Two- and three-gluon glueballs through QCD sum rules

Hua-Xing Chen

Southeast University (CN)

Collaborators: Wei Chen and Shi-Lin Zhu

Hadron spectrum

Hadron spectrum

Previous Studies

MIT bag model: A. Chodos et al., Phys. Rev. D 9, 3471 (1974); R. L. Jaffe and K. Johnson, Phys. Lett. 60B, 201 (1976). Flux tube model: N. Isgur and J. E. Paton, Phys. Rev. D 31, 2910 (1985). Coulomb Gauge: A. Szczepaniak et al., Phys. Rev. Lett. 76, 2011 (1996); F. J. Llanes-Estrada, P. Bicudo and S. R. Cotanch, Phys. Rev. Lett. 96, 081601 (2006). Glueball trajectories: I. Szanyi et al., Nucl. Phys. A 998, 121728 (2020). Lattice QCD: K. G. Wilson, Phys. Rev. D 10, 2445 (1974); Y. Chen et al., Phys. Rev. D 73, 014516 (2006); V. Mathieu, N. Kochelev and V. Vento, IJMPE 18, 1 (2009); E. Gregory et al., JHEP 1210, 170 (2012). QCD sum rules: V. A. Novikov, M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, NPB165, 67 (1980); S. Narison, Z. Phys. C 26, 209 (1984); S. Narison, Nucl. Phys. B 509, 312 (1998); J. I. Latorre, S. Narison and S. Paban, Phys. Lett. B 191, 437 (1987); E. Bagan and T. G. Steele, Phys. Lett. B 243, 413 (1990); G. Hao, C. F. Qiao and A. L. Zhang, Phys. Lett. B 642, 53 (2006); C. F. Qiao and L. Tang, Phys. Rev. Lett. 113, 221601 (2014); A. Pimikov, H. J. Lee, N. Kochelev and P. Zhang, Phys. Rev. D 95, 071501(R) (2017).

Previous Studies

MIT bag model: A. Chodos et al., Phys. Rev. D 9, 3471 (1974);

R. L. Jaffe and K. Johnson, Phys. Lett. 60B, 201 (1976).

Flux tube model: N. Isgur and J. E. Paton, Phys. Rev. D 31, 2910 (1985).

Coulomb Gauge: A. Szczepaniak et al., Phys. Rev. Lett. 76, 2011 (1996);

F. J. Llanes-Estrada, P. Bicudo and S. R. Cotanch, Phys. Rev. Lett. 96, 081601 (2006). Glueball trajectories: I. Szanyi et al., Nucl. Phys. A 998, 121728 (2020).

Lattice QCD: K. G. Wilson, Phys. Rev. D 10, 2445 (1974);

Y. Chen et al., Phys. Rev. D 73, 014516 (2006);

V. Mathieu, N. Kochelev and V. Vento, IJMPE 18, 1 (2009);

E. Gregory et al., JHEP 1210, 170 (2012).

QCD sum rules: V. A. Novikov, M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, NPB165, 67 (1980);

S. Narison, Z. Phys. C 26, 209 (1984);

S. Narison, Nucl. Phys. B 509, 312 (1998);

J. I. Latorre, S. Narison and S. Paban, Phys. Lett. B 191, 437 (1987);

E. Bagan and T. G. Steele, Phys. Lett. B 243, 413 (1990):

G. Hao, C. F. Qiao and A. L. Zhang, Phys. Lett. B 642, 53 (2006);

C. F. Qiao and L. Tang, Phys. Rev. Lett. 113, 221601 (2014);

A. Pimikov, H. J. Lee, N. Kochelev and P. Zhang, Phys. Rev. D 95, 071501(R) (2017).

Recent D0 and TOTEM experiments

• There is currently no definite evidence for the glueball's existence.

• Recently, D0 and TOTEM studied pp and $p\bar{p}$ cross sections, and found them differ with a significance of 3.4σ (which can be increased to be $5.2 - 5.7\sigma$).

D0 Collaboration, Phys. Rev. D 86, 012009 (2012);

D0 and TOTEM Collaborations, arXiv:2012.03981 [hep-ex];

TOTEM Collaboration, Eur. Phys. J. C 79, 785 (2019).

The above difference leads to the evidence of a *t*-channel exchanged odderon, i.e., predominantly a three-gluon glueball of C = -.

