On the nature of X(6900) and other structures in the LHCb di- J/ψ spectrum

De-Liang Yao

Hunan University

Seminar @ Center for High Energy Physics Peking University, Bejing, April 8, 2021

Outline

- Introduction
 - Background
 - Status of theoretical studies
- Theoretical Framework
 - Effective Lagrangian
 - Helicity amplitudes and partial-wave projection
 - Production amplitude and effects of final state interaction
- Numerical Results
 - Description of the LHCb data with model with three-coupled channels
 - Analyses with four-coupled channels and hints of four possible states
 - Further consideration: a combined fit
- Summary and outlook

1. Introduction

Background

[arXiv: 2009.13495]

"A Review on Partial-wave Dynamics with Chiral Effective Field Theory and Dispersion Relation"

De-Liang Yao, Ling-Yun Dai, Han-Qing Zheng, and Zhi-Yong Zhou

Reports on Progress in Physics, under review.

Background

Sci. Bull. 65 (2020), 1983-1993

- LHCb reported a narrow structure around 6.9 GeV in the di- J/ψ invariant mass spectrum: X(6900).
- A possible board structure at range [6.2 GeV, 6.8 GeV].
- A hint of another structure around 7.2 GeV.

Observation of structure in the J/ψ -pair mass spectrum#2LHCb Collaboration • Roel Aaij (NIKHEF, Amsterdam) et al. (Jun 30, 2020)#2Published in: Sci.Bull. 65 (2020) 23, 1983-1993 • e-Print: 2006.16957 [hep-ex]#2D pdf O links O DOI \boxdot cite \boxdot 78 citations

Status of theoretical studies

Many works have been accumulated:

- Quark model:
 - R. N. Faustov, V. O. Galkin and E. M. Savchenko, arXiv:2103.01763.
 - X. Jin, X. Liu, Y. Xue, H. Huang and J. Ping, arXiv:2011.12230.
 - Q. F. Lü, D. Y. Chen and Y. B. Dong, Eur. Phys. J. C 80 (2020) no.9, 871.
- QCD sum rules:
 - B. C. Yang, L. Tang and C. F. Qiao, arXiv:2012.04463.
 - B. D. Wan and C. F. Qiao, arXiv:2012.00454.
 - Z. G. Wang, Chin. Phys. C 44 (2020) no.11, 113106.
- NRQCD factorization:
 - F. Feng, Y. Huang, Y. Jia, W. L. Sang and J. Y. Zhang, arXiv:2011.03039.
 - Y. Q. Ma and H. F. Zhang, arXiv:2009.08376.
 - F. Feng, Y. Huang, Y. Jia, W. L. Sang, X. Xiong and J. Y. Zhang, arXiv:2009.08450.

Status of theoretical studies

- Phenomenological model:
 - Z. Zhao, K. Xu, A. Kaewsnod, X. Liu, A. Limphirat and Y. Yan, arXiv:2012.15554.
 - C. Gong, M. C. Du, B. Zhou, Q. Zhao and X. H. Zhong, arXiv:2011.11374.
 - Q. F. Cao, H. Chen, H. R. Qi and H. Q. Zheng, arXiv:2011.04347.
 - Z. H. Guo and J. A. Oller, PRD103 (2021)034024.
 - X. K. Dong, V. Baru, F. K. Guo, C. Hanhart and A. Nefediev, PRL126(2021)132001
- ...
- **Our work** (Effective Lagrangian & Unitarization) Reveal possible states and explore their J^{PC} quantum numbers
 - derive potentials from effective Lagrangians
 - take coupled-channel effects into account
 - employ helicity amplitude formalism and perform partial-wave analysis

