Probing large-x PDFs at JLab in the 12GeV Era

Shujie Li (李姝洁) Teleworkshop on Strong QCD from Hadron Structure Experiments Jun 07, 2021

CTEQ-Jefferson Lab Collaboration

This work is in parts supported by the DOE Office of Science

Deep Inelastic Scattering and Quark Parton Model

The unpolarized DIS cross section can be parameterized with structure functions F1 and F2:

$$\frac{d\sigma}{d\Omega dE'} = \sigma_{Mott} \left(\frac{F_2(x)}{v} + 2\tan^2 \frac{\theta_e}{2} \frac{F_1(x)}{M} \right); \qquad v = E - E'$$

$$Q^2 = 4EE \mathbb{I}\sin^2(\theta/2)$$

where $x = Q^2/(2M\nu)$ is the fraction momentum of the nucleon carried by the struck quark, and q_f is the longitudinal quark momentum distribution function. At large Q2 and nv:

$$F_{2}(x,Q^{2}) = x \sum_{f=up,down,...} z_{f}^{2} \Big(q_{f}(x,Q^{2}) + \overline{q}_{f}(x,Q^{2}) \Big)$$

d/u at large x

At leading order (charge symmetry):

$$F_2^p = x \Big[\frac{4}{9} (u + \bar{u}) + \frac{1}{9} (d + \bar{d}) + \frac{1}{9} (s + \bar{s}) \Big]$$

$$F_2^n = x \Big[\frac{4}{9} (d + \bar{d}) + \frac{1}{9} (u + \bar{u}) + \frac{1}{9} (s + \bar{s}) \Big]$$

Small anti-quarks and strange quark contributions at x>0.3

$$\frac{F_{2n}}{F_{2p}} \approx \frac{1+4d/u}{4+d/u} \Rightarrow \frac{d}{u} \approx \frac{4F_{2n}/F_{2p}-1}{4-F_{2n}/F_{2p}}$$

• Precise PDFs at large x are needed as inputs for collision and neutrino

experiments Shujie Li, Strong QCD 2021 d/u at (x→1) is a crucial test of valence quark models and pQCD.

Nucleon Model	$\begin{array}{c} F_2^n/F_2^p \\ \mathrm{X} \to 1 \end{array}$	$\begin{array}{c} d/u \\ X \rightarrow 1 \end{array}$
SU(6) Symmetry	2/3	0.5
Scalar diquark dominance	1/4	0
DSE contact interaction	0.41	0.18
DSE realistic interaction	0.49	0.28
POCD (helicity conservation)	3/7	0.2
Courtesy of S. Kuhn		

F2n Extraction from Deuteron Data

S. Li et. al. in preparation (2021)

No "free neutron" target. Remove nuclear effect in deuteron $R(D) = d_{calc}/(p+n)_{calc}$: Free nucleon

 $(p+n)_{data} = d_{data} / R(D)$ Free neutron $n_{data} = (p+n)^{*}_{data} - p^{*}_{data} = d^{*}_{data} / R(D) - p^{*}_{data}$

Sources of Uncertainties:

- Model dependence:
 - Deuteron wave function
 - Deuteron offshell effect
 - Finite Q2 corrections (higher twist, target mass corrections)
- Uncertainty propagated from proton data

* Careful study on the DIS/resonance separation to take use of low-W2 (mainly JLab) data Shujie Li, Strong QCD 2021

Unpolarized DIS World Data

Single Li, Shong QCD 2021

d/u in Global QCD Analysis

d/u in Global QCD Analysis

Recent Large-x Measurements from JLab 12 GeV Program

- HALL C E12-10-002:
 - Expand kinematic coverage up to x=0.82 with W2>3 GeV2 with traditional F2 p and d measurements
- HALL B BONuS:
 - Control nuclear effect in d with spectator tagging
- HALL A MARATHON:
 - Minimize the ratio of nuclear effects with mirror nuclei 3H and 3He, and study the isospin-dependence of offshell effect

Not a complete list, apology for missing any...

