

Precise calculation of gravitational wave in electroweak phase transition

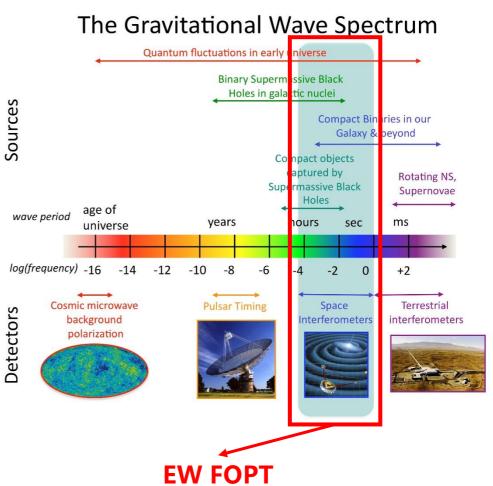
Xiao Wang

August 29th, 2021, Higgs&BSM@Nanjing Based on PRD 103 (2021) 10, 103520 In collaboration with Fa Peng Huang, Xinmin Zhang

Energy Budget

Gravitational Wave

Conclusions



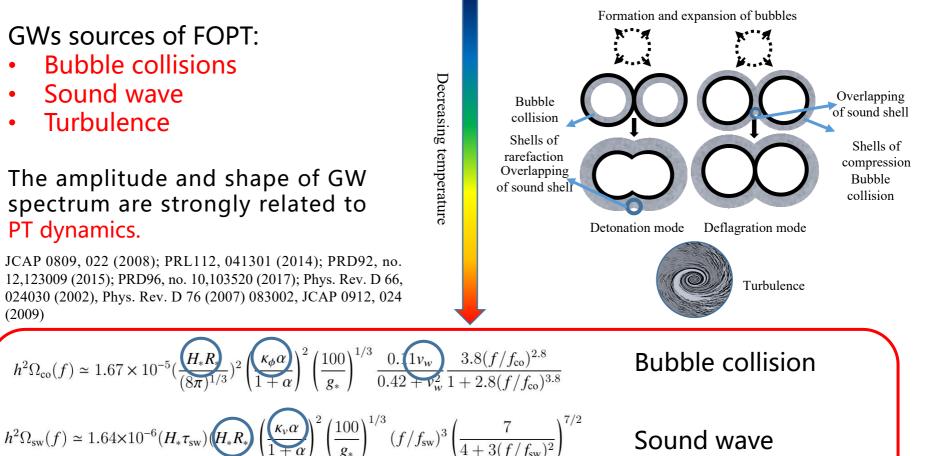
After the observation of the gravitational wave by LIGO, the GW detector provides a new technique to study the fundamental physics.

Sources of GWs:

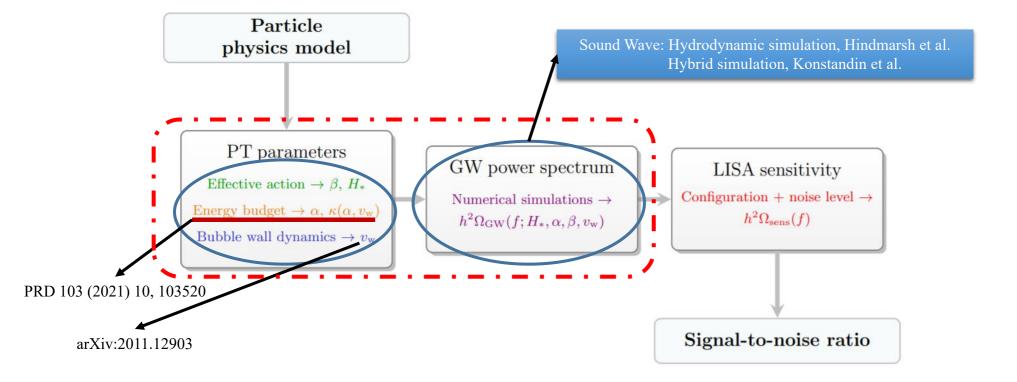
- Astrophysical origin: black hole, neutron star, etc.
- Cosmological origin: inflation, FOPT, etc.

