Single-Pion Electroproduction

Michael Döring, M, Mai, C. Granados, H. Haberzettl, U.-G. Meißner, D. Rönchen, I. Strakovsky, R. Workman

[Jülich-Bonn-Washington (JBW) collaboration]

arXiv: 2104.07312 [nucl-th], Phys. Rev. C, in print

Supported by

DOE DE-AC05-06OR23177 & DE-SC0016583

HPC support by JSC grant jikp07

[several slides by D. Rönchen and M. Mai]

Degrees of freedom: Quarks or hadrons?

QCD at low energies Non-perturbative dynamics How many are there? What are they?

- \rightarrow mass generation & confinement
- $\rightarrow\,$ rich spectrum of excited states
- \rightarrow missing resonance problem)
- \rightarrow 2-quark/3-quark, hadron molecules, ...

Results in dynamical quark picture

Quark-diguark with reduced pseudoscalar + vector diguarks: GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

[parts of slide courtesy of G. Eichmann, Few Body 2018]

M [GeV]

Single-meson photoproduction with JuBo

A boundary condition for electroproduction analysis

e.g.: D. Ronchen et al., EPJA (2018), arXiv: <u>1801.10458</u>

The Julich-Bonn Dynamical Coupled-Channel Approach e.g. EPJ A 49, 44 (2013)

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$\langle L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle = \langle L'S'p'|V^{IJ}_{\mu\nu}|LSp\rangle +$$

$$\sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{IJ}_{\gamma\nu}|LSp\rangle$$

- potentials V constructed from effective \mathcal{L}
- s-channel diagrams: T^P
 genuine resonance states
- t- and u-channel: T^{NP} dynamical generation of poles
 partial waves strongly correlated

JuBo: Channels and Analytic Structure

Channels included:

JuBo: Photoproduction Data base

- $\pi N \rightarrow X$: > 7,000 data points ($\pi N \rightarrow \pi N$: GW-SAID WI08 (ED solution))
- $\gamma N \rightarrow X$:

Reaction	Observables (# data points)	p./channel
$\gamma p ightarrow \pi^0 p$	$d\sigma/d\Omega$ (18721), Σ (2927), P (768), T (1404), $\Delta\sigma_{31}$ (140),	
	G (393), H (225), E (467), F (397), C _{x'} (74), C _{z'} (26)	25,542
$\gamma p \to \pi^+ n$	$d\sigma/d\Omega$ (5961), Σ (1456), P (265), T (718), $\Delta\sigma_{31}$ (231),	
	G (86), H (128), E (903)	9,748
$\gamma p ightarrow \eta p$	$d\sigma/d\Omega$ (9112), Σ (403), P (7), T (144), F (144), E (129)	9,939
$\gamma p o K^+ \Lambda$	$d\sigma/d\Omega$ (2478), P (1612), Σ (459), T (383),	
	$C_{x'}$ (121), $C_{z'}$ (123), $O_{x'}$ (66), $O_{z'}$ (66), O_x (314), O_z (314),	5,936
$\gamma p o K^+ \Sigma^0$	$d\sigma/d\Omega$ (4271), P (422), Σ (280), T (127), $C_{x',z'}$ (188), $O_{x,z}$ (254)	5,542
$\gamma p o K^0 \Sigma^+$	$d\sigma/d\Omega$ (242), P (78)	320
	in total	57,027

A new web interface [https://jbw.phys.gwu.edu/]

Pion Electroproduction

A first step towards a coupled-channel photo- and electroproduction analysis

M. Mai et al., 2104.07312 [nucl-th], Phys. Rev. C, in print

Single-meson electroproduction to reveal resonance structure

See talks by D. Carman and V. Mokeev

- ANL-Osaka PRC 80, 025207 (2009), Few-Body Syst. 59, 24 (2018),...
- Aznauryan, Burkert, Mokeev et al., PRC 80, 055203 (2009), Int. J. Mod. Phys. E22, 1330015 (2013),..
- EtaMAID2018, EPJA 54 (2018), 210
- MAID2007, EPJA 34 (2007) 69
- SAID, PiN Newsletter 16, 150 (2002)
- Gent group Phys. Rev. C 89, 065202 (2014),...

