

Study of CP properties of top-Higgs interaction in ttH/tH, $H \rightarrow \gamma \gamma$ channel with ATLAS experiment

Hongtao Yang (LBNL)

Higgs potential and BSM opportunity August 27, 2021

Searching for matter–antimatter asymmetry in the Higgs boson–top quark inte... Recent years have seen the study of the Higgs boson progress from the discovery age to the measurement age. Among the latest studies of the ... & home.cern

1:58 AM · Apr 29, 2020 · Buffer

Introduction

- Large matter-antimatter asymmetry in Universe cannot be explained by known CP violation mechanism in SM:
 Iooking for additional CP violation sources is well-motivated
- Study of CP properties in Higgs sector started with V-H interactions since the Higgs boson discovery in 2012
- CP properties of fermion Yukawa coupling, in particular the largest top Yukawa coupling, were not directly studied until Run 2

CP properties of top Yukawa coupling

e

• The Lagrangian for t-H interaction including CP mixing is

$$\mathscr{L}_{t} = -\frac{m}{\nu}\kappa_{t}(\cos(\alpha)\bar{t}t + i\sin(\alpha)\bar{t}\gamma_{5}t)H, \ \kappa_{t} > 0, \ \alpha \in [-\pi,\pi]$$

SM corresponds to $\mathbf{a} = \mathbf{0}$, $\mathbf{\kappa}_t = \mathbf{1}$, full CP odd is $\mathbf{a} = \mathbf{90}^\circ$

- Only indirect constraints on CP mixing in t-H interaction existed before ttH observation
 - Stringent limits from EDMs (e, n, ...): $\kappa_t \sin(\alpha) < 10^{-3}$
 - Also from loop-induced $\mathbf{H} \rightarrow \mathbf{\gamma} \mathbf{\gamma}$ and \mathbf{ggF} rates: $\kappa_t \sin(\alpha) < \sim 0.5$
- The ttH/tH production mode opens a new possibility to probe CP mixing directly in the top Yukawa coupling at tree-level
- The H→yy channel is ideal for this study due to excellent sensitivity and clean signature

- The presence of a CP odd component in t-H coupling alters:
 - Cross sections as well as kinematics of ttH & tH processes: provide direct constraint of CP mixing in top Yukawa coupling (focus of this analysis)
 - H→γγ BR and ggF cross-sections: indirect constraint, also sensitive to other new physics scenarios

Analysis strategy

- Divide diphoton sample into two regions
 - Hadronic (≥3 jets, ≥1 b-jet, 0 lep)
 - Leptonic (≥1 b-jet, ≥1 lep)
- In each region, train following two BDTs (using XGBoost package)
 - **Bkg. rejection BDT**: separate ttH-like events from continuum background
 - CP BDT: separate CP-even ttH/tH events from CP-odd
- Divide categories on 2D plane of bkg.
 rejection vs. CP BDTs
- Fit the $m_{\gamma\gamma}$ spectrum in all categories simultaneously to extract signal

Hongtao Yang (LBNL)

July 2, 2021, NJU HEP Seminar

- Use the same BDT discriminant (but not categories!) from ttH search, which is trained using low-level inputs such as 4-vec. of γ , j, l, and MET
- Serves the purpose of CP analysis very well
 - Good rejection of background; good acceptance of ttH/tH signal -
 - Weak dependence on CP mixing angle

- Compared with SM (CP even), CP odd ttH/tH gives
 - Larger m_{tH} and $m_{t\bar{t}}$; more boosted $p_T(H)$
 - Less back-to-back $\phi(t\bar{t})$; larger opening $\eta(t\bar{t})$
- Exploit shape information in this analysis. Avoid relying on normalization dependence

Categorization

crimir

0.9

告 0.8

Hadron 1.0

0.5

0.4

0.3

Fraction of Data Eve

10-3

- Scan category boundaries on 2D bkg.
 rejection BDT vs. CP BDT plane to optimize both SM ttH significance and CP separation
- · 20 analysis categories defined in total
 - 12 categories in hadronic region, 8 in leptonic

Hongtao Yang (LBNL)

