# Boosted technique for Higgs measurement and New Physics Searches

### Aug 30th, 2021





### Qiang Li PKU



Higgs potential and BSM opportunity







## Citius, Altius, Fortius



### Boosted objects→small angular separation

 $\rightarrow$ merged jets (W/Z  $\rightarrow$ qq; H  $\rightarrow$ bb....)

- Jets: anti-kt with R = 0.4/0.8 (AK4/AK8)
- Puppi: pile-up mitigation
- Jet grooming, <u>soft drop</u>



$$\tau_N = \frac{1}{d_0} \sum_k p_{T,k} \min \left\{ \Delta R_{1,k}, \Delta R_{2,k}, \cdots, \Delta R_{N,k} \right\}$$

### <u>N-subjettiness</u>:

- How likely is a Jet to have "N" subjets
- <u>Designing De-correlated Taggers (DDT)</u>
- (Deep) double-b tagger:
  - discriminate  $H \rightarrow bb$  decays
- DeepAK8 tagger (more in Huilin's talk):
  - multi-class tagger for t/W/Z/H tagging
  - PF candidates and secondary vertices

### **Deep tagger** (DDBT and DeepAK)

Similar ML approach using low-level features now applied to large-radius jets



### **Calibration**

## Extract scale factor, mass scale, and resolution from fit in TTbar Control Region

### Or using proxy e.g. gluon splitting

Tag via two muons aligned with subjets; Perform template fit to SV mass: 41.4 fb<sup>-1</sup> (2017) 13 TeV 41.4 fb<sup>-1</sup> (2017) 13 TeV GeV Events / 5 GeV  $\tau$ CMS Data Data ບ<sub>5000</sub> CMS 400 Data fit Data fit Simulation fit Simulation fit Events 0004 p\_ > 200 GeV p\_ > 200 GeV g Data Bkg fit Data Bkg fit τ<sup>DDT</sup> > 0.43  $\tau_{21}^{DDT} \leq 0.43$ Simulation Bkg fit Simulation Bkg fit 300 tt (merged) tt (merged) tt (unmerged) tt (unmerged) 3000 Single top Single top W+jets W+jets 200 WW/WZ/ZZ WW/WZ/ZZ 2000 Fail Pass 100 T DDT < 0.4335.9 fb<sup>-1</sup> (13 TeV, 2016) 1000  $\tau_{21}^{\rm DDT} < 0.43$ CMS SF double-JINST 13 (2018) P05011 100 120 140 80 100 120 140 160 180 200 60 80 160 180 200 60 Jet mass [GeV] Jet mass [GeV] 0.9 0.85 m [GeV]  $\sigma$  [GeV] W-tagging efficiency Double-b T 2017 0.8 Stat  $\tau_{21}^{\text{DDT}} < 0.43$ 0.75 Stat ⊕ syst Data  $80.8 \pm 0.4$  (stat)  $7.7 \pm 0.4$  (stat)  $0.060 \pm 0.006$  (stat)  $0.070 \pm 0.005$  (stat) Simulation  $82.2 \pm 0.3$  (stat)  $7.1 \pm 0.3$  (stat) 700 300 400 500 800  $1.08 \pm 0.08$  (stat+syst) p<sub>T</sub> [GeV] 5 Data/simulation  $0.983 \pm 0.007$  (stat+syst)  $0.96 \pm 0.12$  (stat+syst)

### WH(bb) Resonance Searches



EPJC 76 (2016) 237 CMS 2012 data Higgs tagging based on (sub-)jets

### <u>CMS-PAS-B2G-19-002</u>

Full Run2, Double b-tagger

a multivariate discriminant that combines information from displaced tracks, secondary vertices, and the two-SV system within the Higgs boson jet candidate

m<sub>w'</sub> (GeV)

### **Boosted H→bb**

Reconstruction of boosted Higgs as a tool to access very high-pT regime, sensitive to <u>BSM physics</u>, with full Run2 dataset

- Preselect boosted large-radius jet with two-prong substructure
- Use **DeepDoubleB** tagger to select bb-enriched events
- Constrain QCD background via jet mass sideband + control region
- Search for peak in jet mass distribution



### Boosted $H \rightarrow bb$

- Trigger on high-p⊤ large-radius (AK8) jet and/or HT
- Select p⊤-leading AK8 jet within kinematic region →
- Softdrop mass algorithm Removes soft & wide-angle QCD radiation to improve mass resolution
- Require 2-prong substructure with N2 energy correlation variable
- Apply lepton vetoes and top rejection selections