COMPETE Collaboration, Phys. Rev. Lett. 89, 201801 (2002);

V. A. Khoze, A. D. Martin and M. G. Ryskin, Phys. Rev. D 97, 034019 (2018);

E. Martynov and B. Nicolescu, Eur. Phys. J. C 79, 461 (2019).

Interests in glueballs are reviving recently!

Recent D0 and TOTEM experiments

Interests in glueballs are reviving recently!

QCD sum rule approach

• Construct relativistic glueball currents using:

$$G^a_{\mu\nu}$$
 and $\widetilde{G}^a_{\mu\nu}$

• Perform QCD sum rule calculations

• Compare with Lattice QCD calculations

Non-relativistic operators

R. L. Jaffe, K. Johnson and Z. Ryzak Annals Phys. 168, 344 (1986)

$$E_i = G_{i0}^a$$
 and $B_i = -\frac{1}{2}\epsilon_{ijk}G_{jk}^a$

	J^{PC}	Operator
C=- operators	$ \begin{array}{r} 1 + - \\ 1 \\ 2 + - \\ 2 \\ 3 \\ 3 + - \end{array} $	$\begin{aligned} &d_{abc}(\vec{E}_{a}\cdot\vec{E}_{b})\vec{B}_{c} \\ &d_{abc}(\vec{E}_{a}\cdot\vec{E}_{b})\vec{E}_{c} \\ &d_{abc}[E_{a}^{i}[E_{a}^{i}(\vec{B}_{b}\times\vec{E}_{c})^{j}+(i\leftrightarrow j)] \\ &d_{abc}[B_{a}^{i}(\vec{E}_{b}\times\vec{B}_{c})^{j}+(i\leftrightarrow j)] \\ &d_{abc}[E_{a}^{i}E_{b}^{j}E_{c}^{k}-\frac{1}{5}\vec{E}_{a}\cdot\vec{E}_{b}(\delta^{ij}E_{c}^{k}+\delta^{jk}E_{c}^{i}+\delta^{ik}E_{c}^{j})] \\ &d_{abc}[B_{a}^{i}B_{b}^{j}B_{c}^{k}-\frac{1}{5}\vec{B}_{a}\cdot\vec{B}_{b}(\delta^{ij}B_{c}^{k}+\delta^{jk}B_{c}^{i}+\delta^{ik}B_{c}^{j})] \end{aligned}$

Relativistic currents

 $G^a_{\mu\nu}$ and $\widetilde{G}^a_{\mu\nu}$

$$\begin{split} \tilde{J}_{1}^{\alpha\beta} &= d^{abc} \tilde{G}_{a}^{\mu\nu} \tilde{G}_{b,\mu\nu} \tilde{G}_{c}^{\alpha\beta} \,, \\ J_{1}^{\alpha\beta} &= d^{abc} G_{a}^{\mu\nu} G_{b,\mu\nu} G_{c}^{\alpha\beta} \,, \\ J_{2}^{\alpha_{1}\alpha_{2},\beta_{1}\beta_{2}} &= d^{abc} \mathcal{S}' [G_{a}^{\alpha_{1}\beta_{1}} \tilde{G}_{b}^{\alpha_{2}\mu} G_{c,\mu}^{\beta_{2}} - \{\alpha_{2} \leftrightarrow \beta_{2}\}], \\ \tilde{J}_{2}^{\alpha_{1}\alpha_{2},\beta_{1}\beta_{2}} &= d^{abc} \mathcal{S}' [\tilde{G}_{a}^{\alpha_{1}\beta_{1}} G_{b}^{\alpha_{2}\mu} \tilde{G}_{c,\mu}^{\beta_{2}} - \{\alpha_{2} \leftrightarrow \beta_{2}\}], \\ J_{3}^{\alpha_{1}\alpha_{2}\alpha_{3},\beta_{1}\beta_{2}\beta_{3}} &= d^{abc} \mathcal{S}' [G_{a}^{\alpha_{1}\beta_{1}} G_{b}^{\alpha_{2}\beta_{2}} G_{c}^{\alpha_{3}\beta_{3}}] \,, \\ \tilde{J}_{3}^{\alpha_{1}\alpha_{2}\alpha_{3},\beta_{1}\beta_{2}\beta_{3}} &= d^{abc} \mathcal{S}' [\tilde{G}_{a}^{\alpha_{1}\beta_{1}} \tilde{G}_{b}^{\alpha_{2}\beta_{2}} \tilde{G}_{c}^{\alpha_{3}\beta_{3}}] \,, \end{split}$$

