The impact of flavor tagging performance on nnH(H to bb, cc) accuracy measurement

Zhu Yongfeng

Motivation & Content : most important Higgs property at the CEPC. The g(Hcc) measurement highly depends on the detector performance of Flavor tagging. CEPC detector, we study its impact on the g(Hcc) measurement.

- The g(Hcc), the second generation fermion Yukawa coupling, is one of the
- The flavor tagging performance, as part of the detector requirement for the

$$H \rightarrow c\bar{c}$$
 $H \rightarrow gg$
2.91% 8.57%

Samples : nnH with Higgs to $q\bar{q}$ and ggnnZ with Z to $q\bar{q}$

after setting invariant mass >= 110GeV, nnH left : 124246/179186 = 69.34%, nnZ left : $68426/1.25355 \times 10^{6} = 5.46\%$

Flavor Tagging modeling: Migration Matrix

perfect flavor tagging

non flavor tagging

Actual Migration Matrix of the baseline detector : With all the nnH(H to bb, H to cc, H to udsg) samples, divide flavor space into three parts and find the suitable division way, which can maximize the value of $eff(c \rightarrow c) + eff(b \rightarrow b) + eff(udsg \rightarrow udsg).$

maximum accuracy : bin with minimum accuracy value $\frac{bin_1 \cdot bin_2}{\sqrt{bin_1 \cdot bin_1 + bin_2 \cdot bin_2}}$ iterate

the changing procedure of flavor tagging performance matrix :

 $temp \ matrix = \frac{x - trace_I}{trace_T - trace_I} \cdot (T - I) + I \qquad (trace_I \le x \le trace_T)$ T: matrix with perfect flavor tagging I: matrix with non flavor tagging trace_I, trace_T: the trace of matrix I and T

non flavor tagging — perfect flavor tagging

The impact of flavor tagging performance on nnHcc accuracy measurement, the maximum bin is always cc.

The red circle and blue triangle represents the performance of baseline detector.

trace	2.1	2.2	2.27	2.37	2.47	2.57	2.67	2.77
maximum bin	4.78%	4.35%	4.07%	3.56%	3.18%	2.88%	2.65%	2.47%
combined bin	3.90%	3.60%	3.40%	3.11%	2.86%	2.67%	2.51%	2.38%

With the similar analysis method, see nnH_bb as signal, the maximum bin is always bb.

trace	2.1	2.27	2.97
maximum bin	0.41%	0.37%	0.30%
combined bin	0.32%	0.31%	0.30%

9

Conclusion :

- The flavor tagging performance has great impact on nnH(H to cc, bb) to cc measurement accuracy is 4.07%, the nnH with Higgs to bb measurement accuracy is 0.37%.
- mass of two leptons.(page 11) It's our next step.

accuracy measurement. At the CEPC baseline detector, the nnH with Higgs

• The $\mu\mu$ H and eeH(H to cc, bb) accuracy measurement also can be done, since the main background is ZZ with one Z to ee or $\mu\mu$ and the other Z to qq, this background can be efficiently suppressed by the invariant mass and recoil

LLH(H to bb, cc) accuracy measurement also can be done

Table 1. ground' includes all the other background processes. The 'fit region' will be described in Section 5.

$\mu^+\mu$	$^{-}H \rightarrow \mu^{+}$
	signa
original	2.45×1
lepton pair selection without recoil mass cut	1.51×1
jets pair selection and lepton pair recoil mass cut for fit region	1.32×1
signal region	1.31× 1
e^+e	$^{-}H \rightarrow e^{+}e^{-}e^{+}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-$
	signa
original	2.63× 1
lepton pair selection without recoil mass cut	9.17× 1
jets pair selection and recoil lepton pair mass cut of fit region	7.14× 1
signal region	7.13× 1

Event yields of cut flow. Signal events are $l\bar{l} + H \rightarrow l\bar{l} + b\bar{b}/c\bar{c}/gg$ combined. $\mu^+\mu^-H$ and e^+e^-H background refers to the background which Higgs are produced associated with $\mu^+\mu^-$ and e^+e^- , but decay to final states other than $b\bar{b}/c\bar{c}/gg$. 'Other Higgs background' stands for the Higgs production process different from the signal. 'Irreducible SM background' is the $e^+e^-/\mu^+\mu^-$ +jet pair process without Higgs productions. 'Other SM back-

$\mu^- + b\bar{b}/c\bar{c}/gg$ channel				
ls	$\mu^+\mu^-H$	other Higgs	irreducible	other SM
	background	background	background	background
10 ⁴	1.10×10^{4}	1.01×10 ⁶	1.05×10 ⁶	4.96×10 ⁸
10^{4}	6.56×10^{3}	227	1.09×10^{4}	2.79×10^{4}
10 ⁴	1.80×10^{3}	108	7.75×10 ³	43.6
10^{4}	1.80×10^{3}	96.1	5.78×10^{3}	38.4
$e^- + b\bar{b}$	/c̄c/gg channel			
ls	e^+e^-H	other Higgs	irreducible	other SM
	background	background	background	background
10^{4}	1.17×10^{4}	1.01×10^{6}	1.62×10^{6}	4.95×10^{8}
10^{3}	3.53×10^{3}	128	9.00×10^{3}	7.11×10^{4}
10^{3}	917	56.1	8.63×10^{3}	69.4
10^{3}	913	36.4	4.14×10^{3}	67.4

BackUp

将eff(c \rightarrow c) + eff(b \rightarrow b) + eff(udsg \rightarrow udsg) 作为优化目标, maximum accuracy is 0.0407

udsg	0.151386	0.0
с	0.286596	0.4
b	0.913505	0.0
I	b	

