 𝒈 − 𝟐𝝁 AND KOTO ANOMALY

!" → $%&&̅ decay
• Direct CPV

• FCNC : highly suppressed decay
-BR (SM) : 3�10-11

• Small theoretical uncertainty�~2%�
→ Good probe for new physics search
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A LIGHT SCALAR FOR 𝒈 − 𝟐𝝁 AND KOTO ANOMALY
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BR(KL → π0 ϕ) > 1%
★
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Orsay

E137

•PROBLEM:
•KOTO signal

• Bkg = 0.34(0.08), obs= 3 → BR(KL→π0 νν)~ 
2x10-9

•NA62/E949 constraints
• BR(K+→π+ νν) < 1.85x10-10

•Nir-Grossman bound
• isospin symmetry
• Using lifetime of charged and neutral Kaons,

BR(K0→π0 νν) < 4.3 BR(K+→π+ νν)

SOLUTION:
• Long-lived particle with mass around 140 MeV, due to the 

bkg

• Short-lived particle with life time around 0.1ns ~3 cm. It 
decays inside the charged Kaon experiment, thus vetoed in 
measurement of                    (KOTO ~ 3m, NA62 ~ 150 m)K+ → π+ν̄ν

K+ → π+π0



A LIGHT HIGGS AT THE LHC AND THE B-ANOMALIES

within the SM. Small deviations of these coupling with respect to the SM values are still

possible, and are expected in extensions of the Higgs sector that occur in most beyond the

SM scenarios. For this reason, since the Higgs discovery, apart from a precise determination

of the Higgs couplings, the LHC has been looking for new scalar resonances, with the di-

photon channel being one of the most sensitive ones. Recently, the CMS experiment reported

a 2.9 � excess in this channel [1], with a di-photon invariant mass of about 95.3 GeV. This

excess was mildly present in the 8 TeV run [2], but became prominent only in the 13 TeV

run. While the ATLAS experiment did not observe any significant excess in this mass region

in the 8 TeV run [3], it has not yet reported the results of a similar search in the 13 TeV

run.

Searches for Higgs boson resonances produced in association with the Z gauge boson, with

Higgs bosons decaying into bottom-quark pairs, were conducted at LEP. The combination of

the results of the four experiments, ALEPH, DELPHI, L3 and OPAL, led to the presence of

a 2.3 � local excess at an invariant mass of about 95–100 GeV [4]. The agreement between

the invariant mass of the excesses observed at LEP and CMS calls for a possible common

origin of these two signatures [5–10].

On the other hand, the LHCb experiment has reported an intriguing hint of the violation

of lepton-flavor universality in the decay ofB-mesons intoK-mesons and lepton pairs [11, 12],

namely

RK =
BR(B ! Kµ

+
µ
�)

BR(B ! Ke+e�)
= 0.745+0.097

�0.082
(1)

while

RK⇤ =
BR(B ! K

⇤
µ
+
µ
�)

BR(B ! K⇤e+e�)
= 0.660+0.113

�0.074
. (2)

A possible explanation of these anomalies may be provided by the introduction of a gauge

boson associated with the U(1)Lµ�L⌧ symmetry [13–22] or other flavor symmetry [23–26].

The absence of a coupling to electrons explains the deviation of the above ratios with respect

to one, the value expected within the SM. In order to allow the coupling of the new gauge

boson to the B meson, one can introduce new vector like quarks that mix with the ordinary

third and second generation quarks and that is charged under the new gauge symmetry.

Such a quark mixing may be induced by the vacuum expectation value of a new Higgs

boson that is neutral under the SM gauge symmetries. The coupling of this Higgs boson

to the vector like quarks can induce sizable couplings to photons and gluons. Similarly, a
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Table 5: Measured RK⇤0 ratios in the two q2 regions. The first uncertainties are statistical and
the second are systematic. About 50% of the systematic uncertainty is correlated between the
two q2 bins. The 95.4% and 99.7% confidence level (CL) intervals include both the statistical
and systematic uncertainties.

low-q2 central-q2

RK⇤0 0.66 + 0.11
� 0.07 ± 0.03 0.69 + 0.11

� 0.07 ± 0.05

95.4% CL [0.52, 0.89] [0.53, 0.94]

99.7% CL [0.45, 1.04] [0.46, 1.10]
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q
2 [GeV2
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4]
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K

�0

LHCb

LHCb

BaBar
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Figure 10: (left) Comparison of the LHCb RK⇤0 measurements with the SM theoretical predic-
tions: BIP [26] CDHMV [27–29], EOS [30, 31], flav.io [32–34] and JC [35]. The predictions are
displaced horizontally for presentation. (right) Comparison of the LHCb RK⇤0 measurements
with previous experimental results from the B factories [4, 5]. In the case of the B factories the
specific vetoes for charmonium resonances are not represented.

of 3 fb�1 of pp collisions, recorded by the LHCb experiment during 2011 and 2012, are
used. The RK⇤0 ratio is measured in two regions of the dilepton invariant mass squared
to be

RK⇤0 =

(
0.66 + 0.11

� 0.07 (stat) ± 0.03 (syst) for 0.045 < q
2

< 1.1 GeV2
/c

4
,

0.69 + 0.11
� 0.07 (stat) ± 0.05 (syst) for 1.1 < q

2
< 6.0 GeV2

/c
4
.

The corresponding 95.4% confidence level intervals are [0.52, 0.89] and [0.53, 0.94]. The
results, which represent the most precise measurements of RK⇤0 to date, are compatible
with the SM expectations [26–35] at 2.1–2.3 standard deviations for the low-q2 region
and 2.4–2.5 standard deviations for the central-q2 region, depending on the theoretical
prediction used.

Model-independent fits to the ensemble of FCNC data that allow for NP contribu-
tions [27–35] lead to predictions for RK⇤0 in the central-q2 region that are similar to the
value observed; smaller deviations are expected at low-q2. The larger data set currently
being accumulated by the LHCb collaboration will allow for more precise tests of these
predictions.
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A LIGHT HIGGS AT THE LHC AND THE B-ANOMALIES
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�

FIG. 1. Feynman diagram showing how the Higgs � induces an o↵-diagonal coupling of the new

gauge boson Z
0 to the strange and bottom quarks via the mixing of the SM quarks with the heavy

vector-like quark  . This process induces a contribution to the C
NP

9
e↵ective operator which is

responsible for the B-anomalies. A sizable coupling of the Higgs � to di-photons and di-gluons will

be induced via the coupling to the heavy quark, and hence � could be potentially identified with

the one observed by the CMS [1, 2] experiment in the di-photon channel.

and gluons, which could be searched in the di-photon channel. Similarly, a mixing of such

a Higgs with the SM-like Higgs boson can induce a coupling to the SM gauge bosons, while

couplings to quarks are induced by Higgs and quark mixing e↵ects. Hence, such a Higgs can

also be produced in association with gauge bosons, subsequently decaying to bottom quark

pairs. Therefore, a very natural question is whether such Higgs boson can be identified

with the one that is observed by the CMS and LEP experiments. We analyze the signal

and existing constraints in this paper and answer this interesting question in the conclusion

section.