 $p_T \ge 450 \,\mathrm{GeV}$  $|\eta| \le 2.5$  $m_{\mathrm{softdrop}} \ge 47 \,\mathrm{GeV}$ 

Observed  $\mu_H$  = 3.7 ±1.2 (stat)  $^{+0.6}_{-0.7}$  (syst)  $^{+0.8}_{-0.5}$  (theo) Observed significance: 2.5 $\sigma$ 

137 fb<sup>-1</sup> (13 TeV)

### $X \rightarrow HH \rightarrow bbWW$ <u>CMS-PAS-B2G-20-007</u> <u>JHEP 10 (2019) 125</u>



### Event categorization:

- W $\rightarrow$ qq: n-subjettiness
- H→bb: DeepAK8 /sub-jet b-tagging(2016)

| Categorization type                     | Selection                                      | Category label |
|-----------------------------------------|------------------------------------------------|----------------|
| Lepton flavor                           | Electron                                       | e              |
|                                         | Muon                                           | μ              |
| bb jet subjet b tagging                 | One medium                                     | bL             |
| , , , , , , , , , , , , , , , , , , , , | One medium and one loose                       | bM             |
|                                         | Two medium                                     | bT             |
| qq' jet substructure                    | $0.55 < q\overline{q}' \tau_2 / \tau_1 < 0.75$ | LP             |
| 11.7                                    | $q\bar{q}' \tau_2/\tau_1 < 0.55$               | HP             |

Challenging lepton-in-jet reconstruction:

pT dependent cone isolation

 $\Delta R_{\rm iso} = \begin{cases} 0.2, & p_{\rm T} < 50 \,{\rm GeV}, \\ 10 \,{\rm GeV}/p_{\rm T}, & 50 < p_{\rm T} < 200 \,{\rm GeV}, \\ 0.05, & p_{\rm T} > 200 \,{\rm GeV}, \end{cases}$ 

lepton subtraction from the AK8 jet

#### Background divided into 4 categories with gen-information:



background estimation with 2D fit of mbb and mнн: Non-parametric fit with KDE



Set limits on spin-0 and spin-2 resonances with similar sensitivity as <u>HH $\rightarrow$ 4b</u> final state



### **Tri-W resonance Searches**

- MPI-EW scale gap motivates BSM physics (hierarchy problem)
- No BSM physics yet  $\rightarrow$  time to look at non-standard final states/scenarios

### Standard (Minimal) Warped ED model

- 2 Branes in Bulk (in the RS framework)
- Everything propagates to the same bulk
- Constrained by LHC searches

### **Extended Warped ED model:**

- Extra brane by splitting $\rightarrow$ Extended Bulk
- Various fields propagate in diff. regions



### **Tri-W resonance Searches**

- Only EW in extended bulk  $\rightarrow$  dominant: VKK $\rightarrow$ RV $\rightarrow$ VVW
- 1- and 0-lep. largest BRs ~40%
- Both 1/0-lep channels are investigated for the first time





BSM

S

- hadronic W bosons: jets (Probe Resolved in Nj=2, and Merged Nj=1 selections)
- Ieptonic W boson: use info. of lep and MET, assume MW=80 GeV

## Tri-W : Jet tagging

Output



### **Tri-W: Selections**



### **Tri-W: DeepAK8 tagger calibration**





Split each sample into 3 pure subsets and correct MC shapes bin by bin to derive scale factors

### **Tri-W: DeepAK8 tagger calibration**

All SFs derived for all 4 bins (2 Mj , 2 pTj bins) and for all types of jets W,  $t^2$ ,  $t^{3,4}$ , g/q



### **Tri-W: SFs uncertainties**

#### Unc. on SFs

1. Parton Shower  $\sim 10-20\%$ 

Extract SFs with 3 alternative tt samples (powheg+p8, powheg+herwig7, MG+p8), maximum difference is used as unc.

