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INTRODUCTION
Boosted objects: powerful tools for new physics searches and 
standard model measurements at the LHC


Hadronic decays of highly boosted heavy particles (Higgs/W/Z/
top) lead to large-R jets with distinctive characteristics:


different radiation patterns (“substructure”)


3-prong (top), 2-prong (W/Z/H) vs 1-prong (gluon/light quark jet)


different flavor content: existence of one or more b-/c-quarks


simultaneously exploiting both substructure and flavor to 
maximize the performance


significant performance leap thanks to new machine learning (ML) 
techniques
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OUTLINE
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The tool box …

DeepAK8 ParticleNet Mass regression

…

… in action!

VH(H→cc) VBF HH(→4b)

See also Qiang’s talk for 
more applications 

targeting BSM scenarios.
…

https://indico.ihep.ac.cn/event/14180/session/0/contribution/64/material/slides/0.pdf
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DEEPAK8
Advanced deep learning-based algorithm for boosted object tagging, using AK8 (anti-kT R=0.8) jets


multi-class classifier for top quark and W, Z, Higgs boson tagging


sub-classes based on decay modes (e.g., H→bb, H→cc, H→VV*→4q)


output scores can be aggregated/transformed for different tasks -> highly versatile tagger


directly uses jet constituents (particle-flow candidates / secondary vertices)


1D convolutional neural network (CNN) based on the ResNet [arXiv: 1512.03385] architecture


significant performance improvement
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Particles
• Up to 100 PF candidates(*)

• Sorted in descending pT order

• Uses basic kinematic variables, 
Puppi weights, and track 
properties (quality,  covariance, 
displacement, etc.)

Secondary vertices
• Up to 7 SVs(*) (inside jet cone)

• Sorted in descending SIP2D order

• Uses SV kinematics and properties 
(quality, displacement, etc.)

(*) Number chosen to include all candidates for ≥ 90% of the events

���
�	����	� ���
��	
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Top quark tagging

JINST 15 (2020) P06005

http://dx.doi.org/10.1088/1748-0221/15/06/P06005
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DEEPAK8-MD
The nominal version of DeepAK8 shows significantly improved 
performance, but also features strong “mass sculpting”


i.e., jet mass shape of the background becomes similar to that of the signal 
after selection with the tagger


Mass-decorrelated tagger: “DeepAK8-MD”


mitigate mass sculpting using “adversarial training” [arXiv: 1611.01046]


added a mass prediction network to predict the jet mass from the learned 
features


higher mass prediction accuracy -> stronger correlation w/ the jet mass


accuracy of the mass prediction included in the loss function as a penalty


minimizing the joint loss -> improving classification accuracy while 
preventing mass correlation


significantly reduced mass sculpting yet still strong performance
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H→bb tagging

Jet mass in di-jet sample

better

Feature extractor Classifier

1D CNN Fully Connected
Classification

output

back propagation

Fully Connected

Mass predictor

Mass 
prediction

Joint loss 
L = LC − λLMP

back propagation

Loss 
LMP

Nominal DeepAK8

JINST 15 (2020) P06005

http://dx.doi.org/10.1088/1748-0221/15/06/P06005
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PARTICLENET
ParticleNet [Phys. Rev. D 101, 056019 (2020)]


treating a jet as an unordered set of particles in space


using permutation-invariant graph neural networks


ParticleNet for boosted jet tagging in CMS


multi-class tagger for t/W/Z/H tagging


same inputs as DeepAK8 (PF candidates +  
secondary vertices)


significant performance improvement
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Top tagging

CMS DP-2020/002

coordinates features

EdgeConv Block
k = 16, C = (64, 64, 64)

EdgeConv Block
k = 16, C = (128, 128, 128)

EdgeConv Block
k = 16, C = (256, 256, 256)

