Recent results from lattice QCD

Ying Chen

Institute of High Energy Physics, Chinese Academy of Sciences, China

Beijing, July. 09, 2021

Outline

- I. Evidence of existence of glueballs at the physical point
- II. Glueball component of η_c and its implications
- **III. Prospects**
- **IV. Summary**

I. Existence of glueballs at the physical point

I) Glueball spectrum (previous results)

	$m_{\pi} ({ m MeV})$	$m_{0^{++}}$ (MeV)	$m_{2^{++}}$ (MeV)	$m_{0^{-+}}$ (MeV)
$N_f = 2$	938	1417(30)	2363(39)	2573(55)
	650	1498(58)	2384(67)	2585(65)
$N_f = 2 + 1$ [22]	360	1795(60)	2620(50)	
quenched [13]		1710(50)(80)	2390(30)(120)	2560(35)(120)
quenched [14]		1730(50)(80)	2400(25)(120)	2590(40)(130)

Nf=2: W. Sun et al (CLQCD), Chin. Phys. C (in press), arXiv:1702.08174(hep-lat)
[14] C. Morningstar and M. Peardon, Phys. Rev. D 60, 034509, 1999
[13] Y. Chen et al, Phys. Rev. D 73, 014516, 2006
[22] E. Gregory et al., JHEP 10 (2012) 170, arXiv:1208.1858(hep-lat)

Filled Squares: QQCD Open circles: full QCD, coarse lattice Closed circles: full QCD, fine lattice

C.M. Richards et al., [UKQCD Collab.], Phys. Rev. D82, 034501 (2010).

II) What is the situation at the physical point

- $N_f = 2 + 1$ dynamical confiugrations generated by RBC/UKQCD Collaboration.
- Accessed through the agreement between χQCD Collaboration (PI: Prof. K.-F. Liu of Univ. Kentucky)

TAB	LE I. Paramet	ers of 48I and	64I ensembl	e.
$L^3 \times T$	$a \ (fm)$	$m_{\pi} ({ m MeV})$	$La \ (fm)$	$N_{ m conf}$
$48^3 \times 96$	0.1141(2)	~ 139	~ 5.5	364
$64^3 \times 128$	0.0836(2)	~ 139	~ 5.3	300

• Physical m_{π} , m_{K} , large volume, but small size of ensembles

III) Efficacy of cluster decomposition

K.-F. Liu, J. Liang, Y.-B. Yang, Phys. Rev. D 97 (2018), 034507

• In Euclidean space,

translation invariance, stability of the vacuum, existence of a lowest non-zero mass local commutativity, require that

$$|\langle \Omega | T \mathcal{O}_1(x) \mathcal{O}_2(y) | \Omega \rangle_s| \le A r^{-\frac{3}{2}} e^{-Mr}, \qquad r = |x - y|$$

where $\langle \cdots \rangle_s$ means a the vacuum-subtracted correlator. $\int_0^R r^2 dr \ r^{-\frac{3}{2}} e^{-Mr} = \frac{\sqrt{\pi} \operatorname{erf}(\sqrt{MR})}{M^{3/2}} - \frac{\sqrt{R} e^{-mR}}{M}$

• In numerical lattice calculations, signals saturate by $r < R \approx \frac{8}{M}$

$$C(t) = \sum_{\vec{x},\vec{y}} \langle \Omega | TO_1(\vec{x},t) \mathcal{O}_2(\vec{y},0) | \Omega \rangle \qquad r = \sqrt{\vec{r}'^2 + t^2}$$

$$\approx \sum_{\vec{x}} \sum_{r < R} \langle \Omega | TO_1(\vec{x} + \vec{r}',t) \mathcal{O}_2(\vec{x},0) | \Omega \rangle \equiv C(R,t)$$

$$= \int_{r < R} d^3 \vec{r}' \langle K(\vec{r}',t) \rangle \qquad K(\vec{r}',t) \sim \int d^3 \vec{p} \ e^{i \vec{p} \cdot \vec{r}'} \mathcal{O}_1(\vec{p},t) \mathcal{O}_2(-\vec{p},t)$$

• $\mathcal{O}_G - \mathcal{O}_G$ correlation function for different cut R (r in the plot)

The saturation *R* is chosen to be R = 7a

IV) AA-operators for glueballs

P. Forcrand, K.-F. Liu, Phys.Rev.Lett. 69 (1992) 245 J. Liang, Y. Chen, W.-F. Chiu, L.-C. Gui, and M. Gong, Phys. Rev. D 91 (2015) 5, 054513