In this article, we shall describe the simplest scenario that can lead to a realization of this

idea. In section II we shall present the model and describe the interaction of the Higgs and

gauge bosons. In section III we shall discuss the possibility that a Higgs boson associated

with the breakdown of the new U(1)Lµ�L⌧ symmetry leads to an explanation of the CMS

excess and explain the constraints associated with a simultaneous explanation of the LEP

excess. In section IV we shall discuss the explanation of the anomalies seen in B-meson

decays. In section V we shall concentrate on the collider and flavor physics constraints

on this model. Finally, we reserve section VI for our conclusions, and the appendices for

technical details associated with the scalar mixing parameters and the obtention of the

proper CKM matrix elements within this model.

4

aspects of this model would be only minimally a↵ected by a change from the benchmark point

parameters to the region of parameters, where the LEP and CMS excesses are simultaneously

explained.

IV. Z
0 AND THE B-ANOMALIES

After discussing the possibility of �̃ fitting the CMS excess, we turn to the B-anomalies.

Integrating out the heavy gauge boson Z
0, there is an e↵ective flavor violating operator with

down-type quarks [13],

Leff = � g
2

D

2m2

Z0
s✓2c✓2t✓3

¯̃
bL�µs̃Lµ̄�

µ
µ+H.c. . (38)

This can be related to the C
NP

9
operator considered in Ref. [59–67]:

HNP

eff
= �LNP

eff
= �4GFp

2

↵em

4⇡
(VtbV

⇤
ts
)CNP

9

¯̃
bL�µs̃L µ̄�

µ
µ+H.c. , (39)

therefore, the coe�cient CNP

9
can be rewritten as

C
NP

9
= �g

2

D
v
2

m
2

Z0

⇡

↵em

1

VtbV
⇤
ts

s✓2c✓2t✓3 . (40)

Recent global fits include more data from experiments, e.g. angular observables from Belle

[68], and have found that the significance of NP contributions has increased [65, 66]. If one

restricts the analysis to lepton flavor universality violation process, the value C
NP

9
= �1.56

quoted above was obtained by a fit to the data by the authors of Ref. [65], with a significance

of 4.1 �, while the authors of Ref. [66] obtained a slightly di↵erent result, namely, CNP

9
=

�1.76, with a significance of 3.9 �. However, extending the analysis to a more complete

set of observables, namely all those included in Ref. [66], a best fit value of CNP

9
= �1.11

is obtained, and the significance increases to 5.8 �. In our analysis, we shall consider the

values obtained from the fit in Ref. [65]. The alternative values of CNP

9
obtained in Ref. [66]

do not a↵ect our phenomenological analysis in any significant way, since they can be easily

accommodated by few tens of percent changes in the mass of the gauge boson Z
0. After

plugging in the SM parameters (↵em = 1/137, |Vts| ⇠ 0.04), we obtain a requirement on NP

parameters,

g
2

D

m
2

Z0
s✓2c✓2t✓3 ⇠ 2.44⇥ 10�3TeV�2

. (41)
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The branching ratio for �̃ to b̃
¯̃
b and �� are approximately

BR(�̃ ! b̃
¯̃
b) =

1.9⇥
⇣

b̃
¯̃
b�̃

eff

⌘2

1.9⇥
⇣

b̃
¯̃
b�̃

eff

⌘2

+ 0.2⇥ sin2
↵ + 0.16⇥

⇣

gg�̃

eff

⌘2

+ 0.09⇥
⇣

c̃¯̃c�̃

eff

⌘2

BR(�̃ ! ��) =
3.39⇥ 10�3 ⇥

⇣

���̃

eff

⌘2

1.9⇥
⇣

b̃
¯̃
b�̃

eff

⌘2

+ 0.2⇥ sin2
↵ + 0.16⇥

⇣

gg�̃

eff

⌘2

+ 0.09⇥
⇣

c̃¯̃c�̃

eff

⌘2
(27)

To fit the 13 TeV CMS di-photon excess [1] , one needs

�ggF ⇥ BR
⇣
�̃ ! ��

⌘
⇠ 0.085 pb. (28)

We show the parameter space {sin↵, sin ✓2} which fits the CMS excess in Fig. 3, with

sin ✓2 ⇡ �2vD/m ̃
. The cyan solid line provides 80% of CMS excess in Eq. (28), while the

two dashed line are for 60% and 100% of the excess respectively. The benchmark point is

denoted by a red star in the plot, and its parameters are also listed in Table II.

model parameters m
�̃

sin↵ sin ✓2 tan ✓3 m
 ̃

gD vD mZ0

benchmark point 96 GeV 0.1 0.89 0.1 800 GeV 1 492 GeV 4.1 TeV

TABLE II. The benchmark point for the signal model which fits the CMS excess and solves the

B-anomalies simultaneously.

From Fig. 3, the benchmark has sin ✓2 = 0.89, m
 ̃

= �2vD/ sin ✓2 = 800 GeV and

vD = 496 GeV. This suggests �2 ⇡ 1.4 and the heavy quark mass dominantly comes from

o↵-diagonal term �2vD. It is worth mentioning that since cos ✓2 = 0.48, the diagonal mass

mq2 is larger than eigenstate mass mq̃2 due to the relationship mq̃2 = mq2 cos ✓2.

For the benchmark point, we list the 96 GeV Higgs branching ratios in Table III.

process bb̄ ⌧ ⌧̄ cc̄ gg �� WW
⇤

ZZ
⇤ total

BR 15.9% 1.66% 18.23% 63.9% 1.8⇥ 10�3 8.3⇥ 10�4 1.41⇥ 10�4 1

�i (MeV) 0.019 0.022 0.002 0.077 2.18⇥ 10�4 1⇥ 10�4 1.7⇥ 10�5 0.12

TABLE III. The decay widths and branching ratios for a 96 GeV �̃ and parameters set at the

benchmark point values, given in Table II.
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cut conditions jj dijet bb̄ dijet fake-track ggF ms = 20 GeV ggF ms = 50 GeV

Nini 5.1⇥ 1014 1.1⇥ 1013 1⇥ 1012 1.3⇥ 108 ⇥ BR 1.3⇥ 108 ⇥ BR

5 tracks 8.7⇥ 10�1 8.4⇥ 10�1 1.0 8.3⇥ 10�2 2.1⇥ 10�1

rDV > 0.16 m 9.2⇥ 10�3 (⇤) 7.5⇥ 10�3 (⇤) 4.5⇥ 10�2 4.8⇥ 10�1 3.1⇥ 10�1

�Dmin < 0.02 6.1⇥ 10�1 6.1⇥ 10�1 2.2⇥ 10�3 8.7⇥ 10�1 8.9⇥ 10�1

t̄ > 1 ns 3.3⇥ 10�2 (⇤) 2.8⇥ 10�2 (⇤) 2.8⇥ 10�2 9.9⇥ 10�1 9.9⇥ 10�1

�t < 0.3 ns 7.1⇥ 10�1 7.2⇥ 10�1 4.5⇥ 10�5 9.6⇥ 10�1 9.8⇥ 10�1

|z̄| > 0.4 m 3.4⇥ 10�2 (⇤) 2.8⇥ 10�2 (⇤) 6.4⇥ 10�2 9.9⇥ 10�1 9.9⇥ 10�1

�z < 0.05 4.9⇥ 10�1 4.9⇥ 10�1 4.9⇥ 10�3 8.5⇥ 10�1 8.8⇥ 10�1

✏vtc 2.1⇥ 10�1 2.1⇥ 10�1 4.0⇥ 10�13 3.4⇥ 10�1 2.4⇥ 10�1

(d0 > 0.03 m)5 (5.7⇥ 10�4)5 (6.8⇥ 10�4)5 3.4⇥ 10�1 2.6⇥ 10�1 8.1⇥ 10�1

Nfin 5.7⇥ 10�3 2.9⇥ 10�4 1.4⇥ 10�1 9.7⇥ 105 ⇥ BR 5.3⇥ 106 ⇥ BR

TABLE V. The cut-flow table for the QCD background, the fake-track background and the signal.