2. Bias 10%

(due to Matrix method selection cuts)

3. Proxy-unc.

Accounts for differences between  $\mathbb{R}^{4q/3q}$ ,  $\mathbb{R}^{1qq}$  and SM proxy jets:  $t^{3,4}$ , W. Compare normalized deep-W(WH) spectra to **evaluate % diff.** above the cut with metric:

$$Proxy unc. = \sqrt{(\frac{\sum_{i} |t_{i}^{3} - t_{i}^{4}|}{\sum_{i} t_{i}^{4}})^{2} + (\frac{\sum_{i} |R_{i}^{3q|4q} - t_{i}^{3A}|}{\sum_{i} t_{i}^{3A}})^{2}} \propto \frac{1}{(\sum_{i} |t_{i}^{3} - t_{i}^{4}|)^{2}}$$

#### 4. High-pT extrapolation

Signal jets much more boosted wrt SM. Generate herwig++ signal, use % diff. wrt pythia8 as unc.

## **Tri-W: signal corrections**

- Merged Radion jet  $\approx R^{4q} + R^{3q} + R^{1qq}$
- no standard candle in SM
   special calibration treatment

- Observe similarity between R<sup>4q</sup>↔R<sup>3q</sup> jets with merged top: t<sup>3,4</sup>
   → we apply SF(t<sup>3,4</sup>) on R<sup>4q</sup>, R<sup>3q</sup>
- 2. Observe similarity between W↔R<sup>lqq</sup> jets
   → we apply scale factors for W, SF(W), on R<sup>lqq</sup>
- 3. The difference between the performances of the SM candle and signal is taken into account as the systematic uncertainty.



19

## Tri-W: CR for W+jets

Use SR-selection •

- $\rightarrow$  Maintain kinematics as in SR
- **Invert deep-W(WH)** tagger cuts  $\rightarrow$  Signal free samples with large statistics ٠
- Reject tops: deep-t<0.4 ٠

 $\rightarrow$  Enhance W+jets purity (rejecting top)

0

0

0

0



We have 4 such CRWs (in accordance with SR1-6); we illustrate only the CRW456 here.

SRMC, CRMC, CRDATA-Rest have consistent Mi(i)ly shapes

$$RED_{SR_i}^{W} = N_{CR_i}^{W} MC_{SR_i}^{W} \frac{[DATA-rest]_{CRV_i}}{N_{CR_i}^{W} MC_{CRt_i}^{W}} = N_{CR_i}^{W} MC_{SR_i}^{W} TF_i^{V}$$

$$0.96 \text{ to } 1.03$$

We validate prediction in low-ST samples

### Tri-W: Results and limit (1-lep)

• Combined fit of six signal regions. (No excess over the background estimation is observed.)



• Limits in 2D W<sub>KK</sub> vs. R mass plane.



### Tri-W: 0-lep



Merged  $\rightarrow$  2 AK8 jets  $\rightarrow$  search for resonance at M<sub>jj</sub>

| Region | $N_{j}$ | $m_{\rm j}^{\rm max}$ (GeV) | m <sub>j</sub> <sup>mid</sup> (GeV) | $m_{\rm j}^{\rm min}$ (GeV) | Jet tagging conditions                                  |
|--------|---------|-----------------------------|-------------------------------------|-----------------------------|---------------------------------------------------------|
| SR1    | 2       | 70-100                      | · _ ·                               | 70-100                      | Both with deep-W $> 0.8$                                |
| SR2    | 2       | 100-200                     | —                                   | 70-100                      | Higher with deep-WH $> 0.8$ , lower with deep-W $> 0.8$ |
| SR3    | 2       | >200                        |                                     | 70-100                      | Higher with deep-WH $> 0.8$ , lower with deep-W $> 0.8$ |
| SR4    | 3       | 70-100                      | 70-100                              | 60-100                      | All three with deep-W $> 0.6$                           |
| SR5    | 3       | 70-100                      | 70-100                              | 60-100                      | Exactly two with deep-W $> 0.6$                         |
| SR6    | 3       | 70-100                      | 70-100                              | 0-60                        | Two highest with deep-W $> 0.8$                         |

## Tri-W: 0-lep



### **Tri-W: Combined results**



Systematics on SFs correlated (apart from SFq/g), as well as PU, PDFs,  $\mu$ R,  $\mu$ F are correlated. All the rest uncorrelated.

## Summary

Rich results from CMS on searches with boosted Higgs/Scalars, although no obvious anomaly.

For more results not covered in this talk see CMS  $\underline{\mathsf{EXO}}$  and  $\underline{\mathsf{B2G}}$  pages

Long road ahead with fun and possible surprise!