Highlights:

- Simultaneous description of pion photo- and electroproduction (MAID)
- Consistent extraction of the Roper form factor from single and double pion electroproduction
- New resonance in electroproduction claimed Mokeev et al., PLB (2020) <u>2004.13531 [nucl-ex]</u>

Needed: Coupled-channel electroproduction analysis

Take advantage of multi-channel approach \rightarrow analyze simultaneously final states $\pi N, \eta N, K\Lambda$

~10⁶ pion electroproduction data; $\eta N, K\Lambda$:

Reaction	Observable	Q^2 [GeV]	W $[GeV]$	Ref.
	$\sigma_U, \sigma_{LT}, \sigma_{TT}$	1.6 - 4.6	2.0 - 3.0	[132]
$ep \to e'p'\eta$	$\sigma_U, \sigma_{LT}, \sigma_{TT}$	0.13 - 3.3	1.5 - 2.3	[137]
	$d\sigma/d\Omega$	0.25 - 1.5	1.5 - 1.86	[138]
	P_N^0	0.8 - 3.2	1.6 - 2.7	[139]
	$\sigma_U, \sigma_{LT}, \sigma_{TT}, \sigma_{LT'}$	1.4 - 3.9	1.6 - 2.6	[140]
$ep \to e' K^+ \Lambda$	P'_x, P'_z	0.7 - 5.4	1.6 - 2.6	[141]
	$\sigma_T, \sigma_L, \sigma_{LT}, \sigma_{TT}$	0.5 - 2.8	1.6 - 2.4	[142]
	P'_x, P'_z	0.3 - 1.5	1.6 - 2.15	[143]

Table 1: Overview of ηp and $K^+\Lambda$ electroproduction data measured at CLAS for different photon virtualities Q^2 and total energy W. Based on material provided by courtesy of D. Carman (JLab) and I. Strakovsky (GW).

- Many of these (and similar) data await analysis.
- Many more data to emerge at Jlab ($Q^2 = 5 12 \text{ Ge}v^2$)

e.g.: Carman, Joo, Mokeev, Few Body Syst. 61, 29 (2020)

- Approved Jlab experiments to study
 - Higher-lying nucleon resonances
 - Hybrid baryons
 - Transition regime between nonperturbative and perturbative regions

Pion Electroproduction – data base

Pion Electroproduction – data base

Kinematics

Polarized Observables

• CLAS: Structure functions $\sigma_{LT'}$

K. Joo et al. [CLAS], <u>Phys. Rev. C 68 (2003)</u>, K. Joo et al. [CLAS], Phys. Rev. C 70 (2004).

• Jlab-Hall A for $K_{1D} = \{K_{1D}^X | X = A, B, ..., T\}$

J. J. Kelly, Phys. Rev. Lett. 95 (2005).

 Response functions (R) ⇔ Kelly notation (RL, RT, ...) ⇐ Helicity amplitudes H ⇔ CGNL amplitude. For example:

$$\begin{split} \sigma_{T} &= \frac{k}{q_{\gamma}} R_{T}^{00} , \quad \sigma_{L} = \frac{k}{q_{\gamma}} \frac{Q^{2}}{\omega^{2}} R_{L}^{00} , \quad \sigma_{TT} = \frac{k}{q_{\gamma}} R_{TT}^{00} \\ \sigma_{LT} &= \frac{k}{q_{\gamma}} \frac{\sqrt{Q^{2}}}{\omega} R_{LT}^{00} , \quad \sigma_{LT'} = \frac{k}{q_{\gamma}} \frac{\sqrt{Q^{2}}}{\omega} R_{LT'}^{00} , \\ P_{Y} &= -\sqrt{2\epsilon(1+\epsilon)} \frac{\omega}{\sqrt{Q^{2}}} \frac{R_{LT}^{00}}{R_{T}^{00} + \epsilon \omega^{2}/Q^{2} R_{L}^{00}} \\ \rho_{LT} &= \sqrt{2\epsilon(1+\epsilon)} \frac{R_{LT}^{00}}{R_{T}^{00} + \epsilon(R_{L}^{00} + R_{TT}^{00})} , \\ \rho_{LT'} &= \sqrt{2\epsilon(1-\epsilon)} \sin \phi \frac{\sigma_{LT'}}{d\sigma^{v}/d\Omega} , \end{split}$$