GWs sources of FOPT:

- **Bubble collisions**
- Sound wave •

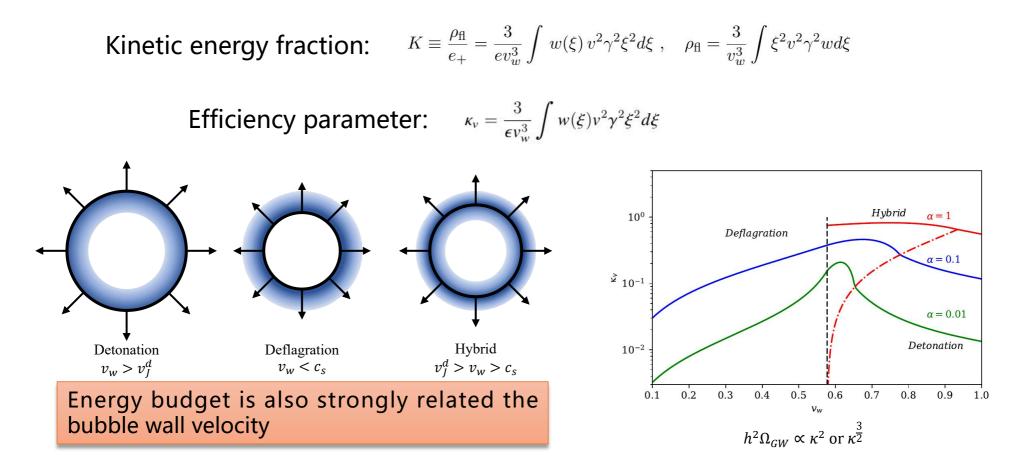

 $h^2 \Omega_{\rm turb}(f) \simeq 1.14 \times 10^{-1} H_* R$

Turbulence


The amplitude and shape of GW spectrum are strongly related to PT dynamics.

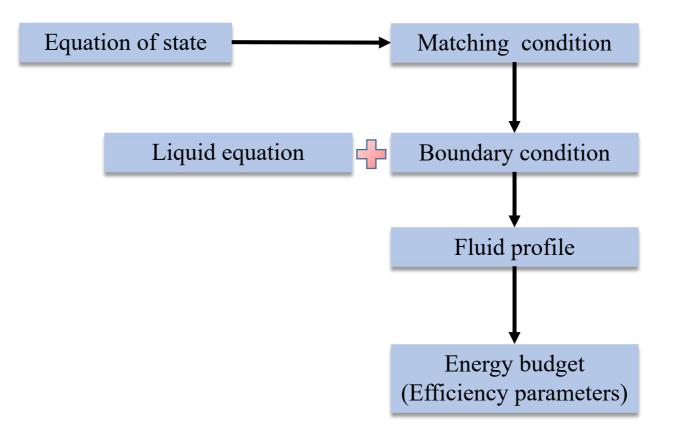
JCAP 0809, 022 (2008); PRL112, 041301 (2014); PRD92, no. 12,123009 (2015); PRD96, no. 10,103520 (2017); Phys. Rev. D 66, 024030 (2002), Phys. Rev. D 76 (2007) 083002, JCAP 0912, 024 (2009)

 $\int_{-\infty}^{3/2} \left(\frac{100}{g_*}\right)^{1/3} \frac{(f/f_{\rm turb})^3}{(1+f/f_{\rm turb})^{11/3}(1+8\pi f/H_*)}$

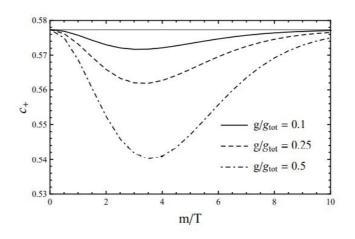


Flow chart of the calculation of phase transition gravitational wave

Chiara Caprini et al, JCAP03(2020)024



Energy budget (to measure the efficiency of the energy released by PT convert to the kinetic energy of sounding plasma)


A particle physics model independent analysis for energy budget:

• Most of previous studies of the efficiency parameter are based on bag EoS, which assume the sound velocity is $1/\sqrt{3}$ in both phases. For a realistic FOPT, particle can obtain the mass in broken phase. Hence, the sound velocity can deviate from pure radiation phase.

