Hadronic contributions to HVP and HLBL: from amplitude analysis

Lingyun Dai Hunan University

with W. Qin, J. Portoles, M. Pennington, et.al.

Outlines

1.Introduction

??? New physics? g-2 theory v.s. experiment large uncertainty SM: HLbL, HVP						
SM:QED+EW+QCD		values (×10 ⁻¹¹)				
	QED	116584718.931(104)				
	EW	153.6(1.0)				
	HVP	6845(40)				
	HLBL	92(18)				
	SM	116591810(43)				
Phys.Rept.887(2020)1	exp.(BNL)	116592089(63)				
	exp.(FNAL)	116592040(54)				
	exp.(avg.)	116592061(41)				
Phys.Rev.Lett.126, 141801 (2021) Phys.Rev.D 73, 072003 (2006).	$a_{\mu}^{ m SM}$ - $a_{\mu}^{ m exp}$	251(59)				

amplitude analysis

LQCD

- data-driven solutions from experiment
- amplitude analysis? dispersive approach, ChEFT, etc.

- Only one physical amplitude!
- It should satisfy the fundamental QFT principles
- It should be compatible with the exp results

2、HVP

- QCD: high energy region
- Dispersive approach: Roy, KT, PKU, etc., difficult to deal with multi-body rescattering
- ChPT: works in the low energy region
- RChT: extend to a bit higher energy region

Dai et.al., PRD 99 (2019) 114015; Guo et.al., JHEP 06 (2007) 030;

- resonances included as new degrees of freedom
- Matching with QCD, DRs to reduce LECs
- 1/Nc expansion

Building amplitudes

RChT in the resonance region, excited states?

Dai, et.al., PRD88 (2013) 056001

Building amplitudes

We give a combined analysis on four channels:

$$\pi^+\pi^-, K^+K^-, \pi^+\pi^-\pi^0, \pi^+\pi^-\eta$$

- ππ-KK FSI part by matching with Omnes function
- ρ-ω mixing, origined from Gasser&Leutwyler's

Not much freedom for Fit

=1, from QCD as well as disersion relation constraints

Gasser&Leutwyler, Phys.Rept.87 (1982) 77

Guerrero&Pich, PLB 412 (1997) 382

 $F_{V}^{\pi} = \left(1 + \frac{F_{V}G_{V}}{F^{2}}Q^{2}\left(BW(M_{\rho}, \Gamma_{\rho, \rho}, Q^{2}) + \beta_{\pi\pi}^{'}BW(M_{\rho'}, \Gamma_{\rho', \rho'}, Q^{2}) + \beta_{\pi\pi}^{''}BW(M_{\rho''}, \Gamma_{\rho'', \rho''}, Q^{2})\right)$

 $\frac{VG_V}{F^2}Q^2 \Big(BW(M_{\omega},\Gamma_{\omega},Q^2) + \beta'_{\pi\pi}BW(M_{\omega'},\Gamma_{\omega'},Q^2)\Big)$

 $+\beta_{\pi\pi}^{'"}BW(M_{\omega''},\Gamma_{\omega''},Q^2)\right)\left(\frac{1}{\sqrt{3}}\sin\theta_V\cos\delta-\sin\delta^\omega\right)\sin\delta^\omega\right)\\\exp\left[\frac{-s}{96\pi^2F^2}\left(\operatorname{Re}\left[A[m_\pi,M_\rho,Q^2]+\frac{1}{2}A[m_K,M_\rho,Q^2]\right]\right)\right]$

 $\frac{1}{\sqrt{3}}\sin\theta_V\sin\delta^{\rho}+\cos\delta\cos\delta$

Fit

ππ: Babar has large difference with KLOE and BESIII
KK: data in the *φ* 'peak' have large discrepancy

Fit

ππ: Babar has large difference with KLOE and BESIII
KK: data in the *φ* 'peak' have large discrepancy

Fit

πππ: needs more precise data in the ω φ region
 ππη: check our model

g-2:HVP

- Other channels are taken from data-driven or QCD
- Comparing with latest exp's: a 3.3 σ discrepancy