Parameterization

- Photoproduction solution as constraint
- Constraints from (Pseudo)-threshold:

$$\begin{pmatrix} E_{l+}^{I}, L_{l+}^{I} \end{pmatrix} \to k^{l}q^{l} \ (l \ge 0) \\ \begin{pmatrix} M_{l+}^{I}, M_{l-}^{I} \end{pmatrix} \to k^{l}q^{l} \ (l \ge 1) \\ \begin{pmatrix} L_{l}^{I} \end{pmatrix} \to kq \ (l = 1) \\ (E_{l-}^{I}, L_{l-}^{I}) \to k^{l-2}q^{l}(l \ge 2) \end{cases}$$

$$k = |\mathbf{k}| = \frac{\sqrt{\left((W - M_{N})^{2} + Q^{2}\right)\left((W + M_{N})^{2} + Q^{2}\right)}}{2W} \\ \frac{\sqrt{\left((W - M_{N})^{2} - M_{m}^{2}\right)\left((W + M_{N})^{2} - M_{m}^{2}\right)}}{2W}$$

• Siegert's theorem at pseudo-threshold:

$$\frac{E_{l_+}}{L_{l_+}} \to 1, \qquad \qquad \frac{E_{l_-}}{L_{l_-}} \to \frac{-l}{l-1}$$

Amaldi, Fubini, Furlan, Springer Tracts Mod. Phys. 83, 1 (1979) Tiator, Few-body Systems 57, 1087 (2016)

• Watson's theorem, multi-channel unitarity

$$M_{\mu\gamma^{*}}(q, W, Q^{2}) = V_{\mu\gamma^{*}}(q, W, Q^{2}) + \sum_{\kappa} \int dp p^{2} T_{\mu\kappa}(q, p, W) G_{\kappa}(p, W) V_{\nu\gamma^{*}}(p, W, Q^{2})$$
$$V_{\mu\gamma^{*}}(p, W, Q^{2}) = \alpha_{\mu\gamma^{*}}^{NP}(p, W, Q^{2}) + \sum_{i} \frac{\gamma_{\mu;i}^{a}(p)\gamma_{\gamma^{*};i}^{c}(W, Q^{2})}{W - m_{i}^{b}}$$

Parameterization (2)

- Up to D-waves included (photoproduction part includes up to J=9/2)
- Energy range up to $W \approx 1.6$ allows to include ηN electro-production without much extra effort, but KY electroproduction requires additional work
- Final state interaction given by JuBo/JBW model such that pole positions and hadronic branching ratios (pole residues) are universal as required by reaction dynamics
- Q²-dependence: Several analytic forms tested; settled for:

$$\tilde{F}(Q^2) = \tilde{F}_D(Q^2) e^{-\beta_0 Q^2/m^2} P^N(Q^2/m^2)$$
where
$$P^{N}: \text{Polynomial}$$

$$\tilde{F}_D(Q^2) = \frac{1}{(1+Q^2/b^2)^2} \frac{1+e^{-Q_r^2/Q_w^2}}{1+e^{(Q^2-Q_r^2)/Q_w^2}}$$

- Some multipoles difficult to determine (longitudinal more difficult than E and M; sometime not even Siegert's condition helps because corresponding electric multipole does not exist)
- But: No model-dependent input from (photonic) Feynman diagrams to model longitudinal multipoles

Parameterization Dependence

• Can parametrization dependence be avoided? Not if the data is far from being complete enough to represent even a truncated complete electroproduction experiment