Nini and Nfin are the initial and final event numbers before and after imposing the cuts. These

numbers correspond to an integrated luminosity of L = 3 ab�1 at the HL-LHC. “5 tracks” requires

each track has pT > 1 GeV and at least 5 tracks arrive at HGCAL. “✏vtc” is the total e�ciency for

the vertexing-cuts except those with (⇤). The e�ciency of the d0 cuts is calculated after applying

the vertexing-cuts. We used the two signal benchmarks with mX = 20 and 50 GeV, and lifetime

c⌧X = 1 m.

IV. The Results

A. Cut e�ciencies

In this section, we present the e�ciencies of cuts we adopt in this analysis in Table V.

Nini is the initial event number from the cross-section only. Nfin is final event numbers after

imposing the trigger and the cuts in the table at the HL-LHC with 13 TeV center-of-mass

energy and 3 ab�1 integrated luminosity. The row “5 tracks” comes from the requirement

that at least five tracks that arrive HGCAL and the trigger requirement. For the signal, it is

the combination of the geometric probability for X decay inside the |z| < 1.5 m region and
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the vertexing-cuts except those with (⇤). The e�ciency of the d0 cuts is calculated after applying

the vertexing-cuts. We used the two signal benchmarks with mX = 20 and 50 GeV, and lifetime
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IV. The Results

A. Cut e�ciencies

In this section, we present the e�ciencies of cuts we adopt in this analysis in Table V.

Nini is the initial event number from the cross-section only. Nfin is final event numbers after

imposing the trigger and the cuts in the table at the HL-LHC with 13 TeV center-of-mass

energy and 3 ab�1 integrated luminosity. The row “5 tracks” comes from the requirement

that at least five tracks that arrive HGCAL and the trigger requirement. For the signal, it is

the combination of the geometric probability for X decay inside the |z| < 1.5 m region and
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• Counting the number of d.o.f. in CPX 2HDMsuch that the scalar potential now reads

V = Y1H
†
1H1 + Y2H

†
2H2 +

h
Y3e

�i⌘
H

†
1H2 + h.c.

i

+
Z1

2
(H†

1H1)
2 +

Z2

2
(H†

2H2)
2 + Z3(H

†
1H1)(H

†
2H2) + Z4(H

†
1H2)(H

†
2H1)

+


Z5

2
e
�2i⌘(H†

1H2)
2 + Z6e

�i⌘(H†
1H1)(H

†
1H2) + Z7e

�i⌘(H†
2H2)(H

†
1H2) + h.c.

�
. (12)

In Eq. (12) every parameter is invariant when transforming between Higgs bases under

Eq. (8). The U(2) redundancy is now completely fixed, as di↵erent choices of parameters in

the scalar potential truly represent physically distinct theories.

The minimziation of scalar potential gives the following conditions

Y1 = �1

2
Z1 v

2
, Y3 = �1

2
Z6 v

2
. (13)

In particular, the relation between Y3 and Z6 implies there are only three independent

complex parameters, in general, usually taken to be {Z5, Z6, Z7}. However, only two out of

the three phases are physical as one phase can be removed by choosing a particular value of

the Higgs basis label ⌘. Furthermore, the vacuum and the bosonic sector of the 2HDM is

CP-invariant if one can find a choice of ⌘ such that all parameters in Eq. (12) are real after

imposing the minimzation condition. This can happen if and only if [7]

Im(Z⇤
5Z

2
6) = Im(Z⇤

5Z
2
7) = Im(Z⇤

6Z7) = 0 . (14)

Otherwise, CP invariance is broken.

While the U(2) rotation in Eq. (4) leaves the scalar kinetic term invariant, it does modify

the Higgs-fermion Yukawa interactions. In most phenomenological studies the U(2) redun-

dancy is fixed by choosing a particular basis where the Yukawa interactions are specified. The

Higgs-fermion interactions result in tree-level flavor-changing neutral currents (FCNCs), in

severe conflict with experimental observations. One simple possibility is to impose a discrete

Z2 symmetry [8–10],

�1 ! �1 , �2 ! ��2 , (15)

which in Eq. (1) lead to

m
2
12 = �6 = �7 = 0 . (16)

Note that the Z2 symmetry is incompatible with the U(2) rotation in Eq. (4), which mixes

fields with opposite Z2 charges. That is, if the Z2 symmetry were exact, the U(2) rotation

would be forbidden.

4

• Minimization condition in the Higgs basis:

𝑌* = −
1
2𝑍*𝑣

0 𝑌1 = −
1
2𝑍2𝑣

0

• Free parameters:
3𝑌0, 𝑍*, 𝑍0, 𝑍1, }𝑍6 ⇒ 3𝑌0, 𝑍*, 𝑍1, }𝑍6

3𝑍8, 𝑍2, }𝑍9 ⇒ 3𝑍8, 𝑍2, }Re[𝑍9]

• 𝑍! Symmetry:

§ 9 real free parameters!

Since 0 ≤ β ≤ 1
2π, it follows that

s2β =
2|Z67|√

(Z2 − Z1)2 + 4|Z67|2
, c2β =

±(Z2 − Z1)√
(Z2 − Z1)2 + 4|Z67|2

, (82)

In particular,

tan β =

√
1− c2β
1 + c2β

, (83)

which demonstrates that tan β in the Φ-basis corresponds to cot β in the Φ′-basis. Moreover,

ei(ξ+θ23) = ±ei(θ23−θ67) = ±
|Z67|

Z67e−iθ23
=

(
Z2 − Z1

2Z67e−iθ23

)
s2β
c2β

. (84)

Note that eq. (84) is consistent with the result of eq. (75).