- Gauge fields: $A_{\mu}(x) \sim \ln U_{\mu}(x)$, $U_{\mu}(x) = e^{-iagA_{\mu}(x)}$ $R^{+}U_{\mu}(x)R \equiv diag(\lambda_{1},\lambda_{2},\lambda_{3})$ $A_{\mu}(x) \sim R^{+}diag(\ln \lambda_{1}, \ln \lambda_{2}, \ln \lambda_{3})R$
- AA-operators for glueballs

$$\mathcal{O}_{AA}^{(LM;S)}(\vec{r}) = \frac{1}{N_r} \sum_{|\vec{r}|=r} \sum_{\vec{x}} c_{ij}(S) Y_{LM}(\hat{r}) A_i(\vec{x}+\vec{r}) A_j(\vec{x})$$

S: the total spin of two gauge field; (*LM*): the orbital quantum number between two gauge fields; N_r : the multiplicity of \vec{r} with $|\vec{r}| = r$

AA-operators are gauge invariant

Coulomb gauge!

The explicit expressions of $\mathcal{O}_{AA}^{(LM;S)}(\vec{r})$ for $A_1^{++}, A_1^{-+}, E^{++}$ and T_2^{++}

$$A_1^{++}$$
 $L = 0$, $S = 0$: $\mathcal{O}_{AA}^{A_1^{++}} = [A_1A_1 + A_2A_2 + A_3A_3]$

$$E^{++} \qquad L = 0, \qquad S = 2: \quad \mathcal{O}_{AA}^{E^{++},1} = \frac{1}{\sqrt{2}} [A_1 A_1 - A_2 A_2]$$
$$L = 0, \qquad S = 2: \quad \mathcal{O}_{AA}^{E^{++},2} = \frac{1}{\sqrt{6}} [2A_3 A_3 - A_1 A_1 - A_2 A_2]$$

$$T_{2}^{++} \qquad L = 0, \qquad S = 2: \quad \mathcal{O}_{AA}^{T_{2}^{++},1} = \frac{1}{\sqrt{2}} [A_{2}A_{3} + A_{3}A_{2}]$$
$$L = 0, \qquad S = 2: \quad \mathcal{O}_{AA}^{T_{2}^{++},2} = \frac{1}{\sqrt{2}} [A_{3}A_{1} + A_{1}A_{3}]$$
$$L = 0, \qquad S = 2: \quad \mathcal{O}_{AA}^{T_{2}^{++},3} = \frac{1}{\sqrt{2}} [A_{1}A_{2} + A_{2}A_{1}]$$

 A_1^{-+} L = 1, S = 1

$$\mathcal{O}_{AA}^{A_1^{-+}}(r,t) = \frac{1}{N_r} \sum_{\vec{x}, |\vec{r}|=r} \epsilon_{ijk} A_i(\vec{x}+\vec{r},t) A_j(\vec{x}) \frac{r_k}{|r|}$$

• Bethe-Salpeter wave functions from the $O_{AA} - O_{G}$ correlation functions

Optimized glueball operators: $\left\langle \mathcal{O}_{G}^{(n)}(t)\mathcal{O}_{G}^{(n)}(0) \right\rangle \approx e^{-m_{n}t} + \cdots$ $\mathcal{O}_{AA} - \mathcal{O}_{G}$ correlation functions: $\left\langle \mathcal{O}_{AA}(t)\mathcal{O}_{G}^{(n)}(0) \right\rangle \propto \langle \Omega | \mathcal{O}_{AA}(r) | n \rangle \left\langle n \left| \mathcal{O}_{G}^{(n)} \right| \Omega \right\rangle e^{-m_{n}t} \approx \Phi_{n}(r)e^{-m_{n}t} + \cdots$

B) Tensor glueball (E^{++} and T_2^{++})

C) Pseudoscalar glueball (A_1^{-+})

D) Preliminary masses of ground state glueballs

0	A_{1}^{++}	E^{++}	T_{2}^{++}	A_{1}^{-+}
48I	1.82 ± 0.09	2.6 ± 0.2	2.7 ± 0.02	2.8 ± 0.2
64I	1.96 ± 0.08	2.7 ± 0.1	2.7 ± 0.2	2.8 ± 0.2

E) Tentative interpretation

- Glueballs are well-defined in the quenched approximation, whose spectrum is also well-established.
- This is not the case for full-QCD.
- Ideally, the energy levels obtained in lattice QCD are the eigenvalues of H_{QCD} of Euclidean lattice,

$$H_{QCD}|\alpha\rangle = E_{\alpha}|\alpha\rangle,$$

$$\sum_{\alpha} |\alpha\rangle\langle\alpha| = 1$$

Imagine that there is a complete state set

$$|n\rangle = |G\rangle, |q\overline{q}\rangle, |MM\rangle, ..., \qquad \sum_{n} |n\rangle\langle n| = 1$$

here $|n\rangle$ are pure gauge glueballs, $q\overline{q}$ mesons, non-interacting multihadron states, etc.