2. Theoretical Framework

Effective Lagrangian

- $\mathcal{L}_{\mathrm{eff.}} = h_1 (J/\psi \cdot J/\psi)^2$
 - + $h_2(J/\psi \cdot J/\psi)(J/\psi \cdot \psi(2S))$
 - + $h_3(J/\psi \cdot J/\psi)(J/\psi \cdot \psi(3770))$
 - + $2h_4(J/\psi\cdot\psi(2S))^2$
 - + $2h'_4(J/\psi \cdot J/\psi)(\psi(2S) \cdot \psi(2S))$
 - + $h_5(J/\psi \cdot \psi(2S))(J/\psi \cdot \psi(3770))$
 - + $h'_5(J/\psi \cdot J/\psi)(\psi(2S) \cdot \psi(3770))$
 - + $h_6(J/\psi \cdot \psi(3770))^2$
 - + $h'_6(J/\psi \cdot J/\psi)(\psi(3770) \cdot \psi(3770))$
 - + $h_7(J/\psi \cdot \psi(2S))(\psi(2S) \cdot \psi(2S))$
 - + $h_8(J/\psi \cdot \psi(3770))(\psi(2S) \cdot \psi(2S))$
 - + $h'_8(J/\psi \cdot \psi(2S))(\psi(3770) \cdot \psi(2S))$
 - + $4h_9(\psi(2S)\cdot\psi(2S))^2$

- HQSS & meson exchange
- Four channels: $\{J/\psi J/\psi, J/\psi \psi(2S), J/\psi \psi(3770), \psi(2S)\psi(2S)\}$
- The Lagrangian satisfies the basic symmetries, such as Lorentz invariance, P and C parity symmetries and so on.
- The unknown couplings $h_{1,2,..9}$ and $h'_{4,5,6,8}$ need to be determinated by experimental data.

Potentials for the scattering processes

• The generic form of the potentials for $V_1(p_1,\epsilon_1) + V_2(p_2,\epsilon_2) \rightarrow V_3(p_3,\epsilon_3) + V_4(p_4,\epsilon_4)$

$$V_{ij} = \mathcal{C}_1 \epsilon_1 \cdot \epsilon_2 \epsilon_3^{\dagger} \cdot \epsilon_4^{\dagger} + \mathcal{C}_2 \epsilon_1 \cdot \epsilon_3^{\dagger} \epsilon_2 \cdot \epsilon_4^{\dagger} + \mathcal{C}_3 \epsilon_1 \cdot \epsilon_4^{\dagger} \epsilon_2 \cdot \epsilon_3^{\dagger}$$

• Coefficients for different processes

V_{ij}	Channels	\mathcal{C}_1	\mathcal{C}_2	\mathcal{C}_3
11	$J/\psi J/\psi ightarrow J/\psi J/\psi$	$8h_1$	$8h_1$	$8h_1$
12	$J/\psi J/\psi o \psi(2S) J/\psi$	$2h_2$	$2h_2$	$2h_2$
13	$J/\psi J/\psi o \psi$ (3770) J/ψ	2 <i>h</i> 3	$2h_3$	$2h_3$
14	$J/\psi J/\psi o \psi(2S)\psi(2S)$	$4h'_{4}$	$2h_4$	$2h_4$
22	$\psi(2S)J/\psi ightarrow \psi(2S)J/\psi$	$2h_4$	$4h'_4$	$2h_4$
23	$\psi(2S)J/\psi o \psi(3770)J/\psi$	h_5	$2h'_5$	h_5
24	$\psi(2S)J/\psi ightarrow \psi(2S)\psi(2S)$	2 <i>h</i> 7	$2h_{7}$	$2h_{7}$
33	$\psi(3770)J/\psi \rightarrow \psi(3770)J/\psi$	2 <i>h</i> 6	$4h'_{6}$	2 <i>h</i> 6
34	$\psi(3770)J/\psi ightarrow \psi(2S)\psi(2S)$	2 <i>h</i> 8	h'_8	h'_8
44	$\psi(2S)\psi(2S) ightarrow \psi(2S)\psi(2S)$	8 <i>h</i> 9	$8h_9$	8 <i>h</i> 9