Hall C Completed Large-x Experimental Program: E12-10-002 Courtesy of S. Malace

- □ Measured yields from H(e,e') and D(e,e') to extract cross sections and F_2^{p} and F_2^{d} structure functions in a large x and Q² range
 - Beam: 10.6 GeV, unpolarized
 - Targets: cryogenic H and D, Al

Hall C Completed Large-x Experimental Program: E12-10-002 Courtesy of S. Malace

- □ Measured yields from H(e,e') and D(e,e') to extract cross sections and F_2^{p} and F_2^{d} structure functions in a large x and Q^2 range
 - Beam: 10.6 GeV, unpolarized
 - Targets: cryogenic H and D, Al

Hall C Completed Large-x Experimental Program: E12-10-002

Courtesy of S. Malace

- Large volume of high-precision data spanning a wide range in x and Q²
 - Additional constraints for global PDF fits like CJ and AKP (d-quark vs nuclear corrections in deuterium)
 - Tests for hybrid models like Kulagin's
 - Extends precision quark-hadron duality studies to higher Q² than before
 - Will test lattice calculations by extracting non-singlet moments

Status:

The preliminary results are now available, and final results will be submitted for publication within one month.

BONuS (Barely Offshell Nucleon Structure) - 6 GeV

Measures F2n and n/D to extract n/p

Select DIS events tagged with low-momentum spectator protons (70 - 100 MeV) which have negligible offshell effect.

- No offshell correction needed. Systematic uncertainty evaluated with models.
- Tagging efficiency normalized against n/p ratio at x=0.3
- x range limited by beam energy

S. Tkachenko et al. (CLAS Čollaboration), Phys. Rev. C 89, 045206. More data available now

0.5

0.4

0.2

0.3

0.1

0.7

0.6

0.8

BONuS (Barely Offshell Nucleon Structure) - 12 GeV

Measures F2n and n/D to extract n/p

 $\begin{array}{c|c} e' \\ d(e,e'p_s)X \\ d \\ \gamma^* \\ p \\ e \end{array} X$

- DIS data with x up to 0.82 with 11 GeV beam
- Higher momentum resolution
- Additional independent check of tagging efficiency

Status:

Data taken in 2020. First round of calibrations completed. Expect to have first results in Winter 2021/2022

MeAsurement of F2n /F2p , d/u RAtios and A=3 EMC Effect in Deep Inelastic Electron Scattering Off the Tritium and Helium MirrOr Nuclei (MARATHON)

- 3 months of data-taking in 2018
- Classic (e,e') scattering with the unique low-density gas target system
- $x \rightarrow 0.83$ with high statistics
- $\sigma_h/\sigma_t \to F_2^h/F_2^t$
 - Systematical uncertainties canceled in ratio
 - L/T cross section ratio assumed to be the same for both nuclei

See also: <u>the MARATHON marathon seminar</u>

F2n/p from MARATHON

Remove nuclear effects in mirror nuclei with calculation from Kulagin and Petti (nuclear effect fitted with heavier nuclei):

$$\frac{R_h = F_2^h / (2F_2^p + F_2^n)}{R_t = F_2^t / (F_2^p + 2F_2^n)} \longrightarrow \frac{F_2^n}{F_2^p} = \frac{2\mathcal{R}_{ht} - F_2^h / F_2^t}{2F_2^h / F_2^t - \mathcal{R}_{ht}}.$$

Shujie Li, Strong OCD 2021 HiX2019

arXiv:2104.05850, submitted to PRL

15

Alternative Approach: PDF fitting with JAM See also C. Cocuzza's talk

- Allow different offshell effects in n and p
- Assume charge symmetry:

$$\begin{split} \delta u_{p/D} &= \delta d_{n/D}, \quad \delta d_{p/D} = \delta u_{n/D}, \\ \delta u_{p/^3\mathrm{He}} &= \delta d_{n/^3\mathrm{H}}, \quad \delta d_{p/^3\mathrm{He}} = \delta u_{n/^3\mathrm{H}}, \\ \delta u_{p/^3\mathrm{H}} &= \delta d_{n/^3\mathrm{He}}, \quad \delta d_{p/^3\mathrm{H}} = \delta u_{n/^3\mathrm{He}}, \end{split}$$