• The eigen states of H_{QCD} can be expanded in terms of $|n\rangle$

 $|\alpha\rangle = C_n^{\alpha}|n\rangle$

• The ground states addressed previously may be (to be checked)

$$|grd\rangle \equiv O_{G}^{(1)}|\Omega\rangle = (1-\epsilon_{1})|G\rangle + \sum_{n,n\neq G} \epsilon_{n} |n\rangle, \quad \epsilon_{n} \ll 1$$

Spectroscopy from lattice QCD: The scalar glueball R. Brett et al. AIP Conf. Proc. 2249 (2020) 030032 (arXiv: 1909.07306(hep-lat)

II. Glueball component of η_c and its implication

- Large total width of η_c : $\Gamma_{\eta_c} = 32.0(7)$ MeV
- This motivates the possibility of sizable gluonic component in η_c
- If η(1405) and η(1475) are the same state, there is no need for a pseudoscalar glueball round 1.3-1.5 GeV
 J.-J. Wu et al., Phys. Rev. Lett. 108, 081803 (2012), arXiv:1108.3772 [hep-ph].
- Lattice QCD predict the mass of the pseudoscalar glueball to be around 2.4-2.6 GeV
- There may be mixing between cc(¹S₀) and the PS glueball
 Y.-D. Tsai, H.-n. Li, and Q. Zhao, Phys. Rev. D 85, 034002 (2012), arXiv:1110.6235 [hep-ph]
 W. Qin, Q. Zhao, and X.-H. Zhong, Phys. Rev. D 97, 096002 (2018), arXiv:1712.02550 [hep-ph]

I) Gauge configurations with $N_f = 2$ degenerate charm quarks

ensemble	$L^3 \times T$	eta	$a_s(\mathrm{fm})$	ξ	$m_{J/\psi}({ m MeV})$	$N_{ m cfg}$
I	$16^3 \times 128$	2.8	0.1026	5	2743	~ 6000
II	$16^3 \times 128$	2.8	0.1026	5	3068	~ 6000

II) Two point functions of the glueball operator and $c\overline{c}$ operator

$$C_{XY}(t) \equiv \frac{1}{Z_T} \operatorname{Tr} \left[e^{-\hat{H}(T-t)} \mathcal{O}_X e^{-\hat{H}t} \mathcal{O}_Y^{\dagger} \right]$$

$$= \frac{1}{Z_T} \sum_{m,n} e^{-E_m(T-t)} \langle m | \mathcal{O}_X | n \rangle \langle n | \mathcal{O}_Y^{\dagger} | m \rangle e^{-E_n t}$$

$$\approx \sum_{n \neq 0} \left[\langle 0 | \mathcal{O}_X | n \rangle \langle n | \mathcal{O}_Y^{\dagger} | 0 \rangle \left(e^{-E_n t} \pm e^{-E_n(T-t)} \right) \right]$$

III) $c\overline{c}$ -glueball mixing model

$$H = \begin{pmatrix} m_{G_1} & x_1 \\ x_1 & m_{(cc)_1} \end{pmatrix} \oplus \begin{pmatrix} m_{G_2} & x_2 \\ x_2 & m_{(cc)_2} \end{pmatrix} \oplus \cdots$$
$$\begin{pmatrix} |g_i\rangle \\ |\eta_i\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_i & -\sin\theta_i \\ \sin\theta_i & \cos\theta_i \end{pmatrix} \begin{pmatrix} |G_i\rangle \\ |(cc)_i\rangle \end{pmatrix}$$
$$\sin\theta_i \approx \frac{x_i}{m_{cc,i} - m_{G_i}}$$

A) $\mathcal{O}_{\gamma_5} = \overline{c}\gamma_5 c$ operator for pseudoscalar charmonia

Assuming:

$$\mathcal{O}_{G}^{\dagger}|0\rangle = \sum_{n \neq 0} \sqrt{Z_{G_{i}}}|G_{i}\rangle$$
$$\mathcal{O}_{\gamma_{5}}^{\dagger}|0\rangle = \sum_{n \neq 0} \sqrt{Z_{(\gamma_{5})_{i}}}|(cc)_{i}\rangle$$