L. Leitao and A. Megevand, Nucl. Phys. B 891, 159-199 (2015)

Bag EoS
$$p_+ = \frac{1}{3}a_+T_+^4 - \epsilon_+, \quad e_+ = a_+T_+^4 + \epsilon_+, \quad \alpha_{\theta} = \frac{4\Delta\epsilon}{3w_+}, \quad \epsilon_{\pm} = \frac{1}{4}(e_{\pm} - 3p_{\pm})$$
 $p_- = \frac{1}{3}a_-T_-^4 - \epsilon_-, \quad e_- = a_-T_-^4 + \epsilon_-$.Strength parameter $\partial p/\partial e = c_s^2 = \text{constant}$ EoS with different sound velocity (DSVM) $p_+ = c_+^2 a_+T_+^4 - \epsilon_+, \quad e_+ = a_+T_+^4 + \epsilon_+, \quad \alpha_{\bar{\theta}} = \frac{\Delta\bar{\theta}}{3w_+}, \quad \bar{\theta} = e - p/c_-^2$ $p_- = c_-^2 a_-T_-^4 - \epsilon_-, \quad e_- = a_-T_-^4 + \epsilon_-, \quad \text{Strength parameter}$

• Energy momentum conservation derives fluid equations: $2\frac{v}{\xi} = \gamma^2(1 - v\xi) \left[\frac{\mu^2}{c_c^2} - 1\right] \partial_{\xi} v$

$$\begin{split} (\xi - v) \frac{\partial_{\xi} e}{w} &= 2\frac{v}{\xi} + \gamma^2 (1 - v\xi) \partial_{\xi} v , \\ (1 - v\xi) \frac{\partial_{\xi} p}{w} &= \gamma^2 (\xi - v) \partial_{\xi} v . \end{split}$$

Velocity profile

$$rac{\partial_{m{\xi}} w}{w} = \left(1 + rac{1}{c_s^2}
ight) \mu \gamma^2 \partial_{m{\xi}} v$$

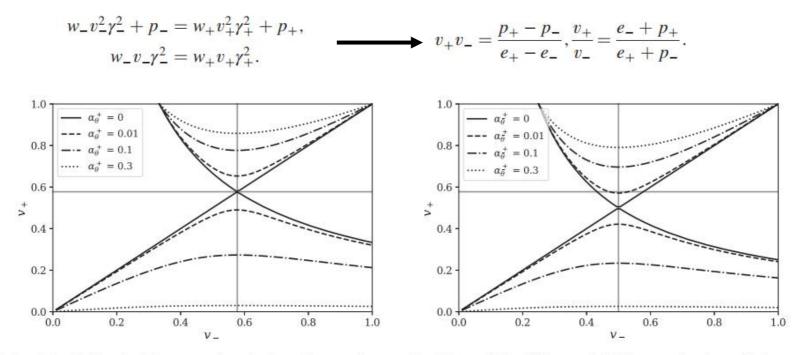
Enthalpy profile

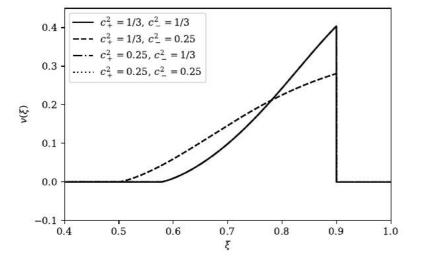
$$\frac{\partial_{\xi}T}{T} = \gamma^2 \mu \partial_{\xi} v$$

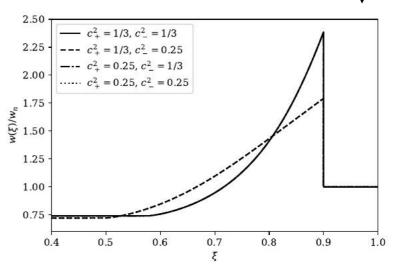
Different boundary conditions give different hydrodynamical modes.

Temperature profile

Matching condition

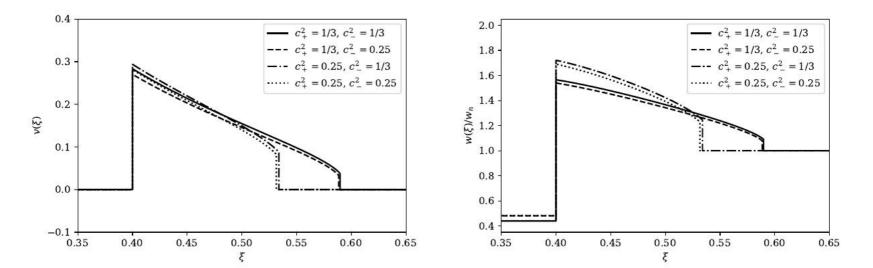



FIG. 1. The fluid velocities v_+ and v_- in the reference frame of bubble wall for different definitions and values of phase transition strength parameter. The horizontal and vertical gray lines indicate the sound velocities of symmetric and broken phase. Left panel: the bag model. Right panel: the DSVM with $c_+^2 = 1/3$ and $c_-^2 = 0.25$.