• Perform QCD analysis with world data including MARATHON. Fit n/p and offshell simultaneously.

process	$N_{\rm dat}$	$\chi^2/N_{\rm dat}$	fitted norm.
DIS			
MARATHON ³ He/ ³ H	22	0.64	1.009(5)
MARATHON D/p	7	0.72	1.016(4)
JLab E03-103 3 He/D	16	0.20	1.012(8)
NMC D/p	189	0.89	0.991(5)
other fixed target	2489	1.06	
HERA	1185	1.28	
Drell-Yan	250	1.08	
lepton rapidity	156	1.57	
W charge asym.	27	1.48	
Z rapidity	56	0.94	
jet	196	0.87	
total	4593	1.11	

TWO offshell parameters to fit

$$\begin{split} \delta u_{p/D} &= \delta u_{p/^{3}\mathrm{H}} \equiv \delta u, \\ \delta d_{p/D} &= \delta d_{p/^{3}\mathrm{H}} \equiv \delta d, \end{split}$$

Alternative Approach: PDF fitting with JAM

arXiv:2104.06946

More discussions on model-dependence and isospin-dependence of nuclear effect, see E.P. Segarra et. al. arxiv: <u>2104.07130.</u>

Future experiments

- Tagged DIS in Hall A with SBS (PAC 49 proposal):
 - BONuS-like tagging with additional neutron detector to check normalization
 - Higher luminosity, DIS with x up to 0.7,
 - Test offshell effects by varying spectator momentum

- PVDIS with SoLID in Hall A:
 - Clean measurement with no nuclear effects
 - Limited x range <0.7
 - Not scheduled

18

Summary

- d/u at large x is of great interest to the nuclear physics and particle physics community. Global QCD analysis didn't provide strong constraint at large x.
- Neutron structure functions can be extracted from deuteron data with a nuclear effect model. The offshell effect was assumed to be the same in n and p.
- JLab 12 GeV measurements are probing the large-x PDFs with various methods:
 - Hall C F2 experiments will provide more precise DIS and resonance region data at large x.
 - MARATHON is first high-x, high-statistics extraction that avoids nuclear effects in the deuteron
 - Much better precision in F2n/F2p, using KP model for nuclear effects
 - Lots of interest in using MARATHON data to test nuclear effects
 - BONuS12 data will give 2nd, independent extraction of F2n/F2p, allowing much cleaner comparisons
 - The TDIS-n measurements will provide another independent check of n/p with tagging. And eventually SoLID PVDIS measurement will (hopefully) give us a clean extraction of d/u

Thanks to

Simona Malace, Hanjie Liu, John Arrington, Alberto Accardi, Peter Monaghan, Wally Melnitchouk, Thia Keppel, Sebastian Kuhn

Parton Distribution Functions from Global Analysis

No "free" neutron target

- Remove nuclear effect in deuteron, then subtract large proton contribution to get "free" neutron
- Deuteron wave function models

Finite Q2 (especially for JLab data)

- higher twist, target mass corrections important for low Q2, and large x data)

				Tevatron	LHC,	nu+A,	nucl.&of	HT,	Flexible	low-W
	JLab	HERMES	HERA	W,Z	RHIC	di-mu	fshell	TMC	d	DIS
CJ15	x	x	x	x	*		x	x	x	x
CT18			x	x	x				x	
MMHT14			*	x	x		x			
NNPDF3.1			x		x			TMC only		
ABMP16/A KP				x	x	x	x	x	x	x
HERAPDF 2.0			x							
JAM21	x		x	x	x		x	x	x	x

CJ15 PDFs

Shufie See Stanghy Cars 2024P talk