B) $\mathcal{O}_{\gamma_5\gamma_4} = \overline{c}\gamma_5\gamma_4c$ operator for pseudoscalar charmonia

Anomalous PCAC

 $\mathcal{O}_{\gamma_5\gamma_4}$ can couple to glueballs:

$$\langle 0|\mathcal{O}_{\gamma_5\gamma_4}|G_i, \mathbf{p}=0\rangle \propto \frac{1}{m_{G_i}}\langle 0|q(0)|G_i\rangle$$

$$C_{G\gamma_{5}\gamma_{4}}(t) = \sqrt{Z_{G_{1}}} \langle 0|\mathcal{O}_{\gamma_{5}\gamma_{4}}|G_{1}\rangle \cos^{2}\theta_{1}e^{-m_{g_{1}}}$$
$$-\sum_{i=1}^{2} \sqrt{Z_{G_{i}}Z_{(cc)_{i}}} \cos\theta_{i}\sin\theta_{i} \left(e^{-m_{g_{i}}t} + e^{-m_{g_{i}}(T-t)} - (e^{-m_{\eta_{i}}t} + e^{-m_{\eta_{i}}(T-t)})\right)$$

				[
ensemble	Г	$m_{\eta_1}(\text{MeV})$	$m_{g_1}({ m MeV})$	$ heta_1$	$x_1(MeV)$
I	γ_5	2691(2)	2317(51)	$7.7(1.1)^{\circ}$	48(7)
	$\gamma_5\gamma_4$	2685(1)	2317(43)	$6.8(8)^{\circ}$	43(6)
	avg.	2686(1)	2317(46)	$7.1(9)^{\circ}$	46(7)
II	γ_5	2987(9)	2308(63)	$4.9(6)^{\circ}$	59(8)
	$\gamma_5\gamma_4$	3013(3)	2385(40)	$4.2(3)^{\circ}$	46(6)
	avg.	3010(4)	2363(47)	$4.3(4)^{\circ}$	49(7)
				1	

IV) Physical implications

A) X(2370) observed by BESIIII

M. Ablikim et al. (BESIII), Phys. Rev. Lett. 106, 072002 (2011), arXiv:1012.3510 [hep-ex] M. Ablikim et al. (BESIII), Eur. Phys. J. C 80, 746 (2020), arXiv:1912.11253 [hep-ex]

 $J/\psi \rightarrow \gamma X(2370) \rightarrow \gamma \pi^+ \pi^- \eta'$:

 $M_{X(2370)} = 2341.6 \pm 6.5 \text{(stat.)} \pm 5.7 \text{(syst.)} \text{ MeV}$ $\Gamma_{X(2370)} = 117 \pm 10 \text{(stat.)} \pm 8 \text{(syst.)} \text{ MeV}$

$J/\psi \rightarrow \gamma X(2370) \rightarrow \gamma K \overline{K} \eta'$:

 $M_{X(2370)} = 2376.3 \pm 8.7 (\text{stat.})^{+3.2}_{-4.3} (\text{syst.}) \text{ MeV}$ $\Gamma_{X(2370)} = 83 \pm 17 (\text{stat.})^{+44}_{-6} (\text{syst.}) \text{ MeV},$

 $Br(\gamma K^+ K^- \eta') = (1.79 \pm 0.23(stat.) \pm 0.65(syst.)) \times 10^{-5}$ Br(\gamma K_s K_s \eta') = (1.18 \pm 0.32(stat.) \pm 0.39(syst.)) \times 10^{-5}

Lattice QCD predictions

L.-C. Gui et al. Phys. Rev. D 100, 054511 (2019), arXiv:1906.03666 [hep-lat]

 $\Gamma(J/\psi \to \gamma G_{0^-}) = 22(7) \ eV$ Br $(J/\psi \to \gamma G_{0^-}) = 2.3(8) \times 10^{-4}$

B) X(2370) as (predominantly) a pseudoscalar glueball?

