TMD Studies in SIDIS

Harut Avakian (JLab)

Strong QCD from Hadron Structure Experiments June 7-10, 2021

- Introduction
- Recent results from CLAS12 in SIDIS
- Limitations in theory description
- The role of vector mesons in SIDIS
- The role of high P_T
- Summary

SIDIS kinematical coverage and observables

2

Single pion production in hard scattering

Wide kinematic coverage of large acceptance detectors allows studies of hadronization both in the target and current fragmentation regions

Correlated hadron production in hard scattering

Dedicated CLAS12 proposals: E12-06-112B/E12-09-008B

With ϕ_S , ϕ_1 , ϕ_2 , ϕ_R , ϕ_h several observables have been identified to study correlations

 $\phi_R - \phi_S$, ϕ_R -accessing transversity and quark-gluon correlations Radici & Bacchetta $\phi_R - \phi_h$ -accessing leading twist polarized fragmentation functions Matevosyan, Kotzinian, Thomas $\phi_1 - \phi_2$ -accessing correlations in current and target regions Anselmino, Barone, Kotzinian

2h production in SIDIS provides access to correlations inaccessible in simple SIDIS

Doubling the JLab beam energy, opens the phase space for SIDIS dihadrons

Quark gluon correlations may be very significant

What is so special about the low invariant masses² of 2 pions?

SIDIS ehhX: CLAS12 data vs MC

CLAS12 MC, based on the PEPSI(LEPTO) simulation with <u>most parameters "default"</u> is in a good agreement with CLAS12 measurements for all relevant distributions

7

Sources of inclusive pions: CLAS12 vs MC

Sources of inclusive pions: CLAS12 vs MC

 π + from

string

 ρ +

ρ0

 $(\mathbf{0})$

Jefferson Lab

Dominant fraction of inclusive pions come from VM decays

CLAS12 due to unique capability for precision measurements of neutral pions, will provide measurements of multiplicities of variety of semi-inclusive and exclusive hadron pairs (could be also VMs).

Sources of inclusive pions: CLAS12 vs MC

CLAS12 high P_T : impact of vector mesons

CLAS12 Multiplicities: the role of high P_T

- Corrections due to phase space (energy needed to produce a hadron with a given z,P_T at given x,Q²) are detector and model independent
- Corrections due to fraction of fragmentation VMs and diffractive VMs are model dependent, but can be extracted from MC

At low z, only the high P_T shows the generated Gaussian transverse momentum distribution.

Current theory limitations (q_T/Q)

JLab/HERMES/COMPASS/EIC talks

estimates of their effects. For example, the TMD description of SIDIS is valid in the small p_T regime when $p_T^2/(zQ)^2 \ll 1$, and in a recent study [JHEP 06 (2020) 137] finding that $p_T^2/(zQ)^2 \leq 0.06$ approximately demarcates the boundary to large p_T , where a description in terms of TMD PDFs may not be trustworthy. By comparison, values for this ratio as

The $q_T = P_T/z$ theory "trustworthy" cut:

- Suppresses moderate Q² and large P_T (sensitive to k_T), where all kind of azimuthal modulations are most significant
- 2) Enhances large z region (ex. Exclusive Events) in TMD and low z in FO calculations
- 3) Cuts not only most of the JLab data, but practically all accessible in polarized SIDIS large P_T samples , including ones from HERMES COMPASS, and even EIC.

Details available from https://indico.jlab.org/event/439/

Jefferson Lab

FO vs data for $q_T \gtrsim Q$

TMD formalism applicability and the impact of $q_{\rm T}$ cut

Gonzalez-Hernandez et al, PRD 98, 114005 (2018)

understanding the fraction of pions from "correlated dihadrons" will be important to make sense out of q_T distributions

Extracting the average transverse momenta

Most sensitive to parameters is the large P_T region

Limitations of current TMD theory

Exclusive π/ρ production at large x/t

- x-section of measured exclusive process at large t exhibit similar pattern
 - ρ+>ρ⁰ → Diffractive production suppressed at large t production mechanism most likely is similar to SIDIS
- Slightly higher rho x-sections indicate the fraction of SIDIS pions from VM > 60%
- consistent with LUND-MC in fraction of pions from VMs
- Integrating in total counts (different Q²dependence)?

.

Disecting the SSA in $ep \rightarrow e'\pi X$

Jefferson Lab

Quark longitudinal polarization

Large transverse momenta are crucial to access the large k_T of quarks

H. Avakian, SQCD, June 8, 2021

Extending to small x, large Q2 and large P_T

Non-perturbative sea ("tornado") in nucleon is a key to understand the nucleon structure $\overline{d} > \overline{u}$

- Spin and momentum of struck quarks are correlated with remnant
- Correlations of spins of q-q-bar with valence quark spin and transverse momentum will lead to observable effects
- Spin-Orbit correlations so far were shown (measurements and model calculations) to be significant in the region where non-perturbative effects dominate

Upgrade to 24 GeV will qualitatively increase the JLab phase space, opening access to large P_T , high Q^2 and low x (sea) region

0.0

0.2

0.1

0.3

x

0.4

0.5

0.6

Summary

- Measurements of dihadron multiplicities with CLAS12 indicate that hadronization of quarks goes predominantly through production of Vector Mesons (applies to Kaons a well)
- Significant beam spin asymmetries measured by CLAS12 in two hadron production indicates significant correlations in final hadrons, and large quark-gluon correlations
- CLAS12 data would allow to constrain experimentally the fractions and distributions of pions coming from vector meson decays (tune JETSET as well), and that will change significantly the interpretation of the SIDIS data in general, and polarized SIDIS data in particular
- Large transverse momenta of hadrons, currently excluded from TMD analysis, are most sensitive to the flavor and spin dependence of partonic distributions.
- JLab upgrade to 24 GeV will open qualitatively new opportunities to study the transverse momentum dependence and evolution properties of partonic distributions

From JLa12 to JLab24 Larger Q^2 at large P_T

Jefferson Lab

Hadronization

Hadronization Function \rightarrow conditional probability to produce hadron h

$$H_{h/N}^{q'}\left(x,\mathbf{k}_{T},Q^{2};x_{F},\mathbf{P}_{T}^{h};\mathbf{s}_{q}^{\prime},\mathbf{S}_{N}\right)$$

Quark Fragmentation Functions

 $D_{q,s'}^h(z,\mathbf{p}_T,Q^2)$

Where this works?

B2B hadron production in SIDIS: First measurements

CLAS12 Studies: pions

Distributions of pions vs rapidity in good agreement with LUND-MC (LEPTO) in most of the kinematics

B2B SSAs $ep \rightarrow p\pi + X$

- Significant SSA observed consistent with linear behavior with P_T-product
- Indicates significant correlations between hadrons in SIDIS in CFR and TFR
- Superior statistics of CLAS12 allows multidimensional binning (x,z,P_T,..)

CLAS12 Multiplicities: high P_T & phase space

Jefferson Lab

Opportunities with 24 GeV

Significantly wider phase space would allow

- Enhance the range in transverse momentum $P_{\rm T}$ of hadrons
 - Access to P_T -region where the dependence of the k_T -dependences of different flavors (valence and sea) and polarization states is most significant
- Enhance the Q² range
 - Increase significant the range of high Q2, where the theory is supposed to work better, and allow studies of evolution properties
- Enhance the x-range
 - Access the the full kinematical range (x>0.03-0.04) where the non-perturbative sea is expected to be significant

Electro-production of hadrons