Plugging the results of eq. (82) back into eq. (80),

|Z67|(Z2 − Z1)
[
Z1 + Z2 − 2Z34 − 2Re(Z5e

−2iθ67)
]
+
[
(Z2 − Z1)

2 − 4|Z67|2
]
Re
[
(Z6 − Z7)e

−iθ67
]

±iD
{
(Z2 − Z1) Im

[
(Z6 − Z7)e

−iθ67
]
− 2|Z67| Im(Z5e

−2iθ67)
}
= 0 , (85)

where D ≡
√

(Z2 − Z1)2 + 4|Z67|2. We can use eq. (77) to write e−iθ67 = Z∗
67/|Z67|. It then

follows that

(Z2 − Z1)
[
|Z67|2(Z1 + Z2 − 2Z34)− 2Re(Z∗

5Z
2
67)
]
+
[
(Z2 − Z1)

2 − 4|Z67|2
][
|Z6|2 − |Z7|2

]

±2iD
{
(Z1 − Z2) Im(Z∗

6Z7) + Im(Z∗
5Z

2
67)
}
= 0 . (86)

Taking the real and imaginary parts of eq. (86) and massaging the real part yields

(Z1 − Z2)
[
Z34|Z67|2 − Z2|Z6|2 − Z1|Z7|2 − (Z1 + Z2) Re(Z

∗
6Z7) + Re(Z∗

5Z
2
67)
]

−2|Z67|2
(
|Z6|2 − |Z7|2

)
= 0 , (87)

(Z1 − Z2) Im(Z∗
6Z7) + Im

(
Z∗

5Z
2
67

)
= 0 . (88)

It is convenient to multiply eq. (88) by −i and add the result to eq. (87). This yields a

single complex equation. Finally, since Z67 ≠ 0 by assumption, one can divide this complex

equation by Z∗
67 and take the complex conjugate of the result to obtain,

(Z1 − Z2)
[
Z34Z

∗
67 − Z1Z

∗
7 − Z2Z

∗
6 + Z∗

5Z67)
]
− 2Z∗

67

(
|Z6|2 − |Z7|2

)
= 0 . (89)

The cases where Z1 = Z2 and/or Z67 = 0 are easily treated. First, if Z1 = Z2 and Z67 ≠ 0,

then eqs. (79) and (80) imply that s2β = 1 and c2β = 0, and it follows that Im(Z∗
5Z

2
67) = 0
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• Alignment Limit:

2

There is a residual U(1) redundancy in the Higgs basis,
labelled by H2 ! e

i⌘
H2, which leaves Eq. (3) invariant

and motivates writing the scalar potential as [36]

V = Y1H
†
1H1 + Y2H

†
2H2 +

⇣
Y3e

�i⌘
H

†
1H2 + h.c.

⌘

+
Z1

2
(H†

1H1)
2 +

Z2

2
(H†

2H2)
2

+ Z3(H
†
1H1)(H

†
2H2) + Z4(H

†
1H2)(H

†
2H1)

+


Z5

2
e
�2i⌘(H†

1H2)
2 + Z6e

�i⌘(H†
1H1)(H

†
1H2)

+Z7e
�i⌘(H†

2H2)(H
†
1H2) + h.c.

i
. (4)

In the above, di↵erent choices of parameters truly rep-
resent physically distinct theories [36]. The potentially
complex parameters are {Y3, Z5, Z6, Z7}.

The minimization of the scalar potential gives Y1 =
�Z1/2v2 and Y3 = �Z6v

2
/2. The first relation can be

viewed as the definition of v in the Higgs basis, while the
second relation implies there are only three independent
complex parameters, usually taken to be {Z5, Z6, Z7}. If
one can find a choice of ⌘ such that all parameters in
Eq. (4) are real after imposing the minimization condi-
tion, the vacuum and the bosonic sector of the 2HDM is
CP-invariant. This can happen if and only if [37]

Im(Z⇤
5Z

2
6 ) = Im(Z⇤

5Z
2
7 ) = Im(Z⇤

6Z7) = 0 . (5)

Otherwise, CP invariance is broken.
In a 2HDM the most general Higgs-fermion interac-

tions result in tree-level flavor-changing neutral currents
(FCNCs), in severe conflict with data. One simple pos-
sibility is to impose a discrete Z2 symmetry [38–40],
�1 ! �1 and �2 ! ��2, which can be broken softly
by mass terms, leading to �6 = �7 = 0 in Eq. (1).

In the Higgs basis, the existence of a softly broken Z2

symmetry is guaranteed through the condition [36, 41],

(Z1 � Z2) [(Z3 + Z4)(Z6 + Z7)
⇤
� Z2Z

⇤
6 � Z1Z

⇤
7

+Z
⇤
5 (Z6 + Z7)]� 2(Z6 + Z7)

⇤(|Z6|
2
� |Z7|

2) = 0 . (6)

Eq. (6) assumes Z6+Z7 6= 0 and Z1 6= Z2, and eliminates
two real degrees of freedom. In the end there are a total
of 9 real parameters in a complex 2HDM.
The Alignment Limit – The alignment limit [21] is
defined by the limit where the scalar carrying the full
VEV in the Higgs basis is aligned with the 125 GeV mass
eigenstate [22–24], in which case the observed Higgs bo-
son couples to the electroweak gauge bosons with SM
strength. We will parameterize the Higgs basis dou-
blets as H1 = (G+

, (v + �
0
1 + iG

0)/
p
2)T and H2 =

(H+
, (�0

2 + ia
0)/

p
2)T , where G

+ and G0 are the Gold-
stone bosons. The neutral fields are �

0
1, �

0
2 and a

0, and
the charged field is H

+. The mass-squared matrix M
2

in the �
0
1 � �

0
2 � a

0 basis can be diagonalized by an or-
thogonal matrix R relating ~� = (�0

1,�
0
2, a

0)T to the mass

eigenstates ~h = (h3, h2, h1)T , ~h = R · ~� [36],

R = R12R13R23

=

0

@
c12 �s12 0
s12 c12 0
0 0 1

1

A

0

@
c13 0 �s13

0 1 0
s13 0 c13

1

A

0

@
1 0 0
0 c̄23 �s̄23

0 s̄23 c̄23

1

A . (7)

Here we have used the notation cij = cos ✓ij , sij = sin ✓ij ,
c̄23 = cos ✓̄23 and s̄23 = sin ✓̄23 . An important observa-
tion is that ✓̄23 [42] rotates between �

0
2 and a

0, which cor-
responds to the phase rotation H2 ! e

i✓̄23H2. Therefore
the e↵ect of the ✓̄23 rotation is to shift the ⌘ parameter
labelling the Higgs basis. This motivates defining [36]

fM2
⌘ R23 M

2
R

T

23

= v
2

0

@
Z1 Re[Z̃6] �Im[Z̃6]

Re[Z̃6] Re[Z̃5] +A
2
/v

2
�

1
2 Im[Z̃5]

�Im[Z̃6] �
1
2 Im[Z̃5] A

2
/v

2

1

A , (8)

where Z̃5 = Z5e
�2i✓23 , Z̃6/7 = Z6/7e

�i✓23 , ✓23 = ⌘ + ✓̄23

and A = Y2+v
2(Z3+Z4�Re[Z̃5]). Alignment is achieved

by the conditions Re[Z̃6] = Im[Z̃6] = 0.

fM2 can be diagonalized by just two angles. Hence
eR fM2 eRT = diag (m2

h3
,m

2
h2
,m

2
h1
) where

eR = R12R13 =

0

@
c12c13 �s12 �c12s13

s12c13 c12 �s12s13

s13 0 c13

1

A . (9)

If we define (�0
1, �̃

0
2, �̃

0
3)

T = (R23 · ~�)T , the mass eigen-
states are given by

0

@
h3

h2

h1

1

A = eR

0

@
�
0
1

�̃
0
2

�̃
0
3

1

A = eR

0

@
�
0
1

c23 �
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2 � s23 a

0

s23 �
0
2 + c23 a

0

1

A . (10)

✓23 will be important when discussing CP-conservation.