- Parameterize **ttH** and **tH** signal yields in each category as **mixing angle** α and **top Yukawa coupling strength** κ_t
- For ttH process, use

$$A\kappa_t^2\cos^2(\alpha) + B\kappa_t^2\sin^2(\alpha) + E\kappa_t^2\sin(\alpha)\cos(\alpha)$$

- Parameterization describe MC predictions well in all categories
- Coefficient E for interference term found to be negligible as expected

 For tHW and tHjb processes, need to use more complicated parameterizations considering interference between t-H and W-H

Hongtao Yang (LBNL)

• Single-channel ttH observation at 5.2σ, assuming SM for other prod. modes

 $\mu = 1.43^{+0.33}_{-0.31}$ (stat.) $^{+0.21}_{-0.15}$ (syst.)

tH cross-section < 12×SM @95% CL

Hongtao Yang (LBNL)

CP constraint: not resolve H \rightarrow \gamma \gamma / ggF loops

- Provide **direct** constrain mixing angle α using **only ttH and tH info**
 - Use κ_{γ} vs κ_{g} contour (80 fb⁻¹) to constrain H $\rightarrow\gamma\gamma$ and ggF rates
- $|\alpha| > 43^{\circ}$ excluded @95% CL without assumption on κ_t

Hongtao Yang (LBNL)

$\overrightarrow{\mathsf{CP}} \quad \mathsf{CP} \quad \mathsf{constraint: resolve } H \rightarrow \gamma \gamma / \mathsf{ggF} \quad \mathsf{loops} \quad \overrightarrow{\mathsf{berealer}}$

• Assume potential new physics in $H \rightarrow \gamma \gamma/ggF$ is only in t-H coupling, and can be parameterized as function of α and κ_t (Ellis et. al. JHEP 04 (2014) 004)

$$\kappa_g^2 = \kappa_t^2 \cos^2(\alpha) + 2.6\kappa_t^2 \sin^2(\alpha) + 0.11\kappa_t \cos(\alpha)(\kappa_t \cos(\alpha) - 1)$$

$$\kappa_\gamma^2 = (1.28 - 0.28\kappa_t \cos(\alpha))^2 + (0.43\kappa_t \sin(\alpha))^2$$

• Exclude $|\alpha| > 43^\circ$ @95% CL without assumption on κ_t

PRL 125 (2020) 061802

Hongtao Yang (LBNL)

- CP properties of top Yukawa coupling studied with ATLAS experiment based on full Run 2 data
 - CMS results: PRL 125 (2020) 061801
 - No deviation from SM observed yet
 - Constraint limited by statistical uncertainty
- In the meantime, explore other Higgs decay channels (e.g. H→bb and multi-lepton), SM top processes (e.g. 4-top production PRD 99 (2019) 113003), and Higgs combination (using ggF and H→γγ rates + ttH rate & kinematics)

Backup

Hongtao Yang (LBNL)

July 2, 2021, NJU HEP Seminar

SM Higgs boson production at LHC

- Distinct topology from each production mode
- Cross section of main production modes calculated with relatively high accuracy
- Rare production modes difficult to probe, but important for beyond the SM (BSM) scenarios

Hongtao Yang (LBNL)

- "Big five": γγ (0.23%), ZZ, WW, ττ, bb
- "Rare" channels: μμ (0.022%), Ζγ, cc, etc.

The ATLAS detector

Hongtao Yang (LBNL)

Run 2 data taking

- 139 fb⁻¹ of 13 TeV proton-proton collision data collected for physics by ATLAS detector
 - Average 34 interactions per bunch crossing
- Thanks to the excellent LHC performance and smooth operation of ATLAS detector

Hongtao Yang (LBNL)

Data & signal MC samples for ttH CP analysis

- Data: full Run 2 dataset of 139 fb⁻¹
- ttH/tH signal: NLO MG5_aMC+Pythia8 using Higgs Characterization (HC) model
 - ttH: $\kappa_t = 1$, $\alpha = 0^{\circ}$, 15° , 30° , ..., 90°
 - tHjb/tWH: sample generated with both κ_t = 1 and ≠ 1 at different mixing angles. κ_w = 1
- ggF signal: PowHeg NNLOPS
 - Kinematic dependence on CP mixing checked to be wellcovered by syst. using MG_aMC HC model ggF+2j samples
- Other Higgs production modes: same as typical ATLAS Run 2 Higgs analyses