Non-relativistic operators

Relativistic currents

F —	ca	and	R –	_1	ca
$L_i -$	u i0	anu	$D_i -$	$-\frac{1}{2}$ cijk	^{cu} jk

 $J^{\rm PC}$

 $G^a_{\mu\nu}$ and $\widetilde{G}^a_{\mu\nu}$

1 + -	$d_{abc}(\vec{E}_a\cdot\vec{E}_b) \vec{B}_c$	$ ilde{J}_1^{lphaeta} \;=\; d^{abc} ilde{G}_a^{\mu u} ilde{G}_{b,\mu u} ilde{G}_c^{lphaeta} ,$
1	$d_{abc}(\vec{E}_a \cdot \vec{E}_b) \vec{E}_c$	$J_1^{\alpha\beta} = d^{abc} G_a^{\mu\nu} G_{b,\mu\nu} G_c^{\alpha\beta} ,$
2+-	$d_{abc} [E^i_a [E^i_a (\vec{B}_b \times \vec{E}_c)^j -$	$J_2^{\alpha_1\alpha_2,\beta_1\beta_2} = d^{abc} \mathcal{S}'[G_a^{\alpha_1\beta_1} \tilde{G}_b^{\alpha_2\mu} G_{c,\mu}^{\beta_2} - \{\alpha_2 \leftrightarrow \beta_2\}],$
2==	$d_{abc} [B_a^i (E_b \times B_c)^j + (i + i)]$	$\tilde{J}_2^{\alpha_1\alpha_2,\beta_1\beta_2} = d^{abc} \mathcal{S}'[\tilde{G}_a^{\alpha_1\beta_1}G_b^{\alpha_2\mu}\tilde{G}_{c,\mu}^{\beta_2} - \{\alpha_2 \leftrightarrow \beta_2\}],$
3+-	$\begin{aligned} a_{abc} \left[E_a^{t} E_b^{t} E_c^{t} - \frac{1}{5} E_a^{t} \cdot E \right] \\ d = \left[B_i B_i B_k^{t} - 1 \vec{P} \cdot \vec{P} \right] \end{aligned}$	$J_{3}^{\alpha_{1}\alpha_{2}\alpha_{3},\beta_{1}\beta_{2}\beta_{3}} = d^{abc} \mathcal{S}'[G_{a}^{\alpha_{1}\beta_{1}}G_{b}^{\alpha_{2}\beta_{2}}G_{c}^{\alpha_{3}\beta_{3}}],$
	$u_{abc} \left[D_a D_b D_c - \frac{1}{3} D_a \right] D_b$	$\tilde{J}_3^{\alpha_1\alpha_2\alpha_3,\beta_1\beta_2\beta_3} = d^{abc} \mathcal{S}'[\tilde{G}_a^{\alpha_1\beta_1}\tilde{G}_b^{\alpha_2\beta_2}\tilde{G}_c^{\alpha_3\beta_3}],$