Recall �0
1 carries the full SM VEV and exact alignment

is when �
0
1 coincides with a mass eigenstate. We choose

to align �
0
1 with h1, which can be achieved by setting

c13 = 0 and ✓13 = ⇡/2 in Eq. (9). We also impose the
ordering, mh1  mh2  mh3 so that mh1 = 125 GeV.

Small departures from alignment can be parameterized
by writing ✓13 = ⇡/2 + ✏, ✏ ⌧ 1,

eR =

0

@
�✏ c12 �s12 �c12(1� ✏

2
/2)

�✏ s12 c12 �s12(1� ✏
2
/2)

1� ✏
2
/2 0 �✏

1

A . (11)

Choosing {v,mh1 ,mh2 ,mh3 ,mH± , ✓12, ✓13, Z3,Re[Z̃7]}
as our 9 input parameters, all other parameters and
couplings can be expressed accordingly. Some important
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There is a residual U(1) redundancy in the Higgs basis,
labelled by H2 ! e
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In the above, di↵erent choices of parameters truly rep-
resent physically distinct theories [36]. The potentially
complex parameters are {Y3, Z5, Z6, Z7}.

The minimization of the scalar potential gives Y1 =
�Z1/2v2 and Y3 = �Z6v

2
/2. The first relation can be

viewed as the definition of v in the Higgs basis, while the
second relation implies there are only three independent
complex parameters, usually taken to be {Z5, Z6, Z7}. If
one can find a choice of ⌘ such that all parameters in
Eq. (4) are real after imposing the minimization condi-
tion, the vacuum and the bosonic sector of the 2HDM is
CP-invariant. This can happen if and only if [37]

Im(Z⇤
5Z

2
6 ) = Im(Z⇤

5Z
2
7 ) = Im(Z⇤

6Z7) = 0 . (5)

Otherwise, CP invariance is broken.
In a 2HDM the most general Higgs-fermion interac-

tions result in tree-level flavor-changing neutral currents
(FCNCs), in severe conflict with data. One simple pos-
sibility is to impose a discrete Z2 symmetry [38–40],
�1 ! �1 and �2 ! ��2, which can be broken softly
by mass terms, leading to �6 = �7 = 0 in Eq. (1).

In the Higgs basis, the existence of a softly broken Z2

symmetry is guaranteed through the condition [36, 41],

(Z1 � Z2) [(Z3 + Z4)(Z6 + Z7)
⇤
� Z2Z

⇤
6 � Z1Z

⇤
7

+Z
⇤
5 (Z6 + Z7)]� 2(Z6 + Z7)

⇤(|Z6|
2
� |Z7|

2) = 0 . (6)

Eq. (6) assumes Z6+Z7 6= 0 and Z1 6= Z2, and eliminates
two real degrees of freedom. In the end there are a total
of 9 real parameters in a complex 2HDM.
The Alignment Limit – The alignment limit [21] is
defined by the limit where the scalar carrying the full
VEV in the Higgs basis is aligned with the 125 GeV mass
eigenstate [22–24], in which case the observed Higgs bo-
son couples to the electroweak gauge bosons with SM
strength. We will parameterize the Higgs basis dou-
blets as H1 = (G+

, (v + �
0
1 + iG

0)/
p
2)T and H2 =

(H+
, (�0

2 + ia
0)/

p
2)T , where G

+ and G0 are the Gold-
stone bosons. The neutral fields are �

0
1, �

0
2 and a

0, and
the charged field is H

+. The mass-squared matrix M
2

in the �
0
1 � �

0
2 � a

0 basis can be diagonalized by an or-
thogonal matrix R relating ~� = (�0

1,�
0
2, a

0)T to the mass

eigenstates ~h = (h3, h2, h1)T , ~h = R · ~� [36],

R = R12R13R23
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0 1 0
s13 0 c13

1

A

0

@
1 0 0
0 c̄23 �s̄23

0 s̄23 c̄23

1

A . (7)

Here we have used the notation cij = cos ✓ij , sij = sin ✓ij ,
c̄23 = cos ✓̄23 and s̄23 = sin ✓̄23 . An important observa-
tion is that ✓̄23 [42] rotates between �

0
2 and a

0, which cor-
responds to the phase rotation H2 ! e

i✓̄23H2. Therefore
the e↵ect of the ✓̄23 rotation is to shift the ⌘ parameter
labelling the Higgs basis. This motivates defining [36]

fM2
⌘ R23 M

2
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23
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2
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2
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2

1

A , (8)

where Z̃5 = Z5e
�2i✓23 , Z̃6/7 = Z6/7e

�i✓23 , ✓23 = ⌘ + ✓̄23

and A = Y2+v
2(Z3+Z4�Re[Z̃5]). Alignment is achieved

by the conditions Re[Z̃6] = Im[Z̃6] = 0.

fM2 can be diagonalized by just two angles. Hence
eR fM2 eRT = diag (m2

h3
,m

2
h2
,m

2
h1
) where

eR = R12R13 =

0
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s12c13 c12 �s12s13

s13 0 c13

1

A . (9)

If we define (�0
1, �̃

0
2, �̃

0
3)

T = (R23 · ~�)T , the mass eigen-
states are given by
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✓23 will be important when discussing CP-conservation.

Recall �0
1 carries the full SM VEV and exact alignment

is when �
0
1 coincides with a mass eigenstate. We choose

to align �
0
1 with h1, which can be achieved by setting

c13 = 0 and ✓13 = ⇡/2 in Eq. (9). We also impose the
ordering, mh1  mh2  mh3 so that mh1 = 125 GeV.

Small departures from alignment can be parameterized
by writing ✓13 = ⇡/2 + ✏, ✏ ⌧ 1,

eR =

0

@
�✏ c12 �s12 �c12(1� ✏

2
/2)

�✏ s12 c12 �s12(1� ✏
2
/2)

1� ✏
2
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1

A . (11)

Choosing {v,mh1 ,mh2 ,mh3 ,mH± , ✓12, ✓13, Z3,Re[Z̃7]}
as our 9 input parameters, all other parameters and
couplings can be expressed accordingly. Some important

• Free parameters:
3𝑚?! ,𝑚?" , 𝑚?# , 𝜃*0, ϵ, 𝑍1,𝑚B± , Re C𝑍9 , }𝑣3𝑌0, 𝑍1, 𝑍*, 𝑍8, 𝑍2, 𝑅𝑒 𝑍9 , }𝑍6

• Case I:

• Case 2:

3

relations are, in the approximate alignment limit,
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gh1h2h3 = ✏ v Re[Z̃7e
�2i✓12 ] . (16)

From the above we see that the mass splitting between
h3 and h2 is determined at leading order in ✏ by �m

2
23 ⌘

(m2
h3

� m
2
h2
) = v

2
|Z5|. Therefore, in general, an O(v2)

splitting can be achieved with |Z5| ⇠ O(1). Further, the
CPV coupling gh1h2h3 is non-zero away from exact align-
ment and for non-zero Z7. Hence the decay (h3 ! h2h1)
may be achieved for reasonable choices of parameters,
which however are constrained from LHC and EDM con-
straints, as will be discussed later.