Helicity amplitude

• Helicity amplitudes (81 in total), $\lambda_i = \pm 1, 0$

$$V_{\lambda_1\lambda_2\lambda_3\lambda_4} = \epsilon_3^{
ho\dagger}(p_3,\lambda_3)\epsilon_4^{\sigma\dagger}(p_4,\lambda_4)V_{\mu
u
ho\sigma}\epsilon_1^{\mu}(p_1,\lambda_1)\epsilon_2^{
u}(p_2,\lambda_2)$$

$$V_{\mu\nu\rho\sigma} = \mathcal{C}_1 g_{\mu\nu} g_{\rho\sigma} + \mathcal{C}_2 g_{\mu\rho} g_{\nu\sigma} + \mathcal{C}_3 g_{\mu\sigma} g_{\nu\rho}$$

According to P and T parity symmetries (81 \rightarrow 25), e.g.

$$V_{++++} = V_{----}$$
,
 $V_{+++0} = -V_{---0} = V_{-0--} = -V_{+0++}$.

• Explicit expressions for helicity amplitudes, e.g.

$$V_{++++} = V_{----} = C_1 + \frac{1}{4}(C_3(-1+z_s)^2 + C_2(1+z_s)^2)$$

with $z_s = \cos \theta$, θ being scattering angle .

Partial-Wave Projection

• Partial wave amplitudes

$$V^J_{\lambda_1\lambda_2\lambda_3\lambda_4}(s)=rac{1}{2}\int_{-1}^{+1}dz_sV_{\lambda_1\lambda_2\lambda_3\lambda_4}(s,t(s,z_s))d^J_{\lambda,\lambda'}(z_s)$$

where $\lambda = \lambda_1 - \lambda_2$, $\lambda' = \lambda_3 - \lambda_4$. Relations due to P, T symmetries and properties of $d_{\lambda\lambda'}^J$ functions: e.g.

•
$$V_{++++}^J = V_{----}^J$$

• $V_{++++0}^J = V_{---0}^J = V_{-0--}^J = V_{+0++}^J$

• Helicity basis \rightarrow JLS basis (definite J^{PC} quantum number)

$$\mathcal{V}^J = \sum_{\substack{\lambda_1\lambda_2\ \lambda_3\lambda_4}} U^J_{\lambda_3\lambda_4} \mathcal{V}^J_{\lambda_1\lambda_2\lambda_3\lambda_4} [U^J_{\lambda_1\lambda_2}]^\dagger$$

The transformation matrix

$$U_{\lambda_1\lambda_2}^J = \frac{1}{\sqrt{2S+1}} \langle S_1 \lambda_1 S_2 - \lambda_2 | S \lambda \rangle \implies \text{C-G coefficient}$$

S-Wave Amplitude

S-wave: L = 0, $J = L + S = S \Rightarrow$ For identical particles: L + S = even• $J^{PC} = 0^{++}$

$$\mathcal{V}(0^{++}) = \frac{2}{3}V_{++++}^{J=0} + \frac{2}{3}V_{++--}^{J=0} + \frac{1}{3}V_{0000}^{J=0} - \frac{4}{3}V_{++00}^{J=0}$$

• $I^{PC} = 2^{++}$ $\mathcal{V}(2^{++}) = \frac{2}{15}V_{0000}^{J=2} + \frac{4}{15}V_{00++}^{J=2} + \frac{4\sqrt{6}}{15}V_{00+-}^{J=2} + \frac{2\sqrt{6}}{15}(V_{+-++}^{J=2} + V_{-+++}^{J=2})$ + $\frac{4\sqrt{3}}{15}(V_{00+0}^{J=2}+V_{000+}^{J=2})+\frac{2\sqrt{3}}{15}(V_{+0++}^{J=2}+V_{0+++}^{J=2}+V_{0-++}^{J=2}+V_{-0++}^{J=2})$ + $\frac{1}{5}(V_{+0+0}^{J=2} + V_{-0+0}^{J=2} + V_{0+0+}^{J=2} + V_{0-0+}^{J=2})$ + $\frac{2\sqrt{2}}{5}(V_{+-+0}^{J=2}+V_{0++-}^{J=2}+V_{-++0}^{J=2}+V_{0-+-}^{J=2})$ + $\frac{2}{5}(V_{0++0}^{J=2} + V_{0-+0}^{J=2} + V_{+-+-}^{J=2} + V_{-++-}^{J=2}) + \frac{1}{15}(V_{++++}^{J=2} + V_{--++}^{J=2})$