Non-relativistic operators

Relativistic currents

$E_i = G_{i0}^a$	and $B_i = -\frac{1}{2} \epsilon_{ijk} G^a_{jk}$	$G^a_{\mu\nu}$ and $\widetilde{G}^a_{\mu\nu}$
JPC		i, j $(\vec{E} \cdot \vec{E} + \vec{B} \cdot \vec{B}) \vec{B}$
1 + - 1	$d_{abc}(\vec{E}_a \cdot \vec{E}_b) \vec{B}_c$ $d_{+}(\vec{F} \cdot \vec{F}_b) \vec{E}$	$\tilde{J}_{1}^{\alpha\beta} = d^{abc} \tilde{G}_{a}^{\mu\nu} \tilde{G}_{b,\mu\nu} \tilde{G}_{c}^{\alpha\beta} ,$ $J^{\alpha\beta} = d^{abc} G^{\mu\nu} G = G^{\alpha\beta}$
2+- 2	$d_{abc} [E_a^i [E_a^i (\vec{B}_b \times \vec{E}_c)^j - d_{abc} [B^i (\vec{E}_i \times \vec{R}_i)^j + (i_i)]$	$J_1^{\alpha_1 \alpha_2, \beta_1 \beta_2} = d^{abc} \mathcal{S}' [G_a^{\alpha_1 \beta_1} \tilde{G}_b^{\alpha_2 \mu} G_c^{\beta_2} - \{\alpha_2 \leftrightarrow \beta_2\}],$
	$d_{abc} \begin{bmatrix} E_a^i E_b^j E_c^k - \frac{1}{5} \vec{E}_a \cdot \vec{E} \\ d_{abc} \begin{bmatrix} B_a^i B_b^j B_c^k - \frac{1}{5} \vec{E}_a \cdot \vec{E} \\ d_{abc} \end{bmatrix} \vec{B}_a^i \vec{B}_b^j \vec{B}_a^k - \frac{1}{5} \vec{B}_a \cdot \vec{B}$	$J_2^{\alpha_1\alpha_2,\beta_1\beta_2} = d^{abc} \mathcal{S}'[G_a^{\alpha_1\beta_1}G_b^{\alpha_2\mu}G_{c,\mu}^{\beta_2} - \{\alpha_2 \leftrightarrow \beta_2\}],$ $J_3^{\alpha_1\alpha_2\alpha_3,\beta_1\beta_2\beta_3} = d^{abc} \mathcal{S}'[G_a^{\alpha_1\beta_1}G_b^{\alpha_2\beta_2}G_c^{\alpha_3\beta_3}],$
		$\tilde{J}_3^{\alpha_1\alpha_2\alpha_3,\beta_1\beta_2\beta_3} = d^{abc} \mathcal{S}'[\tilde{G}_a^{\alpha_1\beta_1}\tilde{G}_b^{\alpha_2\beta_2}\tilde{G}_c^{\alpha_3\beta_3}],$

Relativistic currents Non-relativistic operators $E_i = G_{i0}^a$ and $B_i = -\frac{1}{2}\epsilon_{ijk}G_{ik}^a$ $G^a_{\mu\nu}$ and $\tilde{G}^a_{\mu\nu}$ $0, i \qquad \left(\vec{E} \cdot \vec{E} + \vec{B} \cdot \vec{B}\right) \vec{E}$ JPC $i, j \qquad (\vec{E} \cdot \vec{E} + \vec{B} \cdot \vec{B}) \vec{B}$ $d_{abc}(\vec{E}_a \cdot \vec{E}_b) \vec{B}_c$ 1 + $d_{abc}(\vec{E}_a \cdot \vec{E}_b) \vec{E}_c$ 1 - - $J_1^{\alpha\beta} = d^{abc} G_a^{\mu\nu} G_{b,\mu\nu} G_c^{\alpha\beta},$ 2 + $d_{abc} [E^i_a [E^i_a (\vec{B}_b \times \vec{E}_c)^j J_2^{\alpha_1\alpha_2,\beta_1\beta_2} = d^{abc} \mathcal{S}'[G_a^{\alpha_1\beta_1} \tilde{G}_b^{\alpha_2\mu} G_{c,\mu}^{\beta_2} - \{\alpha_2 \leftrightarrow \beta_2\}],$ 2 - $d_{abc} [B^i_o(\vec{E}_b \times \vec{B}_c)^j + (i \cdot$ $\tilde{J}_{2}^{\alpha_{1}\alpha_{2},\beta_{1}\beta_{2}} = d^{abc}\mathcal{S}'[\tilde{G}_{a}^{\alpha_{1}\beta_{1}}G_{b}^{\alpha_{2}\mu}\tilde{G}_{c,\mu}^{\beta_{2}} - \{\alpha_{2}\leftrightarrow\beta_{2}\}],$ 3 - $d_{abc} \left[E_a^i E_b^j E_c^k - \frac{1}{5} \vec{E}_a \cdot \vec{E} \right]$ $J_2^{\alpha_1\alpha_2\alpha_3,\beta_1\beta_2\beta_3} = d^{abc} \mathcal{S}'[G_a^{\alpha_1\beta_1}G_b^{\alpha_2\beta_2}G_c^{\alpha_3\beta_3}],$ 3+ $d_{abc} \left[B^i_a B^j_b B^k_c - \frac{1}{5} \vec{B}_a \cdot \vec{B} \right]$ $\tilde{J}_{2}^{\alpha_{1}\alpha_{2}\alpha_{3},\beta_{1}\beta_{2}\beta_{3}} = d^{abc}\mathcal{S}'[\tilde{G}_{a}^{\alpha_{1}\beta_{1}}\tilde{G}_{b}^{\alpha_{2}\beta_{2}}\tilde{G}_{c}^{\alpha_{3}\beta_{3}}],$