- Advanced taggers
- Calibrations methods
- Boosted H->bb, WW, ZZ....
- For SM measurements and Searches



# Backup

## Substructure tagging: mass decorrelation



<u>N-subjettiness</u>: How likely is a Jet to have "N" subjets

$$\tau_N = \frac{1}{d_0} \sum_k p_{T,k} \min \left\{ \Delta R_{1,k}, \Delta R_{2,k}, \cdots, \Delta R_{N,k} \right\}$$

T21 variable shows a dependence on the jet pT-scale as well as the jet mass. This particularly affects the monotonically falling behaviour of the nonresonant background distributions.



## Background Estimations: alpha and 2/3D



- 3D templates derived from MC
- Particle-level evts smeared using detector resolution
- same procedure for resonant bkg. (W/Z)

$$P(m_{jj}, m_{jet1}, m_{jet2}) = P_{VV}(m_{jj}) \times P_{cond,1}(m_{jet1}|m_{jj}) \times P_{cond,2}(m_{jet2}|m_{jj})$$

 Each event contributing to a 1D/2D gaussian kernel defined by detector scale and resolution.

### **Boosted Hbb**

#### **Event selection**

- Trigger on high-p<sub>T</sub> large-radius (AK8) jet and/or HT
- Select p<sub>T</sub>-leading AK8 jet within kinematic region →
- Softdrop mass algorithm
- Removes soft & wide-angle QCD radiation to improve mass resolution
- Require 2-prong substructure with N2 energy correlation <u>variable</u>
- N2 is IRC-safe, relatively independent of jet mass,  $\ensuremath{p_{T}}$
- Residual dependence removed by DDT<sup>\*</sup> procedure →
- 26% QCD efficiency, 60% signal efficiency
- Apply lepton vetos and top rejection selections





#### \* Designed Decorrelated Tagger, arXiv:1603.00027

7 July 29, 2020 Nick Smith I CMS Higgs Hadronic

#### **QCD** background estimation

- Differential ABCD method
- Leave DDBT fail region QCD unconstrained
- Fix DDBT pass QCD by transfer factor
- Classic ABCD: flat TF, mass sideband  $\rightarrow$  yield under peak
- Here: correlation regulated by polynomial order
- TF factorized into:
- Polynomial with constrained parameters defined by separate fit to QCD simulation
- Captures residual tagger-kinematics correlation
- Data residual polynomial with free parameters
- Captures data-simulation discrepancies
- · Polynomial order determined by F-test



100 120 140

July 29, 2020 Nick Smith I CMS Higgs Hadronic

11

춘 🔛

### **Boosted Hbb**

Table 3: Fitted signal strength, and expected and observed significance of the Higgs and Z boson signals. The Higgs boson results are presented with two ggH signal models, one using the nominal HJ-MINLO sample and the other simulated with the same procedure described in Ref. [23]. The 95% confidence level upper limit (UL) on the Higgs boson signal strength is also listed. In the results for the Higgs boson, the Z boson yield is fixed to the SM prediction value with the corresponding theoretical uncertainties to better constrain the data-to-simulation scale factor for the DDBT. For the expected and observed signal strengths of the Z boson, the Higgs boson signal strength is freely floating.