In the Z2 basis the Yukawa interactions must also re-
spect the Z2 invariance, which necessitates assigning Z2

charges to SM fermions as well [43, 44]. Two distinct pos-
sibilities exist in the literature, leading to type I [45, 46]
and type II [46, 47] models which di↵er by interchanging
tan� with cot�. Importantly tan� is a derived parame-
ter [36] which strongly depends on the mass spectrum.
In the left panel of Fig. 1 we show contours of tan�
in the mh2 - mh3 plane. For our parameter region of
interest, tan� ⇠ 1 except when mh2 and mh3 are de-
generate. For concreteness we focus on Type II models
with tan� ⇠ O(1). However since the distinction be-
tween Type I and Type II models here is minimal, our
conclusions apply to Type I models as well.
Two CP-conserving Limits – The condition for CP
invariance in Eq. (5) can be realized as follows [6, 36]:

CPC1 : Im[Z̃5] = Im[Z̃6] = Im[Z̃7] = 0 , (17)

CPC2 : Im[Z̃5] = Re[Z̃6] = Re[Z̃7] = 0 . (18)

In CPC1, fM2 in Eq. (8) is block-diagonal: fM2
13 =

fM2
23 = 0, in which case �

0
1 and �̃

0
2 defined in Eq. (10)

are CP-even and can mix in general, whereas �̃
0
3 is CP-

odd. This can be achieved by ✓23 = 0 so that �̃
0
3 = a

0

in Eq. (10). Further, neither of the two CP-even states
can mix with the CP-odd state. From Eq. (9) we see ✓13

controls the mixing between �
0
1 and �̃

0
3, which implies

✓13 = ⇡/2 in the CP-conserving limit. This coincides
with the exact alignment limit ✏ = 0. The mixing be-
tween �̃

0
2 and �̃

0
3 is dictated by ✓12 and can be removed

by ✓12 = 0 or ⇡/2, which corresponds to h3 = a
0 or

h2 = a
0, respectively. Therefore, CPC1 is reached by

✓13 = 0 , ✓23 = 0 , ✓12 = {0,⇡/2}, Im[Z7] = 0 . (19)

One sees from Eqs. (13) and (15) that Im[Z̃5] = Im[Z̃6] =
0 under the choice of parameters in Eq. (19). It can

be further checked that fermionic couplings of the mass
eigenstates follow from their CP-property and the EDM
constraints vanish as expected [48].

In CPC2, fM2
12 = fM2

23 = 0 and fM2 is again block-
diagonal. In this case �

0
1 can mix with �̃

0
3, since they

are both CP-even. The CP-odd state is �̃
0
2. Referring

back to Eq. (10) we see that this requires ✓23 = ⇡/2.
In contrast to the CPC1 scenario, the mixing angle ✓13,
which controls alignment, can now be arbitrary. Turning-
o↵ mixing between �̃

0
2 and �̃

0
3 again implies ✓12 = 0 or

⇡/2. Hence CPC2 is represented by:

✓23 = ⇡/2 , ✓12 = {0,⇡/2} , Im[Z7] = 0 . (20)

Again one can check that Im[Z̃5] = Re[Z̃6] = 0 and cou-
plings of the mass eigenstates to the fermions behave as
expected from their CP quantum numbers.

There is an important distinction between these two
scenarios. In CPC1 the CP-conserving limit coincides
with the alignment limit because misalignment intro-
duces a small CP-odd component to the SM-like Higgs
boson. Then the stringent EDM limits on CPV also con-
strain the misalignment, ✏ ⇠ O(10�4), thereby forcing
the 125 GeV Higgs to be almost exactly SM-like [48].
This is consistent with the findings in Refs. [25, 26, 49].
To the contrary, in CPC2 the SM-like Higgs boson only
contains a CP-even non-SM-like component. Therefore
EDM limits do not constrain misalignment.

Eqs. (17) and (18) also make it clear that there are two
sources of CPV in 2HDM: Z̃5 and Z̃6 enter into the scalar
mass-squared matrix in Eq. (8), while Z̃7 does not. When
Im[Z̃5] = Im[Z̃6] = 0 or Im[Z̃5] = Re[Z̃6] = 0, there
is no CPV in the scalar mixing matrix and each mass
eigenstate hi is also a CP-eigenstate: two are CP-even
and one is CP-odd. In this case, measurements of angular
correlations in the scalar couplings to electroweak gauge
bosons and/or fermions will not yield any CPV signals.
Nevertheless CPV could still be present through non-zero
Re[Z̃7] or Im[Z̃7] and will manifest through the decays of
Higgs bosons. Given these considerations, we will analyze
parameter regions close to the CPC2 limit to highlight

FIG. 1: Left: tan� contours in the mh2 - mh3 plane. Right: LHC
constraints on |✏| from Higgs couplings with gluons (g), vector
bosons (V ), fermions (F ) and photons (�), as well as searches
for h2/3 ! Zh1 (cyan). Stars denote our benchmark point.
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gh1h2h3 = ✏ v Re[Z̃7e
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From the above we see that the mass splitting between
h3 and h2 is determined at leading order in ✏ by �m
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|Z5|. Therefore, in general, an O(v2)

splitting can be achieved with |Z5| ⇠ O(1). Further, the
CPV coupling gh1h2h3 is non-zero away from exact align-
ment and for non-zero Z7. Hence the decay (h3 ! h2h1)
may be achieved for reasonable choices of parameters,
which however are constrained from LHC and EDM con-
straints, as will be discussed later.

In the Z2 basis the Yukawa interactions must also re-
spect the Z2 invariance, which necessitates assigning Z2

charges to SM fermions as well [43, 44]. Two distinct pos-
sibilities exist in the literature, leading to type I [45, 46]
and type II [46, 47] models which di↵er by interchanging
tan� with cot�. Importantly tan� is a derived parame-
ter [36] which strongly depends on the mass spectrum.
In the left panel of Fig. 1 we show contours of tan�
in the mh2 - mh3 plane. For our parameter region of
interest, tan� ⇠ 1 except when mh2 and mh3 are de-
generate. For concreteness we focus on Type II models
with tan� ⇠ O(1). However since the distinction be-
tween Type I and Type II models here is minimal, our
conclusions apply to Type I models as well.
Two CP-conserving Limits – The condition for CP
invariance in Eq. (5) can be realized as follows [6, 36]:

CPC1 : Im[Z̃5] = Im[Z̃6] = Im[Z̃7] = 0 , (17)

CPC2 : Im[Z̃5] = Re[Z̃6] = Re[Z̃7] = 0 . (18)