$$\begin{array}{ll} \langle 0|J_1^{\alpha\beta}|X_{1^{+-}}\rangle &=& if_{1^{+-}}\epsilon^{\alpha\beta\mu\nu}\epsilon_{\mu}p_{\nu}\,,\\ \langle 0|J_1^{\alpha\beta}|X_{1^{--}}\rangle &=& if_{1^{--}}(p^{\alpha}\epsilon^{\beta}-p^{\beta}\epsilon^{\alpha})\,, \end{array}$$

QCD Sum Rules

• In sum rule analyses, we consider two-point correlation functions: $\Pi(q^2) \stackrel{\text{def}}{=} i \int d^4 x e^{iqx} \langle 0|T\eta(x)\eta^+(0)|0\rangle$ $\approx \sum_n \langle 0|\eta|n\rangle \langle n|\eta^+|0\rangle$

where η is the current which can couple to hadronic states.

• By using the dispersion relation, we can obtain the spectral density

$$\Pi\left(q^2\right) = \int_{s_<}^\infty \frac{\rho(s)}{s-q^2-i\varepsilon} ds$$

• In QCD sum rule, we can calculate these matrix elements from QCD (OPE) and relate them to observables by using dispersion relation.

QCD Sum Rules

• Borel transformation to suppress the higher order terms:

$$\Pi(M_B^2) \equiv f^2 \, e^{-M^2/M_B^2} = \int_{s_<}^{s_0} e^{-s/M_B^2} \rho(s) ds$$

• Two free parameters

 M_B , s_0

We need to choose certain region of (M_B, s_0) .

Criteria

- 1. Stability
- 2. Convergence of OPE
- 3. Positivity of spectral density
- 4. Sufficient amount of pole contribution

 $G^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g_s f^{abc} A^b_\mu A^c_\nu$

$$\begin{split} J_{1}^{\alpha\beta} &= d^{abc}G_{a}^{\mu\nu}G_{b,\mu\nu}G_{c}^{\alpha\beta}, \\ \rho_{1^{--}}(s) &= \frac{4\alpha_{s}^{3}}{81\pi}s^{4} - \frac{10\alpha_{s}^{2}\langle g_{s}^{2}GG \rangle}{9}s^{2} + \frac{25\alpha_{s}^{3}\langle g_{s}^{2}GG \rangle}{36\pi}s^{2} - \frac{5\alpha_{s}^{2}\langle g_{s}^{3}G^{3} \rangle}{27}s \end{split}$$

$$\begin{split} J_{1}^{\alpha\beta} &= d^{abc} G_{a}^{\mu\nu} G_{b,\mu\nu} G_{c}^{\alpha\beta} ,\\ \rho_{1^{--}}(s) &= \frac{4\alpha_{s}^{3}}{81\pi} s^{4} - \frac{10\alpha_{s}^{2} \langle g_{s}^{2} G G \rangle}{9} s^{2} + \frac{25\alpha_{s}^{3} \langle g_{s}^{2} G G \rangle}{36\pi} s^{2} - \frac{5\alpha_{s}^{2} \langle g_{s}^{3} G^{3} \rangle}{27} s \\ \hline CVG &\equiv \left| \frac{\Pi^{\text{D}=8 \oplus \alpha_{s}^{n=3}}(s_{0}, M_{B}^{2})}{\Pi(s_{0}, M_{B}^{2})} \right| \leq 5\% \end{split}$$

$$\begin{split} \text{Pole contribution} &\equiv \left| \frac{\Pi(s_{0}, M_{B}^{2})}{\Pi(\infty, M_{B}^{2})} \right| \geq 40\% \end{split}$$

$$\begin{split} \text{Pole contribution} &\equiv \left| \frac{\Pi(s_{0}, M_{B}^{2})}{\Pi(\infty, M_{B}^{2})} \right| \geq 40\% \end{aligned}$$

$$\begin{split} \text{Borel Mass}^{2} [\text{GeV}^{2}] \end{split}$$

 $Mass_{|GGG;1^{--}\rangle} = 5.10^{+0.21}_{-0.16} \text{ GeV}$

$$\begin{array}{ll} \langle \alpha_s GG \rangle &=& (0.005 \pm 0.004) \times \pi \ \mathrm{GeV}^4 \,, \\ \langle g_s^3 G^3 \rangle &=& \langle \alpha_s GG \rangle \times (8.2 \pm 1.0) \ \mathrm{GeV}^2 \,. \end{array}$$