Global Average Pooling

Fully Connected
256, ReLU, Dropout = 0.1

Fully Connected
2

Softmax

Linear

BatchNorm

ReLU

Linear

BatchNorm

ReLU

coordinates features

k-NN

k-NN indices

ReLU

edge features

Linear

BatchNorm

ReLU

Aggregation

ParticleNet architecture

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.056019
https://cds.cern.ch/record/2707946/
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ParticleNet-MD


exploiting a dedicated signal sample for training:


hadronic decays of a spin-0 particle X


, , 


flat mass spectrum: mX ∈ [15, 250] GeV


in addition: signal/background samples reweighted to  
a ~flat (pT, mSD) distribution to aid the training


both signal and background have the same mass spectrum,  
thus no sculpting can form during the training

X → bb̄ X → cc̄ X → qq̄

7

Background

Signal (fixed mass)


Signal (variable mass)

Jet mass

A
.U

.

H→bb tagging H→cc tagging

better

Jet mass vs Tagger WP

ParticleNet-MD: ~3-4x better background rejection than DeepAK8-MD

No mass sculpting
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MASS REGRESSION
Jet mass: one of the most powerful observables for boosted 
jet tagging


characteristic mass peak for top/W/Z/H jets v.s. continuum for 
QCD jets


grooming technique (e.g., soft drop) typically used to reduce 
sensitivity to unrelated radiations (initial-state radiation, 
underlying event, pileup, etc.)


Mass regression


exploit the ParticleNet architecture to predict the jet mass 
directly from jet constituents


similar setup as the ParticleNet-MD tagger (inputs, training 
samples, etc.)


regression target


signal: generated particle mass (pole mass) of X [ranging from 
15–250 GeV]


background: soft drop mass of the particle-level jet


loss function


LogCosh:


focus on Higgs (or generally 2-prong jets) for now
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https://www.cs.cornell.edu/courses/cs4780/2015fa/
web/lecturenotes/lecturenote10.html

JINST 15 (2020) P06005

CMS DP-2021/017

https://www.cs.cornell.edu/courses/cs4780/2015fa/web/lecturenotes/lecturenote10.html
https://www.cs.cornell.edu/courses/cs4780/2015fa/web/lecturenotes/lecturenote10.html
http://dx.doi.org/10.1088/1748-0221/15/06/P06005
https://cds.cern.ch/record/2777006/
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MASS REGRESSION: PERFORMANCE
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Signal jets: H→bb Background jets: QCD

Substantial improvement in both mass scale and resolution, especially for signal jets


Tails in mSD also significantly reduced


Up to ~20-25% improvement in analysis sensitivity with H->bb/cc

CMS DP-2021/017

https://cds.cern.ch/record/2777006/
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VH(H→CC)
First direct search for H→cc in CMS


VH channel: V (W, Z) → ll, lν, νν


two complimentary approaches to fully explore the H→cc decay 
topologies


Resolved-jet topology


H→cc decay reconstructed with two resolved jets (R=0.4)


charm quark jets identified with DNN-based DeepCSV algorithm


analysis strategy similar to the VH(H→bb) analysis [PRL 121, 121801 
(2018)]


fit to BDT shapes to extract the VH(H→cc) signal


Merged-jet topology


H→cc decay reconstructed with one large-R jets 


using R=1.5 (instead of R=0.8) to increase acceptance at lower pT 
(~200–300 GeV)


the DeepAK8-MD algorithm adapted to select cc-jet and 
suppress light-/bb-flavor jets


fit to the mass of the large-R jet (Higgs boson candidate) to 
extract the VH(H→cc) signal

10
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JHEP 03 (2020) 131

https://arxiv.org/ct?url=https://dx.doi.org/10.1103/PhysRevLett.121.121801&v=af2c0e7f
https://arxiv.org/ct?url=https://dx.doi.org/10.1103/PhysRevLett.121.121801&v=af2c0e7f
http://dx.doi.org/10.1007/JHEP03(2020)131
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H→CC: ANALYSIS STRATEGY
Analysis strategy of the merged-jet topology


event-level kinematic BDT developed in each channel to better suppress the dominant 
backgrounds (V+jets, ttbar)