X. Wang, F. P. Huang and X. Zhang, PRD 103 (2021) 10, 103520

Boundary conditions of Detonation and the relevant velocity and enthalpy profiles:

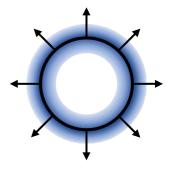
$$\tilde{v}_+ = 0, \quad v_+ = v_w, \quad v_- = v_-(\alpha_{\bar{\theta}+}, v_+), \quad v(v_w) = \tilde{v}_- = \mu(v_w, v_-)$$

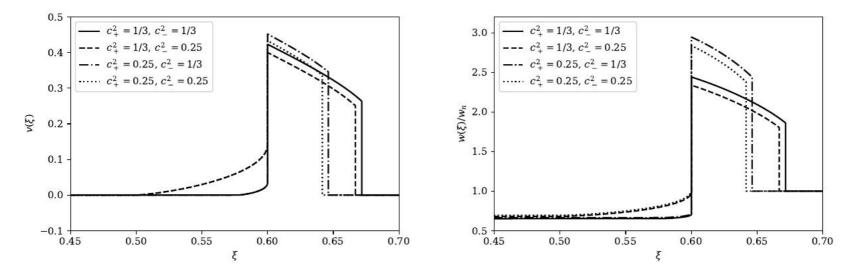


X. Wang, F. P. Huang and X. Zhang, PRD 103 (2021) 10, 103520

Boundary conditions of Deflagration and the relevant velocity and enthalpy profiles:

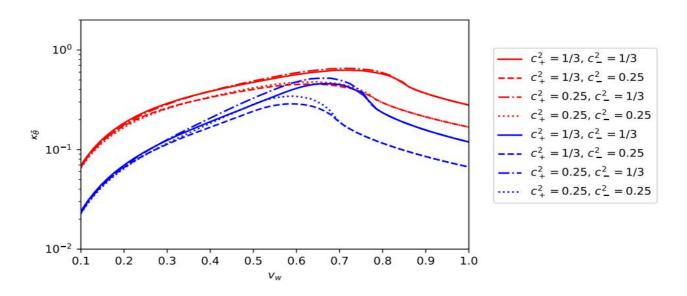
$$\tilde{v}_{-} = 0, \quad v_{-} = v_{w}, \quad v_{+} = v_{+}(\alpha_{\bar{\theta}+}, v_{-}), \quad \tilde{v}_{+} = \mu(v_{w}, v_{+})$$




X. Wang, F. P. Huang and X. Zhang, PRD 103 (2021) 10, 103520

Boundary conditions of Hybrid and the relevant velocity and enthalpy profiles:

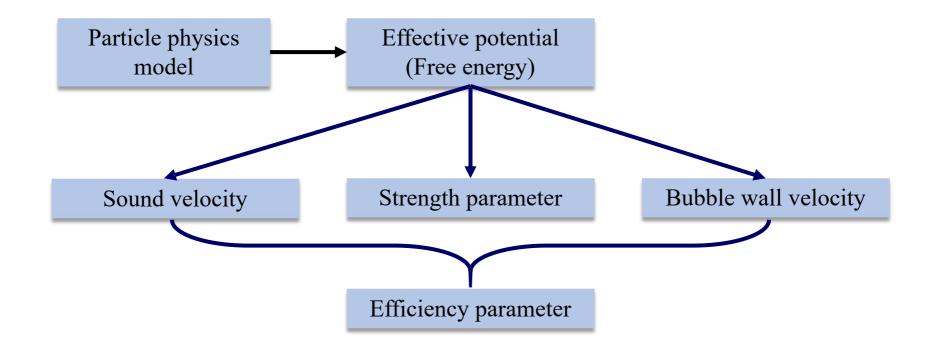
$$v_{-} = c_{-}, \quad \tilde{v}_{-} = \mu(v_{w}, v_{-}), \quad v_{+} = v_{J}^{\text{def}}(\alpha_{\bar{\theta}+}), \quad \tilde{v}_{+} = \mu(v_{w}, v_{+})$$