B. L. loffe, Prog. Part. Nucl. Phys. 56, 232 (2006)

$$\begin{array}{ll} \langle \alpha_s GG \rangle &= (6.35 \pm 0.35) \times 10^{-2} \ \mathrm{GeV}^4 \,, \\ \langle g_s^3 G^3 \rangle &= \langle \alpha_s GG \rangle \times (8.2 \pm 1.0) \ \mathrm{GeV}^2 \,. \end{array}$$

S. Narison, Int. J. Mod. Phys. A 33, 1850045 (2018)

Cluoball	Current	$s_0^{min} \; [{ m GeV}^2]$.	Working Regions		Polo [%]	Mass [CoV]
Giuebali			$s_0 \; [{ m GeV}^2]$	$M_B^2 \ [{ m GeV}^2]$		
$ { m GG};0^{++} angle$	J_0	7.8	9.0 ± 1.0	3.71 – 4.18	40-48	$1.79\substack{+0.14 \\ -0.16}$
$ \mathrm{GG};2^{++}\rangle$	$J_2^{lpha_1lpha_2,eta_1eta_2}$	8.5	10.0 ± 1.0	3.99 – 4.60	40 – 50	$1.86\substack{+0.14 \\ -0.17}$
$ { m GG};0^{-+} angle$	$ ilde{J}_0$	7.9	9.0 ± 1.0	3.16 – 3.72	40 - 50	$2.15\substack{+0.11 \\ -0.11}$
$ {\rm GG};2^{-+}\rangle$	$ ilde{J}_2^{lpha_1lpha_2,eta_1eta_2}$	7.6	9.0 ± 1.0	3.06 - 3.76	40 - 52	$2.12\substack{+0.11 \\ -0.12}$
$ { m GGG};0^{++} angle$	η_0	17.1	19.0 ± 2.0	4.22 – 4.67	40–49	$3.14\substack{+0.17 \\ -0.19}$
$ \mathrm{GGG};2^{++}\rangle$	$\eta_2^{lpha_1lpha_2,eta_1eta_2}$	26.9	29.0 ± 3.0	6.35 – 6.82	40 - 46	$3.95^{+0.21}_{-0.24}$
$ {\rm GGG};0^{-+}\rangle$	$ ilde\eta_0$	27.2	30.0 ± 3.0	6.25 – 6.99	40-49	$4.21_{-0.20}^{+0.18}$
$ {\rm GGG};2^{-+}\rangle$	$\tilde{\eta}_2^{\alpha_1\alpha_2,\beta_1\beta_2}$	17.6	30.0 ± 3.0	4.98 - 7.81	40 - 78	$3.90^{+0.18}_{-0.26}$
$ \mathrm{GGG};1^{+-} angle$	$\xi_1^{lphaeta}$	17.7	20.0 ± 2.0	5.04 – 5.62	40-49	$3.19\substack{+0.15 \\ -0.17}$
$ \mathrm{GGG};2^{+-}\rangle$	$\xi_2^{\alpha_1\alpha_2,\beta_1\beta_2}$	23.2	26.0 ± 3.0	6.24 – 6.90	40-48	$3.67^{+0.20}_{-0.23}$
$ { m GGG};3^{+-} angle$	$\xi_3^{\alpha_1\alpha_2\alpha_3,\beta_1\beta_2\beta_3}$	23.8	26.0 ± 3.0	6.68 - 7.18	40-46	$3.63^{+0.21}_{-0.23}$
$ \mathrm{GGG};1^{}\rangle$	$ ilde{\xi}_1^{lphaeta}$	32.5	35.0 ± 4.0	5.93 - 6.89	40 - 50	$5.10\substack{+0.21 \\ -0.16}$
$ \mathrm{GGG};2^{}\rangle$	$ ilde{\xi}_2^{lpha_1lpha_2,eta_1eta_2}$	35.7	38.0 ± 4.0	7.83 - 8.45	40 - 46	$4.81^{+0.21}_{-0.24}$
$ { m GGG};3^{} angle$	$ ilde{\xi}_3^{lpha_1lpha_2lpha_3,eta_1eta_2eta_3}$	34.9	37.0 ± 4.0	6.07 – 7.02	40-48	$5.47^{+0.28}_{-0.19}$