L. Tiator et al. Phys. Rev. C (2017), <u>arXiv: 1702.08375</u>

• Future: Bias-variance tradeoff: Different statistical criteria (Akaike, Bayesian) to find sweet spot between no. of parameters or no. of partial waves and predictivity (model selection)

J. Landay et al., Phys.Rev.C (2017), <u>arXiv: 1610.07547</u>

- Future: Single-Q² analysis can decrease parametrizationindependence but not remove it (discrete & continuous ambiguities).
- Towards complete data: CLAS/Kelly data provides unique opportunity to confront parametrization with different polarization data at given W and Q².

J. J. Kelly, Phys. Rev. Lett. 95 (2005).

Results (1): Fit Strategies

- Six different fit strategies:
 - Avoid fitting structure function if corresponding cross sections can be fitted (respect data correlations)
 - Sequential $S \rightarrow S+P \rightarrow S+P+D$ waves;
 - Subsets of data until full data set reached
 - Simultaneous fit all parameters (209) set to zero without any (!) guidance
 - Extend data range from $0 < Q^2 < 4~{\rm Gev^2}$ to $0 < Q^2 < 6~{\rm Gev^2}$ to check for stability

Fit	C	σ_L	$d\sigma_{ ho}$	$/d\Omega$	σ_T +	- $\epsilon \sigma_L$	0	T	σ_I	LT	σ_I	LT'	σ_T	ΓT	K	D1	I	D_{Y}	ρ_{1}	LT	ρ	LT'	χ^2
	$\pi^0 p$	$\pi^+ n$	$\int \pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\int \pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\chi_{ m dof}$
\mathfrak{F}_1	_	9	65355	53229	870	418	87	88	1212	133	862	762	4400	251	4493	_	234	_	525	_	3300	10294	1.77
\mathfrak{F}_2	_	4	69472	55889	1081	619	65	78	1780	150	1225	822	4274	237	4518	—	325	—	590	—	3545	10629	1.69
\mathfrak{F}_3	—	8	66981	54979	568	388	84	95	1863	181	1201	437	3934	339	4296	—	686	—	687	—	3556	9377	1.81
\mathfrak{F}_4	_	22	63113	52616	562	378	153	107	1270	146	1198	1015	4385	218	5929	—	699	—	604	—	3548	11028	1.78
\mathfrak{F}_5	_	20	65724	53340	536	528	125	81	1507	219	1075	756	4134	230	5236	—	692	—	554	—	3580	11254	1.81
\mathfrak{F}_6	_	18	71982	58434	1075	501	29	68	1353	135	1600	1810	3935	291	5364	_	421	_	587	_	3932	11475	1.78

Results (2): Kelly data

 π^{0} p, Q²=1 GeV², W=1.23 GeV, ϕ =15⁰

J. J. Kelly, Phys. Rev. Lett. 95 (2005).

data: CLAS, Phys. Rev. C (2003) 0301012 [nucl-ex], Phys. Rev. Lett. (2002) 0110007 [hep-ex]

Results (4): Large Multipoles

Prominent multipoles are well determined, even with significantly different fit strategies (e.g., all parameters initially set to zero, no guidance for fit!) $M_{1+}^{3/2} (\Delta(1232))$

Fit strategies 1-6 together with MAID (open dots) for the magnetic multipole of the $\Delta(1232)$ Drechsel et al., EPJA (2007) <u>0710.0306 [nucl-th]</u>

Results (5): Other multipoles

- Less prominent multipoles are sometimes less well determined
- Overall: solutions are still surprisingly close together given vastly different strategies
- Differences from various strategies (different local χ^2 minima) much larger than statistical uncertainties; larger than typical MAID uncertainties.
- **Example**: S-wave multipoles [*mfm*] as function of energy W at fixed $Q^2 = 0.2 GeV^2$