X. Wang, F. P. Huang and X. Zhang, PRD 103 (2021) 10, 103520

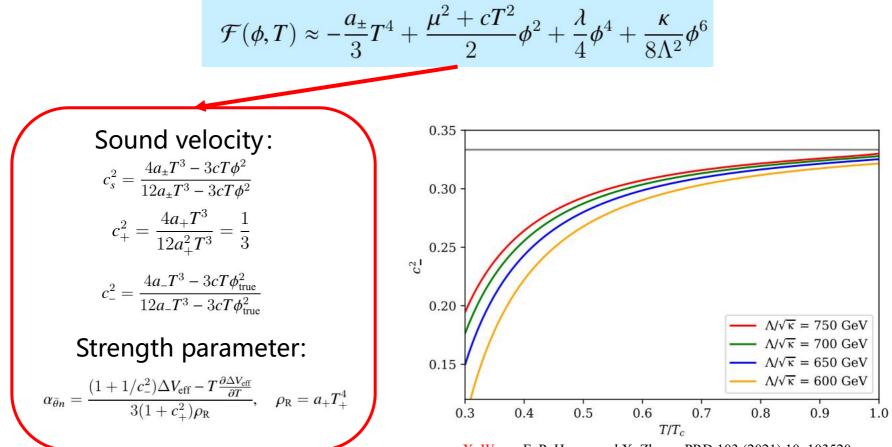
The efficiency parameters of DSVM:

$$\rho_{\rm fl} = \frac{3}{v_w^3} \int \xi^2 v^2 \gamma^2 w d\xi \quad \kappa_{\bar{\theta}} = \frac{4\rho_{\rm fl}}{\Delta \bar{\theta}}$$



X. Wang, F. P. Huang and X. Zhang, PRD 103 (2021) 10, 103520

Gravitational Wave


 Mapping a particle physics model on the DSVM to get efficiency parameter:

Gravitational Wave

• The sound velocity of broken phase and symmetric phase in Dim-6 effective model:

Gravitational Wave

GW spectrum and SNR for different EoS with different parameter combination:

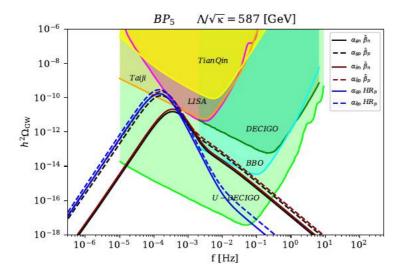


TABLE II. The SNR of BP_5 for different experiment configurations with different combinations of phase transition parameters and models of EOS.

	$\alpha_{\theta n} \tilde{\beta}_n$	$\alpha_{\theta p} \tilde{\beta}_p$	$\alpha_{\bar{\theta}n}\tilde{\beta}_n$	$\alpha_{\bar{\theta}p}\tilde{\beta}_p$	$\alpha_{\theta p} HR_p$	$\alpha_{\bar{\theta}p} HR_p$
SNR _(LISA)	7.949	16.930	10.913	28.836	16.009	27.468
SNR _(Taiji)	14.760	58.607	20.271	100.343	66.216	113.609
SNR _(TianQin)						

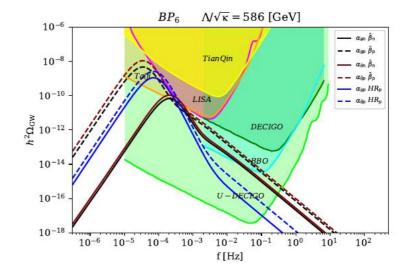


TABLE III. The SNR of BP_6 for different experiment configurations with different combinations of phase transition parameters and models of EOS.

	$\alpha_{\theta n} \tilde{\beta}_n$	$\alpha_{\theta p} \tilde{\beta}_p$	$\alpha_{\bar{\partial}n}\tilde{\beta}_n$	$\alpha_{\bar{\theta}p} \tilde{\beta}_p$	$\alpha_{\theta p} HR_p$	$\alpha_{\bar{\theta}p} HR_p$
SNR _(LISA)	14.230	15.368	22.470	26.382	17.367	40.816
	38.666	427.813	61.208	1000.501	213.123	500.668
SNR _(TianQin)	1.060	5.569	1.678	12.934	3.973	9.333

X. Wang, F. P. Huang and X. Zhang, PRD 103 (2021) 10, 103520

Conclusions

Conclusions:

- The different sound velocity in different phase can give a non negligible correction to energy budget of phase transition; hence it can affect the strength of GW signal;
- To get a precise prediction of phase transition GWs, a more valid calculation of energy budget is crucial.
- The effect of reheating phenomena are not well incorporated in calculations;
- Comparisons with a full particle physics model dependent calculation deserves a further study.

Thank you!!!