Glueball	QCD sum rules	Ref. [10]	Ref. [11]	Ref. [12]	Ref. [13]
$ \mathrm{GG};0^{++}\rangle$	$1.79_{-0.16}^{+0.14}$	$1.71 \pm 0.05 \pm 0.08$	$1.73 \pm 0.05 \pm 0.08$	$1.48 \pm 0.03 \pm 0.07$	1.80 ± 0.06
$ \mathrm{GG};2^{++}\rangle$	$1.86^{+0.14}_{-0.17}$	$2.39 \pm 0.03 \pm 0.12$	$2.40 \pm 0.03 \pm 0.12$	$2.15 \pm 0.03 \pm 0.10$	2.62 ± 0.05
$ \mathrm{GG};0^{-+}\rangle$	$2.15\substack{+0.11 \\ -0.11}$	$2.56 \pm 0.04 \pm 0.12$	$2.59 \pm 0.04 \pm 0.13$	$2.25 \pm 0.06 \pm 0.10$	_
$ \mathrm{GG};2^{-+}\rangle$	$2.12\substack{+0.11 \\ -0.12}$	$3.04 \pm 0.04 \pm 0.15$	$3.10 \pm 0.03 \pm 0.15$	$2.78 \pm 0.05 \pm 0.13$	3.46 ± 0.32
$ { m GGG};0^{++} angle$	$3.14\substack{+0.17 \\ -0.19}$	_	$2.67 \pm 0.18 \pm 0.13$	$2.76 \pm 0.03 \pm 0.12$	3.76 ± 0.24
$ \mathrm{GGG};2^{++}\rangle$	$3.95\substack{+0.21 \\ -0.24}$	_	_	$2.88 \pm 0.10 \pm 0.13$	_
$ { m GGG};0^{-+} angle$	$4.21\substack{+0.18 \\ -0.20}$	_	$3.64 \pm 0.06 \pm 0.18$	$3.37 \pm 0.15 \pm 0.15$	4.49 ± 0.59
$ \mathrm{GGG};2^{-+}\rangle$	$3.90\substack{+0.18\\-0.26}$	_	_	$3.48 \pm 0.14 \pm 0.16$	_
$ { m GGG};1^{+-} angle$	$3.19\substack{+0.15 \\ -0.17}$	$2.98 \pm 0.03 \pm 0.14$	$2.94 \pm 0.03 \pm 0.14$	$2.67 \pm 0.07 \pm 0.12$	3.27 ± 0.34
$ \mathrm{GGG};2^{+-}\rangle$	$3.67\substack{+0.20 \\ -0.23}$	$4.23 \pm 0.05 \pm 0.20$	$4.14 \pm 0.05 \pm 0.20$	_	_
$ { m GGG};3^{+-} angle$	$3.63\substack{+0.21 \\ -0.23}$	$3.60 \pm 0.04 \pm 0.17$	$3.55 \pm 0.04 \pm 0.17$	$3.27 \pm 0.09 \pm 0.15$	3.85 ± 0.35
$ { m GGG};1^{} angle$	$5.10\substack{+0.21\\-0.16}$	$3.83 \pm 0.04 \pm 0.19$	$3.85 \pm 0.05 \pm 0.19$	$3.24 \pm 0.33 \pm 0.15$	_
$ { m GGG};2^{} angle$	$4.81^{+0.21}_{-0.24}$	$4.01 \pm 0.05 \pm 0.20$	$3.93 \pm 0.04 \pm 0.19$	$3.66 \pm 0.13 \pm 0.17$	4.59 ± 0.74
$ \mathrm{GGG};3^{}\rangle$	$5.47^{+0.28}_{-0.19}$	$4.20 \pm 0.05 \pm 0.20$	$4.13 \pm 0.09 \pm 0.20$	$4.33 \pm 0.26 \pm 0.20$	_