$a^C_\mu \times 10^{-10}$	CHHKS'19	DHMZ'19	Fit I	Fit II	
$a_{\mu}^{\pi\pi} \leq 0.63 \text{GeV}$	132.8(0.4)(1.0)	H	132.11 ± 0.63	132.11±0.67	
$\left s_{\mu}^{\pi\pi} \right _{\leq 1 \mathrm{GeV}}$	495.0(1.5)(2.1)	-	498.48±2.34	498.47±2.33	
$a^{\pi\pi}_{\mu} _{\leq 1.8 \text{GeV}}$	17	507.85±0.83±3.23±0.55	508.89±2.45	508.89±2.45	
$a^{\pi\pi}_{\mu} _{\leq 2.3 \text{GeV}}$	2	-	509.13±2.48	509.13±2.48	
$ \mathfrak{s}_{\mu}^{KK} \leq .1.1 \mathrm{GeV}$	5	5	20.73±0.94	20.74±0.88	
$\left \mathfrak{s}_{\mu}^{KK} \right \leq .1.8 \text{GeV}$	8 -	$23.08 \pm 0.20 \pm 0.33 \pm 0.21$	24.35±1.02	24.36±0.97	
$a_{\mu}^{KK} \leq 2.3 \text{GeV}$	52	÷	24.43±1.03	24.44±1.01	
$a_{\mu}^{\pi\pi\pi} \leq 1.8 \text{GeV}$	46.2(8)	46.21±0.40±1.10±0.86	48.55±1.42	48.54±1.39	
$a_{\mu}^{\pi\pi\pi} \leq 2.3 GeV$	54	2	48.76±1.45	48.75±1.43	
$a^{\eta\pi\pi}_{\mu} _{\leq 1.8 \text{GeV}}$		$1.19 \pm 0.02 \pm 0.04 \pm 0.02$	1.28±0.10	1.29±0.09	
$a^{\eta\pi\pi}_{\mu}$ $\leq 2.3 GeV$	24	-	1.52±0.12	1.53 ± 0.12	
$a_{\mu}^{\rm HVP.LO}$	-	694.0±4.0	699.46±3.41	699.47±3.39	$708.7(5.3) \times 10^{-10}$
a_{μ}^{SM}		11659183.1±4.8	11659187.3±3.8	11659187.3±3.9	Nature(2021)
Δa_{μ}		$26.0 \pm 7.9(3.3\sigma)$	21.6 ±7.4(2.9)	21.6 ± 7.4(2.9a)	

HLBL

- Final State Interaction Theorem
- Dispersion relations
- ChPT constraints

$\gamma\gamma \rightarrow \pi^0\pi^0$ integrated cross section

Angular distribution is helpful to seperate each partial wave.

Constraints to light-by-light sumrule

- The contribution to PV sumrule is certainly not zero.
- 4π channel's contribution is significant for HLBL
- I=0:150–200 nb, I=2: 50nb

Phys.Rept.887(2020)1

		HLBL	92(18)	
evaluation of $\Delta^{I}(4m_{\pi}^{2},\infty,Z=1)$	I = 0	I = 1	I=2	
$\gamma\gamma \to \pi^0$ [6] (nb)	-	-190.9±4.0	-	
$\gamma\gamma \rightarrow \eta, \eta'$ [6] (nb)	-497.7±19.3	=	-	
$\gamma\gamma ightarrow a_2(1320)$ [6] (nb)	-	135.0±12±25 †	-	
$\gamma\gamma \rightarrow \pi\pi$ (nb)	308.0±41.5	-	-44.2±6.1	
$\gamma\gamma \rightarrow \overline{K}K$ (nb)	23.7±7.5	18.1±4.9		
SUM (nb)	-166.0±46.4	-37.8±28.4	-44.2±6.1	

BESIII? BelleII?

Dai et.al., PRD95 (2017) 056007;

Polarizabilities

Polarizabilities plays important role on HLbL DRs

 $(\alpha_1 - \beta_1)_{\pi+} = 11.6$, has been exclude by CB's data

Amplitude analysis

 $\pi^+\pi^-$

 π⁺π⁻ P-wave phase-shift (extracted by Exp) should be taken into isospin violation

Dai et.al., PRD97 (2018) 036012

6. Summary

Thank You For your patience!