Assuming $\Gamma_X \approx 100 \text{ MeV}$

$$\sin \theta = \frac{x}{m_{\eta_c} - m_X} \approx 0.075(8)$$
$$\delta m_{c\overline{c}} = \frac{x^2}{m_{\eta_c} - m_X} \approx 3.6(5) \text{ MeV}$$

Theoretically

$$\frac{|\mathcal{M}(X \to \text{LH})|}{|\mathcal{M}(c\bar{c} \to \text{LH})|} \approx \left(\frac{m_X \Gamma_X}{m_{\eta_c} \Gamma_{c\bar{c}}}\right)^{1/2}$$
$$\frac{\Gamma_{\eta_c}}{\Gamma_{c\bar{c}}} \approx \left|\cos\theta + \sin\theta \frac{|\mathcal{M}(X \to \text{LH})|}{|\mathcal{M}(c\bar{c} \to \text{LH})|}\right|^2$$
$$\approx 1 + 2\sin\theta \left(\frac{m_X \Gamma_X}{m_{\eta_c} \Gamma_{\eta_c}}\right)^{1/2} \left(\frac{\Gamma_{\eta_c}}{\Gamma_{c\bar{c}}}\right)^{1/2}$$
$$\Gamma_{\eta_c}/\Gamma_{c\bar{c}} \approx 1.27(4), \qquad \Gamma_{c\bar{c}} \approx 25(2) \text{ MeV}$$

To the leading order of QCD,

$$lpha_s(m_c) \approx 0.30 - 0.35$$

 $lpha(m_c) \approx \frac{1}{134}$

$$\frac{\Gamma(c\overline{c} \to \gamma\gamma)}{\Gamma(c\overline{c} \to gg)} \approx \frac{8}{9} \left(\frac{\alpha}{\alpha_s}\right)^2 \frac{1 - 3.4\alpha_s/\pi}{1 + 4.8\alpha_s/\pi}$$
$$\approx (1.7 - 2.6) \times 10^{-4}$$

Experimentally (PDG 2020),

Figure 9.3: Summary of measurements of α_s as a function of the energy scale Q. The respective degree of QCD perturbation theory used in the extraction of α_s is indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to-leading order; NNLO+res.: NNLO matched to a resummed calculation; N³LO: next-to-NNLO).

$$\frac{\Gamma(\eta_c \to \gamma \gamma)}{\Gamma(\eta_c \to all)} \approx (1.61 \pm 0.12) \times 10^{-4}$$

 $\mathsf{lf}\ \Gamma(\eta_c \to \gamma \gamma) \approx \Gamma\big((c\bar{c}) \to \gamma \gamma\big), \ \ \Gamma(\eta_c \to all) \approx \Gamma(\eta_c \to gg) \ ,$

$$\Gamma_{\eta_c}/\Gamma_{c\bar{c}} \approx 1.27(4) \qquad \longrightarrow \qquad \frac{\Gamma(c\bar{c} \to \gamma\gamma)}{\Gamma(c\bar{c} \to gg)} \approx (2.04 \pm 0.14) \times 10^{-4}$$

C) The experiment-theory tension on $J/\psi \rightarrow \gamma \eta_c$

Potential model and LQCD predict: $\Gamma(J/\psi \rightarrow \gamma \eta_c) \approx 2.4 - 2.9 \text{ keV}$

Experiments (PDG 2020) : $\Gamma(J/\psi \rightarrow \gamma \eta_c) \approx 1.6 \pm 0.4$ keV

The $(c\overline{c})$ -glueball can not alleviate this tension yet.

III. Prospects

- Partial width $J/\psi \rightarrow \gamma \eta$, $\gamma \eta_1(1^{-+})$ (hopefully by the end of 2021)
- Scalar glueball-ss meson mixing (2022)
- Partial width $J/\psi \rightarrow \gamma s \overline{s}(0^{++}), \gamma s \overline{s}(2^{++})$ (2022)

VI. Summary

A) Glueballs at the physical point

- For $A_1^{++}, E^{++}, T_2^{++}$ and A_1^{-+} channels, the radial behaviors of the BS wave functions are similar to the Schroedinger wave functions of two-body systems in a central potential.
- The masses of the ground states in these channels are close to the corresponding pure gauge glueballs.
- Do the wave functions reflect the glueball-like nature of these states?
- Many open questions, no solid conclusion.
- B) Gluball component of η_c
- Possible explanation of the large total width of η_c
- Compatible with the experimental result of $\eta_c \rightarrow \gamma \gamma$
- Can not explain the discrepancy of theory and experiments on $\Gamma(J/\psi\to\gamma\eta_c)$

Thanks!

Present status of lattice QCD study on hadron spectroscopy

Lattice : Discretized Reel World - Continuum Endidean Spacetime lattice Minkowski Spacetime hadron ground state hadron ground state Direct Λ hadron resonance Lüscher Formula Discretized Energy levels Eigenstates of A of QCP on Euclidean spacetime Lattice. hadron resonance (coupled channel effects. mixing... -7C