Lattice QCD results

		quenched			unquenched
Glueball	QCD sum rules	Ref. [10]	Ref. [11]	Ref. [12]	Ref. [13]
$ \mathrm{GG};0^{++}\rangle$	$1.79_{-0.16}^{+0.14}$	$1.71 \pm 0.05 \pm 0.08$	$1.73 \pm 0.05 \pm 0.08$	$1.48 \pm 0.03 \pm 0.07$	1.80 ± 0.06
$ \mathrm{GG};2^{++}\rangle$	$1.86\substack{+0.14\\-0.17}$	$2.39 \pm 0.03 \pm 0.12$	$2.40 \pm 0.03 \pm 0.12$	$2.15 \pm 0.03 \pm 0.10$	2.62 ± 0.05
$ \mathrm{GG};0^{-+}\rangle$	$2.15_{-0.11}^{+0.11}$	$2.56 \pm 0.04 \pm 0.12$	$2.59 \pm 0.04 \pm 0.13$	$2.25 \pm 0.06 \pm 0.10$	-
$ \mathrm{GG};2^{-+} angle$	$2.12\substack{+0.11 \\ -0.12}$	$3.04 \pm 0.04 \pm 0.15$	$3.10 \pm 0.03 \pm 0.15$	$2.78 \pm 0.05 \pm 0.13$	3.46 ± 0.32
$ { m GGG};0^{++} angle$	$3.14\substack{+0.17\\-0.19}$	_	$2.67 \pm 0.18 \pm 0.13$	$2.76 \pm 0.03 \pm 0.12$	3.76 ± 0.24
$ \mathrm{GGG};2^{++}\rangle$	$3.95\substack{+0.21\\-0.24}$				_
$ { m GGG};0^{-+} angle$	$4.21\substack{+0.18 \\ -0.20}$	_	$3.64 \pm 0.06 \pm 0.18$	$3.37 \pm 0.15 \pm 0.15$	4.49 ± 0.59
$ \mathrm{GGG};2^{-+}\rangle$	$3.90\substack{+0.18\\-0.26}$	—	_	$3.48 \pm 0.14 \pm 0.16$	-
$ \mathrm{GGG};1^{+-}\rangle$	$3.19\substack{+0.15 \\ -0.17}$	$2.98 \pm 0.03 \pm 0.14$	$2.94 \pm 0.03 \pm 0.14$	$2.67 \pm 0.07 \pm 0.12$	3.27 ± 0.34
$ \mathrm{GGG};2^{+-}\rangle$	$3.67\substack{+0.20\\-0.23}$	$4.23 \pm 0.05 \pm 0.20$	$4.14 \pm 0.05 \pm 0.20$	_	-
$ { m GGG};3^{+-} angle$	$3.63\substack{+0.21\\-0.23}$	$3.60 \pm 0.04 \pm 0.17$	$3.55 \pm 0.04 \pm 0.17$	$3.27 \pm 0.09 \pm 0.15$	3.85 ± 0.35
$ { m GGG};1^{} angle$	$5.10\substack{+0.21\\-0.16}$	$3.83 \pm 0.04 \pm 0.19$	$3.85 \pm 0.05 \pm 0.19$	$3.24 \pm 0.33 \pm 0.15$	_
$ { m GGG};2^{} angle$	$4.81\substack{+0.21 \\ -0.24}$	$4.01 \pm 0.05 \pm 0.20$	$3.93 \pm 0.04 \pm 0.19$	$3.66 \pm 0.13 \pm 0.17$	4.59 ± 0.74
$ \mathrm{GGG};3^{}\rangle$	$5.47^{+0.28}_{-0.19}$	$4.20 \pm 0.05 \pm 0.20$	$4.13 \pm 0.09 \pm 0.20$	$4.33 \pm 0.26 \pm 0.20$	_

Decay analyses

Decay analyses

0^{-+}	\rightarrow	VVP, VVV	(S-wave)
0^{++}	\rightarrow	VPP, VVP, VVV	(P-wave)
1	\rightarrow	VPP, VVP, VVV	(S-wave)
1^{+-}	\rightarrow	PPP, VPP, VVP, VVV	(P-wave)
$2^{-\pm}$	\rightarrow	VVP, VVV	(S-wave)
$2^{\pm\pm}$	\rightarrow	VPP, VVP, VVV	(P-wave)
$3^{}$	\rightarrow	VVV	(S-wave)
3^{+-}	\rightarrow	VVP, VVV	(P-wave)

Decay analyses

Summary

- We study mass spectra of two- and three-gluon glueballs through QCD sum rules.
- Our QCD sum rule results are generally consistent with Lattice QCD calculations.
- Honestly speaking, we still know little about glueballs.

Thank you very much!