13 / 32

Unitarization

- Requirement of unitarity
 - \longrightarrow Bethe-Salpeter equation method is employed to restore unitarity.
- The unitarized amplitude under on-shell approximation

$$\mathcal{T}_J(s) = \mathcal{V}^J(s) \cdot ig[1 - \mathcal{G}(s) \cdot \mathcal{V}^J(s)ig]^{-1}$$

Graphic representation

• For coupled-channel:

two-point functions

+

$$\mathcal{V}^{J}(s) = \begin{pmatrix} V_{11}^{J}(s) & V_{12}^{J}(s) & V_{13}^{J}(s) & V_{14}^{J}(s) \\ V_{12}^{J}(s) & V_{22}^{J}(s) & V_{23}^{J}(s) & V_{24}^{J}(s) \\ V_{13}^{J}(s) & V_{23}^{J}(s) & V_{33}^{J}(s) & V_{34}^{J}(s) \\ V_{14}^{J}(s) & V_{24}^{J}(s) & V_{34}^{J}(s) & V_{44}^{J}(s) \end{pmatrix} \quad \mathcal{G}(s) = \begin{pmatrix} g_{1}(s) & & & \\ & g_{2}(s) & & \\ & & g_{3}(s) & \\ & & & g_{4}(s) \end{pmatrix}_{14/3}$$

Unitarization

• The explicit form of two-point loop function

$$g_{i}(s) = \frac{1}{16\pi^{2}} \left\{ a(\mu) + \ln \frac{M_{V_{1}}^{2}}{\mu^{2}} + \frac{s - M_{V_{1}}^{2} + M_{V_{2}}^{2}}{2s} \ln \frac{M_{V_{2}}^{2}}{M_{V_{1}}^{2}} \right. \\ \left. + \frac{\sigma(s)}{2s} \left[\ln(s - M_{V_{2}}^{2} + M_{V_{1}}^{2} + \sigma(s)) - \ln(-s + M_{V_{2}}^{2} - M_{V_{1}}^{2} + \sigma(s)) \right. \\ \left. + \ln(s + M_{V_{2}}^{2} - M_{V_{1}}^{2} + \sigma(s)) - \ln(-s - M_{V_{2}}^{2} + M_{V_{1}}^{2} + \sigma(s)) \right] \right\}$$

where

- $\sigma(s) = \{[s (M_{V_2} + M_{V_1})^2][s (M_{V_2} M_{V_1})^2]\}^{1/2}.$
- The subtraction scale $a(\mu) = -3.0$ at renormalization scale $\mu = 1$ GeV.
- Analytic continuation (Riemann sheet)

$$g^{\mathrm{II}}(s) = g^{\mathrm{I}}(s) + 2i\rho(s)$$

Production Amplitudes

• Production of di- J/ψ via pp collision

• The production amplitude

$$\mathcal{M}_1(s) = \mathcal{A}_1 + \sum \mathcal{A}_i \mathcal{G}_i(s) \mathcal{T}_{i1}(s) = \mathcal{A}_1 \left[1 + \sum r_i \mathcal{G}_i(s) \mathcal{T}_{i1}(s) \right]$$

• $\gamma_i = \mathcal{A}_i / \mathcal{A}_1$

• A_1 represents direct production of J/ψ pairs.

The invariant mass formula

• The invariant mass

$$rac{\mathrm{d}\mathcal{N}}{\mathrm{d}\sqrt{s}} \propto
ho(s)|\mathcal{M}_1(s)|^2 =
ho(s)|\mathcal{A}_1(s)|^2 igg|\gamma + \sum_{i=1}^3 \mathcal{G}_i(s)\mathcal{T}_{i1}(s)igg|^2$$

with γ coherent background.