using only event kinematics, NOT the intrinsic properties (e.g., flavor/mass) of the Higgs candidate (Hcand)


cc-tagging discriminant used to select cc-flavor jets and reject light/bb-flavor jets


distinct m(Hcand) shapes between signal and V+jets/ttbar background:


fit the m(Hcand) shape to extract the H→cc signal


Kinematic BDT, cc-tagging discriminant and m(Hcand) largely independent of each other


allowing for a simple and robust strategy for background estimation and signal extraction
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JHEP 03 (2020) 131

http://dx.doi.org/10.1007/JHEP03(2020)131
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H→CC: RESULTS
Results from the two approaches combined for the final results


resolved-jet topology : pT(V) < 300 GeV; merged-jet topology : pT(V) > 300 GeV


using 35.9 fb-1 data (2016)


cf. ATLAS [ATLAS-CONF-2021-021, 139 fb-1]: µVH(H→cc) < 26 (31) obs. (exp.) 
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JHEP 03 (2020) 131

http://dx.doi.org/10.1007/JHEP03(2020)131
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VBF HH(→4b)
VBF di-Higgs production: a unique channel to probe the hhVV quartic coupling (κ2V)


very rare process in SM: σ ~ 1.7 fb


however, if the hhVV coupling deviates from the SM (κ2V ≠ 1), the cross section can be 
enhanced


meanwhile, a significant fraction of signal becomes highly boosted -> enhanced sensitivity using 
boosted objects for Higgs boson reconstruction
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Fig. 8 Invariant mass distribution of the di-Higgs system at 14TeV (left) and 100TeV (right) after all analysis cuts, for the signal (SM and c2V = 0.8)
and the total background. We show the contribution from resolved and boosted events as well as the sum of the three categories.

categories. For signal events in the SM, the vast majority are classified in the resolved category as expected since in
this case the boost of the di-Higgs system is small except at 100 TeV and for large mhh values. On the other hand, in the
case of c2V = 0.8, the energy growth of the partonic cross section induces a much harder mhh spectrum. This implies
that, already at 14 TeV, a substantial fraction of events falls in the boosted category which becomes the dominant one
at 100 TeV. For c2V = 0.8, the crossover between the resolved and boosted categories takes place at mhh ' 1.5 TeV for
both colliders, although this specific value depends on the choice of the jet radius R [10]. Unsurprisingly, background
events are always dominated by the resolved topology.

3.4 Signal and background event rates
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VBF HH(→4b): ANALYSIS STRATEGY
First search for non-resonant VBF HH production in the boosted 
topology


Analysis strategy


Higgs bosons reconstructed as two high pT AK8 jets (pT > 500/400 
GeV)


H→bb tagging with the ParticleNet algorithm


3 WPs: signal efficiencies ~ 60%, 80%, 90% at QCD mis-id. rate ~0.3%, 1% 
and 2%


Higgs jet mass reconstructed with the ParticleNet mass regression 
(~20% improvement w.r.t soft drop algorithm)


selection of VBF topology: two AK4 jets with dijet mass > 500 GeV 
and |Δη| > 4


Background estimation


ttbar background estimated from simulation, with corrections derived 
from a top-enriched region


QCD multijet background estimated with a data-driven method


using QCD-enriched "fail" region by inverting the ParticleNet bb-tagging 
selections


Signal extraction


by fitting to mHH in three search categories of increasing purity
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VBF HH(→4b): RESULTS
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SUMMARY
Lots of progress in boosted object techniques in recent years


substantial performance improvements with the introduction of novel machine learning-
based approaches


performance gains confirmed in real data, and led to significantly increased sensitivity in 
relevant analyses


Advances in boosted object techniques brought new opportunities for Higgs physics


measurement of the Higgs couplings, complementary to the resolved-jet approach


VH(H→cc) [JHEP 03 (2020) 131]


VBF HH(→4b) [CMS-PAS-B2G-21-001]


probing Higgs boson production in the boosted regime [JHEP 12 (2020) 085]


search for new resonances decaying into Higgs bosons [CMS-PAS-B2G-20-007, CMS-PAS-B2G-20-004, …]


… and more to come!