In CPC1, fM2 in Eq. (8) is block-diagonal: fM2
13 =

fM2
23 = 0, in which case �

0
1 and �̃

0
2 defined in Eq. (10)

are CP-even and can mix in general, whereas �̃
0
3 is CP-

odd. This can be achieved by ✓23 = 0 so that �̃
0
3 = a

0

in Eq. (10). Further, neither of the two CP-even states
can mix with the CP-odd state. From Eq. (9) we see ✓13

controls the mixing between �
0
1 and �̃

0
3, which implies

✓13 = ⇡/2 in the CP-conserving limit. This coincides
with the exact alignment limit ✏ = 0. The mixing be-
tween �̃

0
2 and �̃

0
3 is dictated by ✓12 and can be removed

by ✓12 = 0 or ⇡/2, which corresponds to h3 = a
0 or

h2 = a
0, respectively. Therefore, CPC1 is reached by

✓13 = 0 , ✓23 = 0 , ✓12 = {0,⇡/2}, Im[Z7] = 0 . (19)

One sees from Eqs. (13) and (15) that Im[Z̃5] = Im[Z̃6] =
0 under the choice of parameters in Eq. (19). It can

be further checked that fermionic couplings of the mass
eigenstates follow from their CP-property and the EDM
constraints vanish as expected [48].

In CPC2, fM2
12 = fM2

23 = 0 and fM2 is again block-
diagonal. In this case �

0
1 can mix with �̃

0
3, since they

are both CP-even. The CP-odd state is �̃
0
2. Referring

back to Eq. (10) we see that this requires ✓23 = ⇡/2.
In contrast to the CPC1 scenario, the mixing angle ✓13,
which controls alignment, can now be arbitrary. Turning-
o↵ mixing between �̃

0
2 and �̃

0
3 again implies ✓12 = 0 or

⇡/2. Hence CPC2 is represented by:

✓23 = ⇡/2 , ✓12 = {0,⇡/2} , Im[Z7] = 0 . (20)

Again one can check that Im[Z̃5] = Re[Z̃6] = 0 and cou-
plings of the mass eigenstates to the fermions behave as
expected from their CP quantum numbers.

There is an important distinction between these two
scenarios. In CPC1 the CP-conserving limit coincides
with the alignment limit because misalignment intro-
duces a small CP-odd component to the SM-like Higgs
boson. Then the stringent EDM limits on CPV also con-
strain the misalignment, ✏ ⇠ O(10�4), thereby forcing
the 125 GeV Higgs to be almost exactly SM-like [48].
This is consistent with the findings in Refs. [25, 26, 49].
To the contrary, in CPC2 the SM-like Higgs boson only
contains a CP-even non-SM-like component. Therefore
EDM limits do not constrain misalignment.

Eqs. (17) and (18) also make it clear that there are two
sources of CPV in 2HDM: Z̃5 and Z̃6 enter into the scalar
mass-squared matrix in Eq. (8), while Z̃7 does not. When
Im[Z̃5] = Im[Z̃6] = 0 or Im[Z̃5] = Re[Z̃6] = 0, there
is no CPV in the scalar mixing matrix and each mass
eigenstate hi is also a CP-eigenstate: two are CP-even
and one is CP-odd. In this case, measurements of angular
correlations in the scalar couplings to electroweak gauge
bosons and/or fermions will not yield any CPV signals.
Nevertheless CPV could still be present through non-zero
Re[Z̃7] or Im[Z̃7] and will manifest through the decays of
Higgs bosons. Given these considerations, we will analyze
parameter regions close to the CPC2 limit to highlight

FIG. 1: Left: tan� contours in the mh2 - mh3 plane. Right: LHC
constraints on |✏| from Higgs couplings with gluons (g), vector
bosons (V ), fermions (F ) and photons (�), as well as searches
for h2/3 ! Zh1 (cyan). Stars denote our benchmark point.
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FIG. 2. Contours for eEDM (de) in ✓23 vs. |✏| (left), and
Re[Z̃7] (right) plane. Only regions within the dashed red lines are
experimentally allowed |de| < 1.1⇥10�29e cm (90%CL) [31]. Thick
red line denotes |de| = 0. Note di↵erent scales for the left/right axes
and legends. Stars denote our benchmark point.

The cyan shaded region is excluded due to searches for
H

+
! tb [55, 56], which requires tan� � 2, while for

our benchmark point, tan� = 2.7. For mh2 = 280 GeV
the experimental limit from double Higgs production is
� ⇥ Br(h2 ! h1h1) < 1.7 pb [57], which is not con-
straining for our benchmark. We also checked that LHC
limits on heavy Higgs decays to tt̄ final states [58] are not
relevant for our benchmark.

For EDM we focus on the constraints from the elec-
tron EDM (eEDM) de [31, 59, 60] which are stronger
than those from the neutron EDM [61]. In particular,
using the results in Refs. [16, 62–65] we consider con-
tributions from the Barr-Zee diagrams [66, 67]. There
are three contributions for the eEDM [16]. All of them
depend on ✏, ✓23, ✓12 and the Higgs masses. Addition-
ally the contributions from the gauge bosons’ loops also
depend on Re[Z̃7]. In Fig. 2 contours for the eEDM
and the experimental constraints on the most relevant
parameters are shown: ✓23 vs. ✏ (left) and Re[Z̃7]
(right). The solid red line denotes de = 0, while the
dashed red lines bound the experimentally allowed re-
gion |de| < 1.1 ⇥ 10�29e cm (90%CL) [31]. We fix the
mass spectrum as for the LHC constraints, and again
choose ✓12 = ⇡

2 . While not shown, EDM constraints are
minimized when the masses are degenerate [37]. How-
ever, regardless of the mass spectrum, eEDM constraints
severely limit the CPV components of the mass eigen-
states. This can be seen from the limits on de tracking the
behavior expected from our analysis of CPC1 and CPC2.
Small values of ✓23 (CPC1 limit) can only be obtained for
small values of |✏|, but for |✓23| ⇠ ⇡/2 (CPC2), ✏ is ef-
fectively unconstrained. Further, small values of Re[Z̃7]
are obtained for values of ✓23 ⇠ ⇡/2 (CPC2 limit), but
larger values are allowed as ✓23 decreases. Additionally,
we see that in regions far from CPC1 and CPC2, de can
be 0 due to cancellations between various contributions.
This is the region where our benchmark resides.
Collider Phenomenology –With the generically small
CPV components allowed in the mass eigenstates due to
experimental constraints, directly probing the CP nature
of the mass eigenstates will be challenging. However, the
decay (h3 ! h2h1) could provide a smoking gun signa-
ture for CPV in 2HDMs. If kinematically accessible, this

FIG. 3. Branching ratios for h3 (left) and h2 (right) for the
listed parameters. Grey dashed lines denote mass spectra in
tension with eEDM constraints for chosen set of parameters.

signal is maximized for maximum possible misalignment
✏ and largest possible Re[Z̃7] (cf. Eq. (16)), as allowed
from LHC and where eEDM constraints are minimized.
Further, we are interested in the possibility of both addi-
tional Higgs bosons being within reach of the LHC, which
motivates the benchmark presented in Eq. (21).
Fig. 3 shows the branching ratios of h3 (left panel) and

h2 (right panel). Grey hatching denotes mass spectra in
tension with eEDM constraints. We see for our bench-
mark BR(h3 ! h2h1) ⇠ 1%, with h2 primarily decaying
into h1h1. The main production channel for both h2 and
h3 is gluon fusion. At the

p
s = 13 TeV LHC [68]:

�(gg ! h2) ' 3.2 pb , �(gg ! h3) ' 1.7 pb . (22)

The large production rate for h3 stems from its sizable
CP-odd component. Therefore, for an integrated lumi-
nosity of L = 3000 fb�1, we will have approximately
3⇥ 104 CPV triple Higgs events (h3 ! h2h1 ! h1h1h1).
This signature has not been searched for at the LHC
and represents an excellent opportunity to pursue CPV
in 2HDMs at a high energy collider. Moreover, the rela-
tively light mass of h2 and its dominant decays into two
125 GeV Higgs bosons also imply a significant discovery
potential in the near future.
Conclusion – Motivated by the SM-like nature of the
125 GeV Higgs and null searches for new particles at
the LHC, we present a systematic study of Higgs align-
ment and CPV in C2HDMs and distinguish two distinct
sources of CPV in the scalar sector. The outcome is the
construction of a new CP violating scenario where addi-
tional Higgs bosons could be light, below 500 GeV, and
stringent EDM limits and current collider searches may
still be evaded.

In particular, we propose a smoking gun signal of CPV
in C2HDMs in the Higgs-to-Higgs decays, (h3 ! h2h1 !

3h1), without resorting to the challenging measurements
of kinematic distributions. The existence of this decay
in C2HDMs is indicative of CPV and the final state
in three 125 GeV Higgs bosons is quite distinct, which
has not been searched for at the LHC. A ballpark esti-
mate demonstrates the great potential for discovery at
the high-luminosity LHC.
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FIG. 2: Contours for eEDM (de) in ✓23 vs. |✏| (left), and
Re[Z̃7] (right) plane. Only regions within the dashed red lines are
experimentally allowed |de| < 1.1⇥10�29e cm (90%CL) [30]. Thick
red line denotes |de| = 0. Note di↵erent scales for the left/right axes
and legends. Stars denote our benchmark point.

smoking gun signals for CPV in Higgs to Higgs decays.

LHC/EDM Constraints – In the right panel of Fig. 1
we show the LHC constraints on |✏| and Re[Z̃7]. We
fist fix the charged Higgs mass equal to h2 due to the
precision measurement of the oblique parameters S, T
and U[50] We fix mh3 = 500 GeV, mh2 = mH± = 280
GeV, mH± = 280 GeV, Z3 = 0.1 and ✓23 = 0.7. We
further chose ✓12 = ⇡/2 so that h3 is mostly CP-odd.
For Higgs coupling measurements we use recent results
from both ATLAS [51, 52] and CMS [53], which constrain
i = g

measured
i

/g
SM
i

, i = g, V, F, �. Blue, green, red and
orange shaded regions correspond to regions excluded by
constraints coming from g, V , F and � , respectively.
The cyan shaded region is excluded due to searches for
h2/3 ! h1Z [54–56]. As can be seen, the i and the
h1Z searches depend mostly on |✏| and only very mildly
on Re[Z̃7]. The charged Higgs decaying to tb searches
[57] provide the stronge constraint, requiring Re[Z̃7] � 2.
The constraint on the h2 decaying to h1h1 for mh2 =
280 GeV is �(h2 ! h1h1) < 1.7pb.[58], which is not
constraining our bench mark point. We also checked that
LHC limits on heavy Higgs decays to tt̄ final states [59]
are not constraining for our benchmark.

For EDM we focus on the constraints from the electron
EDM (eEDM) de [30, 60, 61] which are stronger than
those from the neutron EDM [62]. In particular, using
the results in Refs. [16, 63–66] we consider contributions
from the Barr-Zee diagrams [67]. There are three contri-
butions for the eEDM [16]. All of them depend on ✏, ✓23,
✓12 and the Higgs masses. Additionally the contributions
from the gauge bosons’ loops also depend on Re[Z̃7]. In
Fig. 2 contours for the eEDM and the experimental con-
straints on the most relevant parameters are shown: ✓23
vs. ✏ (left) and Re[Z̃7] (right). The solid red line denotes
de = 0, while the dashed red lines bound the experimen-
tally allowed region |de| < 1.1⇥10�29e cm (90%CL) [30].
We fix the mass spectrum as for the LHC constraints,
and again choose ✓12 = ⇡

2 . While not shown, EDM
constraints are minimized when the masses are degen-
erate [36]. However, regardless of the mass spectrum,
eEDM constraints severely limit the CPV components of
the mass eigenstates. This can be seen from the lim-

FIG. 3: Branching ratios for h3 (left) and h2 (right) for the
listed parameters. Grey dashed lines denote mass spectra in
tension with eEDM constraints.

its on de tracking the behavior expected from our anal-
ysis of CPC1 and CPC2. Small values of ✓23 (CPC1
limit) can only be obtained for small values of |✏|, but
for |✓23| ⇠ ⇡/2 (CPC2), ✏ is e↵ectively unconstrained.
Further, small values of Re[Z̃7] are obtained for values
of ✓23 ⇠ ⇡/2 (CPC2 limit), but larger values are allowed
as ✓23 decreases. Additionally, we see that in regions far
from CPC1 and CPC2, de can be 0 due to cancellations
between various contributions.
Collider Phenomenology –With the generically small
CPV components allowed in the mass eigenstates due to
experimental constraints, directly probing the CP nature
of the mass eigenstates will be challenging. However, the
decay (h3 ! h2h1) could provide a smoking gun signa-
ture for CPV in 2HDMs. If kinematically accessible, this
signal is maximized for maximum possible misalignment
✏ and largest possible Re[Z̃7] (cf. Eq. (16)), as allowed
from LHC and where eEDM constraints are minimized.
Further, we are interested in the possibility of both ad-
ditional Higgs bosons being within reach of the LHC.
Hence we choose the following benchmark point for col-
lider phenomenology:

{Z3,Re[Z̃7], ✓12, ✓23, ✏} = {0.1, 3,⇡/2, 0.7,�0.12},

{mh3 ,mh2 ,mH±} = {500, 280, 280} GeV . (21)

With these parameters, h3 is mostly CP-odd, while h2

and h1 are mostly CP-even.
Fig. 3 shows the branching ratios of h3 (left panel) and

h2 (right panel). Grey hatching denotes mass spectra in
tension with eEDM constraints. We see for our bench-
mark BR(h3 ! h2h1) ⇠ 1%, with h2 primarily decaying
into h1h1. The main production channel for both h2 and
h3 is gluon fusion. At the

p
s = 13 TeV LHC [68]:

�(gg ! h2) ' 1.7 pb , �(gg ! h3) ' 0.36 pb .

(22)

The large production rate for h3 stems from its mostly
CP-odd nature. Therefore, for an integrated luminosity
of L = 3000 fb�1, we will have approximately 104 CPV
triple Higgs events (h3 ! h2h1 ! h1h1h1). This signa-
ture has not been searched for at the LHC. In models
with additional CP-even scalars beyond the 2HDM, such