Phase factor

$$ho(s) = rac{p_1(s)}{8\pi\sqrt{s}} = rac{\lambda^{1/2}(s,m_{J/\psi}^2,m_{J/\psi}^2)}{16\pi s}$$

• The direct production amplitude is parameterized as

$$|\mathcal{A}_1(s)|^2 = lpha^2 e^{-2eta s}$$

- Overall factor α
- The slope parameter β is fixed ($\beta = 0.0123$)

[X. K. Dong, V. Baru, F. K. Guo, C. Hanhart and A. Nefediev, PRL126(2021).]

3. Numerical Results

Fit with three coupled-channels

• Description of LHCb data:

- consider three coupled-channels: $J/\psi J/\psi$, $J/\psi\psi(2S)$, $J/\psi\psi(3770)$;
- perform two different kinds of fits 0^{++} and 2^{++} within range [6.2 GeV, 7.2 GeV] ;
- Both fits well describe the di-J/ ψ spectrum within 1- σ uncertainty.

Fit with three coupled-channels

- Pole positions and residues:
 - 0++

• 2++

	Position	$ \text{Residue} ^{1/2}$ [GeV]		
RS	$\sqrt{s_{ m pole}}$ [MeV]	$J/\psi J/\psi$	$J/\psi\psi(2S)$	$J/\psi\psi$ (3770)
Ι	$6172.4^{+21.3}_{-30.4}$	$17.2^{+4.5}_{-11.7}$	$22.4^{+4.1}_{-14.0}$	$5.0^{+4.2}_{-4.3}$
II	$6191.2^{+2.5}_{-3.5}$	$4.3^{+5.5}_{-1.0}$	$5.6^{+12.4}_{-1.3}$	$1.2^{+3.9}_{-0.9}$
II	$6959.1^{+37.1}_{-58.7}-i161.2^{+125.9}_{-93.3}$	$27.8^{+7.1}_{-7.7}$	$37.2_{-8.2}^{+4.0}$	$20.3^{+16.1}_{-5.9}$
	Position	Residues ^{1/2} [GeV]		
RS	$\sqrt{s_{ m pole}}$ [MeV]	$J/\psi J/\psi$	$J/\psi\psi(2S)$	$J/\psi\psi$ (3770)
Ι	$6170.1^{+19.5}_{-32.1}$	$17.5^{+4.4}_{-6.0}$	$22.6^{+2.8}_{-5.9}$	$5.3^{+3.4}_{-2.9}$
II	$6190.9^{+2.4}_{-3.8}$	$4.4^{+1.0}_{-1.1}$	$5.7^{+0.8}_{-1.0}$	$1.3\substack{+0.9\\-0.7}$
II	$6994.1^{+53.8}_{-92.7} - i156.9^{+150.6}_{-127.8}$	$28.4^{+8.7}_{-8.2}$	$36.9^{+4.6}_{-8.7}$	$19.7\substack{+13.8 \\ -7.6}$

- A near-threshold bound state is found in these two cases, referred as to X(6200).
- A peak located in 6.9 GeV appears due to the $J/\psi\psi$ (3770) threshold effects.

Fit with four coupled-channels

• Description of LHCb data:

- consider four coupled-channels $J/\psi J/\psi$, $J/\psi\psi(2S)$, $J/\psi\psi(3770)$, $\psi(2S)\psi(2S)$.
- perform two different kinds of fits 0⁺⁺ and 2⁺⁺ and extend the energy range to [6.2 GeV,7.4 GeV];
- Fit-C (0⁺⁺) and Fit-D (2⁺⁺) behave differently. A peak around 7.2 GeV is observed in 0⁺⁺ case.

Fits with four coupled-channels

• Pole positions and residues:

	Position	$ \text{Residue} ^{1/2}$ [GeV]			
RS	$\sqrt{s_{ m pole}}$ [MeV]	$J/\psi J/\psi$	$J/\psi\psi(2S)$	$J/\psi\psi$ (3770)	$\psi(2S)\psi(2S)$
I (0 ⁺⁺)	$6165.6^{+18.8}_{-57.7}$	$19.8^{+5.5}_{-5.0}$	$15.8^{+6.1}_{-3.5}$	$0.7\substack{+0.5 \\ -0.7}$	$1.9^{+1.7}_{-1.9}$
IV (0^{++})	$7225.4^{+30.9}_{-23.7}-i30.4^{+30.4}_{-21.4}$	$4.4^{+2.3}_{-2.5}$	$5.7^{+1.4}_{-2.0}$	$0.9\substack{+0.6 \\ -0.5}$	$37.8^{+2.1}_{-2.7}$
II (2 ⁺⁺)	$6676.7^{+70.8}_{-73.4}-i136.9^{+63.3}_{-63.0}$	$15.0\substack{+2.4 \\ -2.9}$	$24.4^{+2.6}_{-11.6}$	$13.5^{+18.8}_{-12.0}$	$37.2^{+5.2}_{-5.5}$
IV (2^{++})	$6920.7^{+44.7}_{-22.9}-\textit{i}66.1^{+51.2}_{-10.7}$	$6.2^{+5.3}_{-1.7}$	$9.6\substack{+3.2 \\ -6.4}$	$5.2\substack{+4.1\\-4.5}$	$50.1^{+3.8}_{-1.4}$

- Fit-C:
 - (1) A resonance X(7200);
 - (2) A bound state X(6200);
 - (3) Their J^{PC} numbers are 0^{++} .

- Fit-D:
 - A narrow resonance X(6900);
 A broad resonance X(6670);
 Their J^{PC} numbers are 2⁺⁺.

Fits with four coupled-channels

• The locations of poles:

- Green \rightarrow the 2⁺⁺ X(6670) resonance
- Pink \rightarrow the 2⁺⁺ X(6900) resonance
- Red \rightarrow the 0⁺⁺ X(7200) resonance
- Blue \rightarrow the 0⁺⁺ X(6200) bound state

Combined fit

• Description of LHCb data:

• Pole positions and residue

	Position	Residue ^{1/2} [GeV]		
RS (J^{PC})	$\sqrt{s_{ m pole}}$ [MeV]	${f J}/\psi{f J}/\psi$	$J/\psi\psi$ (2S)	$\psi(2S)\psi(2S)$
I (0 ⁺⁺)	$6059.6^{+98.0}_{-21.0}$	$29.5^{+2.0}_{-11.2}$	$16.2^{+10.0}_{-2.6}$	$4.5^{+1.4}_{-0.4}$
II (2 ⁺⁺)	$6759.2^{+84.8}_{-63.5}-i120.1^{+91.8}_{-54.6}$	$17.0\substack{+6.5 \\ -5.8}$	$28.7^{+9.9}_{-7.0}$	$\underline{42.9^{+21.4}_{-16.6}}$
III (2 ⁺⁺)	$6950.0^{+32.6}_{-22.1}-i88.7^{+15.8}_{-10.8}$	$9.0\substack{+1.3 \\ -1.6}$	$9.0^{+1.3}_{-2.2}$	$50.7\substack{+0.9 \\ -1.5}$

- The X(6200), X(6670) and X(6900) states still exist.
- Their pole locations are shifted, due to the absence of the $J/\psi\psi(3770)$ channel.
- The X(7200) disappears, however, there still exists an enhancement around 7.2 GeV. \rightarrow The $J/\psi\psi(3770)$ channel is important for the existence of the X(7200) state.

4. Summary and Outlook

Summary and Outlook

- \bullet Exploring all possible states in [6.2 ${\rm GeV}, 7.4~{\rm GeV}]$ by means of partial-wave analysis.
- Four states are found
 - X(6200): a bound state with $J^{PC} = 0^{++}$, $\sqrt{s_{\rm pole}} = 6165.6^{+18.8}_{-57.7} \,\,{
 m MeV}$
 - X(6670): a broad resonant state with $J^{PC} = 2^{++}$, $\sqrt{s_{\text{pole}}} = 6676.7^{+70.8}_{-73.4} - i136.9^{+63.3}_{-63.0} \text{ MeV}$

• X(6900): a narrow resonant state with $J^{PC} = 2^{++}$, $\sqrt{s_{\text{pole}}} = 6920.7^{+44.7}_{-22.9} - i66.1^{+51.2}_{-10.7} \text{ MeV}$

• X(7200): a narrow resonant state with $J^{PC} = 0^{++}$, $\sqrt{s_{\text{pole}}} = 7225.4^{+30.9}_{-23.7} - i30.4^{+30.4}_{-21.4} \text{ MeV}$

- Need to be confirmed by more experimental data (in precision and in amount);
- Study the structures of these states in future.