Results (6): Roper Multipole

 $M_{1-}^{1/2}$ (N(1440)) Non-trivial structure Zero transition Helicity coupling still to be extracted • Re4 2 $Re\,M$ $Im\,M$ 0 -21.0 [mfm] 1.2 0.5 00000 1.4 1.5 0.0 3 5 5 2 4 2 3 4 0 0 Im4 $Q^2 \; [\text{GeV}^2]$ (W=1.38 GeV fixed) 2 0 $^{-2}$ \mathfrak{F}_1 · — · \mathfrak{F}_4 1.0 1.2 Q2 (Cerri $--- \mathfrak{F}_2 - - \mathfrak{F}_5$ 0.5 1.4 $\cdots \mathfrak{F}_3$ - **3**6 $W_{[GeV]}$ 0.0 o MAID2007 (Strategy 1 only)

Summary

- JBW model: Phenomenology of excited baryons through coupledchannels, two- and three-body effects
- Analysis finds/confirms new states in analysis of photo-production data, renewed effort to explore additional reaction channels
- Pion electroproduction analysis performed
 - Exploration of parameter space through different fit strategies reveals different local minima leading to significantly different multipole content.
 - Yet, prominent multipole well determined, albeit with uncertainties larger than in other analyses.
- Extraction of helicity couplings and fixed-Q² analysis planned
- Upgrade to η and KY electroproduction straightforward (existing and future JLab data; photoproduction solution <u>exists</u>)
- Statistical upgrade: How to find a minimal resonance spectrum through model selection J. Landay et al., Phys.Rev.D (2019), <u>1810.00075 [nucl-th]</u>

(spare slides)

Using ONLY meson-baryon degrees of freedom (no explicit quark dynamics):

Manifestly gauge invariant approach based on full BSE solution

[Ruic, M. Mai, U.-G. Meissner PLB 704 (2011)]

→ Making the "Missing resonance problem" worse ?!

Selected Fit Results (I)

• $\gamma p \to K^+ \Lambda$:

http://collaborations.fz-juelich.de/ikp/meson-baryon/main

Selected Fit Results (II)

• $\gamma p \to K^+ \Lambda$:

http://collaborations.fz-juelich.de/ikp/meson-baryon/main

Resonance Couplings

Resonance states: Poles in the *T*-matrix on the 2nd Riemann sheet

[D. Roenchen, M. D., U.-G. Meißner, EPJ A 54, 110 (2018)

- $\operatorname{Re}(E_0) = \text{``mass''}, -2\operatorname{Im}(E_0) = \text{``width''}$
- elastic πN residue $(|r_{\pi N}|, \theta_{\pi N \to \pi N})$, normalized residues for inelastic channels $(\sqrt{\Gamma_{\pi N}\Gamma_{\mu}}/\Gamma_{\text{tot}}, \theta_{\pi N \to \mu})$
- photocouplings at the pole: $\tilde{A}^{h}_{pole} = A^{h}_{pole} e^{i\vartheta^{h}}$, h = 1/2, 3/2

Inclusion of $\gamma p \to K^+ \Lambda$ in JüBo ("JuBo2017-1"): 3 additional states

	z_0 [MeV]	$\frac{\Gamma_{\pi N}}{\Gamma_{\text{tot}}}$	$\frac{\Gamma_{\eta N}}{\Gamma_{\text{tot}}}$	$\frac{\Gamma_{K\Lambda}}{\Gamma_{tot}}$
N(1900)3/2+	1923 — <i>i</i> 108.4	1.5 %	0.78 %	2.99 %
N(2060)5/2 ⁻	1924 — <i>i</i> 100.4	0.35 %	0.15 %	13.47 %
$\Delta(2190)$ (1/2+	2191 — <i>i</i> 103.0	33.12 %		

- N(1900)3/2⁺: s-channel resonances, seen in many other analyses of kaon photoproduction (BnGa), 3 stars in PDG
- N(2060)5/2⁻: dynamically generated, 2 stars in PDG, seen e.g. by BnGa
- $\Delta(2190 \ 1/2^+$: dyn. gen., no equivalent PDG state