|                                                 | 2016                   | 2017                   | 2018                   | Combined               |
|-------------------------------------------------|------------------------|------------------------|------------------------|------------------------|
| Expected $\mu_Z$                                | $1.00^{+0.38}_{-0.28}$ | $1.00^{+0.42}_{-0.29}$ | $1.00^{+0.43}_{-0.29}$ | $1.00^{+0.23}_{-0.19}$ |
| Observed $\mu_Z$                                | $0.86^{+0.32}_{-0.24}$ | $1.11_{-0.33}^{+0.48}$ | $0.91^{+0.37}_{-0.26}$ | $1.01_{-0.20}^{+0.24}$ |
| HJ-MINLO [32, 33]                               |                        |                        |                        |                        |
| Expected $\mu_{\rm H}$                          | $1.0^{+3.3}_{-3.5}$    | $1.0\pm2.5$            | $1.0^{+2.3}_{-2.4}$    | $1.0\pm1.4$            |
| Observed $\mu_{\rm H}$                          | $7.9^{+3.4}_{-3.2}$    | $4.8^{+2.6}_{-2.5}$    | $1.7 \pm 2.3$          | $3.7^{+1.6}_{-1.5}$    |
| Expected H significance ( $\mu_{\rm H} = 1$ )   | 0.3 o                  | 0.4 <i>\sigma</i>      | 0.4 <i>\sigma</i>      | 0.7 σ                  |
| Observed H significance                         | $2.4\sigma$            | 1.9 σ                  | 0.7 σ                  | $2.5\sigma$            |
| Expected UL $\mu_{\rm H}$ ( $\mu_{\rm H} = 0$ ) | <6.8                   | <5.0                   | <4.7                   | <2.9                   |
| Observed UL $\mu_{\rm H}$                       | <13.9                  | <9.3                   | <5.9                   | <6.4                   |
| Ref. [23] H $p_{\rm T}$ spectrum                |                        |                        |                        |                        |
| Expected $\mu_{\rm H}$                          | $1.0\pm1.5$            | $1.0^{+1.1}_{-1.0}$    | $1.0^{+1.1}_{-1.0}$    | $1.0^{+0.7}_{-0.6}$    |
| Observed $\mu_{\rm H}$                          | $4.0^{+1.9}_{-1.6}$    | $2.2^{+1.4}_{-1.2}$    | $1.1 \pm 1.1$          | $1.9^{+0.9}_{-0.7}$    |
| Expected H significance ( $\mu_{\rm H} = 1$ )   | 0.7 σ                  | 0.9 <i>o</i>           | $1.0\sigma$            | <b>1.7</b> σ           |
| Observed H significance                         | 2.6 <i>o</i>           | $1.8\sigma$            | $1.1\sigma$            | <b>2.9</b> <i>σ</i>    |
| Expected UL $\mu_{\rm H}$ ( $\mu_{\rm H} = 0$ ) | <3.4                   | <2.4                   | <2.3                   | <1.4                   |
| Observed UL $\mu_{\rm H}$                       | <7.4                   | <4.6                   | <3.2                   | <3.4                   |
|                                                 |                        |                        |                        |                        |

The prediction used for the ggH pT spectrum in Ref. [23] is different from that of HJ-MINLO in both shape and total cross section, which is primarily due to the different accuracy of finite top quark mass correction included in the simulation.



#### Background divided into 4 categories with gen-information:



background estimation with 2D fit of mbb and mнн: Non-parametric fit with KDE



**Background estimation with 2D fit of mbb and mhh in SR region** Alternative background template included as shape uncertainties



### Signal modelled with conditional probabilities (double CB + exp)

$$P_{\text{signal}}(m_{b\overline{b}}, m_{\text{HH}}|m_{X}) = P_{\text{HH}}(m_{\text{HH}}|m_{b\overline{b}}, m_{X}, \theta_{1})P_{b\overline{b}}(m_{b\overline{b}}|m_{X}, \theta_{2}).$$



Set limits on spin-0 and spin-2 resonances with similar sensitivity as HH→4b final state



### **Matrix method**

- Focus at LL sample with W, t<sup>2</sup>, g/q (left plot of last slides)
- 2. Split the samples into 3 pure subsets (applying cuts on τ<sub>ij</sub>, deep-x/y, N<sub>b</sub>, m<sub>j</sub>) in a way where each subset is dominated by a single type of jets → mismodeling revealed
- 3. Demand: Data = scaled sum of yields

 $D_{i,k} = (g_{i,k})SF_k^g + (w_{i,k})SF_k^W + (t_{i,k})SF_k^t + d_{i,k}$ 

Define system of 3 equations, 1 per each subset "i", and per tagger score bin "k"

- 4. Solve a 3x3 system for SFs per each tagger score bin and get SFs→
  - Known yields: D, W, t, g/q, d
  - Unknown SFs



deep-W

### Matching criteria



## **CR for top**

Use SR-selection

٠

Invert b-veto to  $N_b \ge 1$ 

- $\rightarrow$  Maintain kinematics as in SR
- $\rightarrow$  Get signal-free, top-pure sample
- Remove tagger cuts: deep-W(WH)>0  $\rightarrow$  Enhance statistics