Many thanks for your attention!

Backup

Details of the 3CC fit

Couplings

$$h_i=h_i'\;,\qquad h_i=ar{h}_i\cdot\sum_{j=1}^4\sqrt{2m_j}\;,$$

• Results of fitting parameter

	Fit-A (0^{++})	Fit-B (2^{++})
$ar{h}_1$	$0.16\substack{+0.09\\-0.02}$	$0.48\substack{+0.24\\-0.07}$
\bar{h}_2	$1.4_{-0.2}^{+0.6}$	$3.6^{+1.4}_{-0.6}$
$ar{h}_3$	$0.01^{+0.15}_{-0.20}$	$-0.04\substack{+0.39\\-0.47}$
$ar{h}_4$	$1.8_{-0.4}^{+0.6}$	$2.9^{+1.0}_{-0.6}$
\bar{h}_5	$-0.57^{+0.40}_{-0.46}$	$-1.0^{+0.7}_{-0.7}$
$ar{h}_6$	$-0.25^{+0.17}_{-0.07}$	$-0.46\substack{+0.28\\-0.13}$
lpha	208_{-21}^{+79}	228_{-28}^{+74}
eta	0.0123*	0.0123*
γ	$-0.28\substack{+0.35\\-0.11}$	$-0.19\substack{+0.29\\-0.12}$
$\chi^2/d.o.f$	$rac{26.6}{36-8}\simeq 0.96$	$rac{26.9}{36-8}\simeq 0.96$

Details of the 4CC fit

	Fit-C (0 ⁺⁺)	Fit-D (2 ⁺⁺)
$ar{h}_1$	$-4.2^{+1.3}_{-0.7}$	$-5.1^{+1.1}_{-2.4}$
\bar{h}_2	$15.3^{+4.7}_{-2.7}$	$-22.8^{+6.2}_{-11.5}$
\overline{h}_3	$1.0^{+0.5}_{-0.7}$	$-22.7^{+6.1}_{-22.4}$
$ar{h}_4$	$-11.4^{+3.6}_{-2.0}$	$-18.2^{+\overline{3.5}}_{-10.1}$
\bar{h}_5	$1.4^{+0.7}_{-1.1}$	$-20.6^{+30.6}_{-18.7}$
\bar{h}_6	$-0.3^{+0.1}_{-0.1}$	$-43.8^{+16.9}_{-160.5}$
\overline{h}_7	$-16.1^{+4.6}_{-2.7}$	$-21.0^{+5.3}_{-10.9}$
$ar{h}_8$	$-1.2^{+0.5}_{-0.9}$	$-52.4^{+15.9}_{-62.8}$
\bar{h}_9	$-4.0^{+1.4}_{-0.7}$	$-3.8_{-2.8}^{+0.7}$
α	1118^{+381}_{-375}	391_{-77}^{+144}
eta	0.0123*	0.0123*
γ	$1.22\substack{+0.10\\-0.06}$	$0.51\substack{+0.13 \\ -0.13}$
$\chi^2/d.o.f$	$rac{24.5}{43-11}\simeq 0.77$	$rac{26.8}{43-11}\simeq 0.84$

Details of the combined fit

• The invariant mass spectrum is recast as

$$rac{\mathrm{d}\mathcal{N}}{\mathrm{d}\sqrt{s}} = \sum_J
ho(s) |\mathcal{A}_1^J(s)|^2 \left| \gamma_J + \sum_i \mathcal{G}_i(s) \mathcal{T}_{i1}^J(s)
ight|^2 \,,$$

with

$$|\mathcal{A}_1^J(s)|^2 = \alpha^2 e^{-2\beta s}$$

.

• Results of fitting parameters