16

http://dx.doi.org/10.1007/JHEP03(2020)131
http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/B2G-21-001/index.html
https://dx.doi.org/10.1007/JHEP12(2020)085
http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/B2G-20-007/index.html
http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/B2G-20-004/index.html


BACKUPS



Pr
ob

in
g 

H
ig

gs
 p

ro
pe

rt
ie

s 
w

ith
 b

oo
st

ed
 o

bj
ec

ts
 - 

Au
gu

st
 2

9,
 2

02
1 

- H
ui

lin
 Q

u 
(C

ER
N

)

VBF HH(→4b): RESULTS
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VBF HH(→4b): BACKGROUND ESTIMATION
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QCD Estimation: ABCD method

7

A B

C D
Control region Signal region

Transfer  factors

Application of  transfer factors
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ParticleNet  

score
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ParticleNet  

score

Jet mass 
sidebands

Jet mass 
close to mH

✤ C: QCD-dominated region identical to the ”Fail” in 2DAlphabet  
(low ParticleNet score) 

✤ Simulated ttbar sample subtracted from data to  
estimate the QCD mHH shape in C region 

✤ QCD shape from region C is normalized to the ”Pass”  
region D with transfer factors B/A 

✤ Transfer factors are defined as ratio of data–ttbar  
in regions B and A (as a function of mHH) 

✤ Transfer factors derived using subleading jet mass sidebands
✤ We define regions A and B by 30<mSD

subl<80 or 150<mSD
subl<210 GeV

✤ Regions A and B are inclusive in mSD
lead to ensure good statistics 

✤ Transfer factors applied using in signal region D
✤ Signal selections, incl. 80<mSD

subl<150 GeV and 90<mSD
lead<150 GeV 

✤ Transfer factors validated using leading jet mass sidebands
✤ 90<mSD

lead<150 GeV (”low-mSD
lead region”) or 90<mSD

lead<150 GeV (”high-mSD
lead region”) 

✤ NB! Transfer factors for low-mSD
lead region, the signal region, and high-mSD

lead region are identical  
(since their derivation is inclusive in mSD

lead), but samples C and D are different in each case
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H→CC: FIT STRATEGY
Dedicated control regions are set up to measure the normalizations of major backgrounds 
(W/Z+jets, ttbar)


simultaneous fit of signal regions and control regions to constrain BKGs and extract the signal


Dominant sources of uncertainties:


size of the MC simulation / data control samples


charm tagging efficiencies


simulation modeling

20
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Experimental +7.6 �8.2

Charm tagging efficiencies +5.6 �4.8
Simulation modeling +4.2 �5.1
Jet energy scale and resolution +2.4 �2.8
Lepton identification efficiencies +0.4 �1.8
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Statistics of the simulated samples +0.5 �1.9

Theory +6.5 �4.6
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Total +20.0 �19.5
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MASS REGRESSION: PERFORMANCE (II)

21

Signal jets: H→cc Signal jets: H→qq

Consistent improvements in all jet flavors
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MASS REGRESSION: PERFORMANCE (III)

Mass resolution more stable vs mX compared to soft drop


No signs of mass sculpting – even for very tight tagger selections


Up to ~20-25% improvement in analysis sensitivity with H->bb/cc
22
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PERFORMANCE IN DATA
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TAGGER CALIBRATION IN DATA
Crucial to calibrate these taggers in real data for them to be used in analyses


Top/W tagging efficiency


measured using the single-µ sample enriched in semi-leptonic ttbar events


fit jet mass templates in the “pass” and “fail” categories simultaneously to extract efficiency in data


simulation-to-data scale factors SF := eff(data) / eff(MC) derived to correct the simulation


jet mass scale and resolution scale factors can also be extracted


H->bb/H->cc tagging efficiency: measured via proxy jets, gluon->bb/cc, using a di-jet sample


Mistag rates of background jet typically derived directly from analysis-specific control regions
24
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