| Region | m <sub>j</sub> <sup>max</sup> [GeV] | taggers       | m <sup>min</sup> <sub>j</sub> [GeV] | tagger        | N <sub>j</sub> <sup>AK8</sup> | N <sub>i</sub> <sup>AK4</sup> | N <sub>b</sub> |
|--------|-------------------------------------|---------------|-------------------------------------|---------------|-------------------------------|-------------------------------|----------------|
| CRt1   | 60-100                              | deep-W > 0    | — ·                                 | (-)           | 1                             | $\leq 4$                      | $\geq 1$       |
| CRt2   | 100-200                             | deep-WH > 0   |                                     |               | 1                             | $\leq 4$                      | $\geq 1$       |
| CRt3   | $\geq 200$                          | deep-WH > 0   | _                                   | I – I         | 1                             | $\leq 4$                      | $\geq 1$       |
| CRt45  | 60-100                              | deep-W $> 0$  | 60-100                              | deep- $W > 0$ | 2                             | $\leq 4$                      | $\geq$ 1       |
| CRt6   | 60-100                              | deep- $W > 0$ | 0-60                                | (-)           | 2                             | $\leq 4$                      | $\geq 1$       |



- SR<sup>MC</sup>, CR<sup>MC</sup>, CR<sup>DATA-Rest</sup> have consistent  $M_{j(j)lv}$  shapes
- Use the CR to deliver rate  $(N_{CR_i}^t)$  and shape  $(TF_i^t)$  correction to SR as:

$$PRED_{SR_{i}}^{top} = N_{CR_{i}}^{t} MC_{SR_{i}}^{top} \frac{[DATA-rest]_{CRt_{i}}}{N_{CR_{i}}^{t} MC_{CRt_{i}}^{t}} = N_{CR_{i}}^{t} MC_{SR_{i}}^{t} TF_{i}^{t}$$

$$0.71 \text{ to } 1.03$$

(Where MC is SF-corrected) We **validate** prediction in low-ST samples

We have 5 such CRts (in accordance with SR1-6); we illustrate only the CR45 here.

## Systematic uncertainty (0-lep)

| Sources                                                              | B or S | Effect on  | Magnitude | Nuisance parameters   |
|----------------------------------------------------------------------|--------|------------|-----------|-----------------------|
| Parton shower + selection bias for W, $R^{\ell qq}$                  | B+S    | Shape+rate | 0000      | 4, for LL, LH, HL, HH |
| Parton shower + selection bias for $t^2$                             | В      | Shape+rate |           | 8, for LL, LH, HL, HH |
| Parton shower + selection bias for $t^{3,4}$ , $R^{3q,4q}$           | B+S    | Shape+rate |           | 4, for LL, LH, HL, HH |
| Parton shower + selection bias for $q/g$                             | В      | Shape+rate |           | 8, for LL, LH, HL, HH |
| Proxy uncertainty for $R^{\ell qq}$                                  | S      | Rate       | 10-35%    | 2, for deep-W/WH      |
| Proxy uncertainty for R <sup>3q,4q</sup>                             | S      | Rate       | 12-43%    | 2, for deep-W/WH      |
| Proxy uncertainty for unmatched                                      | S      | Rate       | 100%      | 2, for deep-W/WH      |
| High- $p_{\rm T}$ extrapolation for W                                | S      | Rate       | 100%      | 2, for deep-W/WH      |
| High- $p_{\rm T}$ extrapolation for R <sup><math>\ell</math>qq</sup> | S      | Rate       | 23-30%    | 2, for deep-W/WH      |
| High- $p_{\rm T}$ extrapolation for R <sup>3q</sup>                  | S      | Rate       | 16-34%    | 2, for deep-W/WH      |
| High- $p_{\rm T}$ extrapolation for R <sup>4</sup> q                 | S      | Rate       | 24-33%    | 2, for deep-W/WH      |
| QCD multijet normalization                                           | В      | Rate       | 5-40%     | 5, common for SR4,5   |
| ttnormalization                                                      | В      | Rate       | 15-30%    | 5, common for SR4,5   |
| Other background normalization                                       | В      | Rate       | 30%       | 5, common for SR4,5   |
| $m_{ij}, m_{jj}$ tail shape                                          | В      | Shape      |           | 6, one for each SR    |
| tī shape                                                             | В      | Shape      |           | 6, one for each SR    |
| Pileup and luminosity                                                | S      | Rate       | 1.7%      | 1, common for all SRs |
| PDFs, QCD renormalization and factorization scales                   | S      | Rate       | 1.4%      | 1, common for all SRs |
| Jet energy scale and resolution                                      | S      | Shape      |           | 2, common for all SRs |
| Jet mass scale                                                       | S      | Shape      |           | 1, common for all SRs |

37