Heavy-quark Baryons

Hiroyuki NOUMI
Research Center for Nuclear Physics, Osaka University
Institute of Particle and Nuclear Studies, KEK

Contents:

- I. Baryon Structure with Heavy Quarks
- II. Charmed Baryon Spectroscopy
- III. New Platform of Hadron Physics at J-PARC

Hierarchy of Matter in the Universe

Matter Evolution from Quark to Hadron, Nucleus, and Neutron Star

How QCD works in Hadron?

- Effective DoF (building blocks) to describe hadrons
- Change of Hadron Properties in High-T and High-p Matter

We attack here.

Effective DoF

BB Int. (2BF, 3BF)

How are nuclei formed?

- Extended Nuclear Force: Baryon-Baryon Int.
- Stability of Heavy Neutron Stars (EoS)

Dense Nucl. Matter

Hypron Matter?

Mystery of Neutron Star

Atom→Molecule→Material,Human,Star,Galaxy

Non-trivial QCD vacuum in Baryon Structure

**Derek Leinweber, 2003, 2004 http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/index.html

- Non-trivial gluon field $\Rightarrow \langle \overline{q}q \rangle$ "massive" constituent q, NG boson $(U_A(1) \text{ anomaly})$
- Dynamics of Effective DoF
 - OGE (as a residual int.)/Instanton Induced Int.
 - Too large α_S in Spin-Spin Int.
 - Meson Cloud

Short-range *qq* spin correlation

⇒ Origin of Spin Dependent force

Roles of Heavy Flavors

- Motion of "qq" is singled out by a heavy Q
 - Diquark correlation
- Level structure, Production rate, Decay properties
 - sensitive to the internal quark(diquark) WFs.
- Properties are expected to depend on a Q mass.

Disentangle motions of a light-quark pair w/ a heavy quark (HQ)

XIdentifying I/r modes -> provide internal quark motions and correlation

Effect of the Isotope Shift

Quark Model Calculation (curves) for Excitation Energy Spectra as a function of Heavy quark mass (M_Q) \times Mass/spin/parity of Λ , Λ_c , Λ_b observed so far are shown below: Their excitation modes (internal structure) to be clarified

Production and Decay of Charmed Baryons

Replacing *u*-quar*k* in a proton into *c*-quark

Remarks

- Introducing a finite orbital angular momentum $L \Rightarrow$ favor λ -mode excitations
- Production ratio of the HQ doublet to be $L:L+1 \Rightarrow Spin$, Parity
- Production and Decay measurement ⇒ Branching Ratio (partial width)

Production of Charmed Baryons: Theoretical Study

Reggeon Exchange Model in 2-body reaction

S.H. Kim, A. Hosaka, H.C. Kim, and H. Noumi PRD92 (2015) 094021

in the charm sector.

One-quark process

Two-quark process

Production rate in excited state S.H. Kim, A. Hosaka, H.C. Kim, and H. Noumi, PTEP 2014 (2014) 103D01

Mom. Trans.: $q_{eff} \sim 1.4 \text{ GeV/c}$ $\alpha \sim 0.4 \text{ GeV}$ ([Baryon size]⁻¹)

% favor λ-mode excited state with finite L is populated by factor $(q_{\rm eff}/\alpha)^L$

S.I. Shim, A. Hosaka, H.C. Kim, PTEP 2020, (2020) 5, 053D01

Xexcite ρ-mode, giving how much the twoquark process contributes.

Expected Mass Spectrum (Simulation)

XSimulation with know states assuming

- λ/ρ and Spin-Parity
- cross sections estimated by theoretical model
- background due to particle miss-identification

Decay pattern of λ mode

Decay pattern of ρ -mode

- ☆ Prod. Rates and Decay Pattern
 - Specify a pair of the HQ doublet
 *unexpected pair may be identified.
 - Spin-parity is to be determined

Identify λ/ρ mode

Internal structure (wave func.)
 (q motion and qq correlation)

Unsettled Problem: Expected "LS" Pattern

OGE: One Gluon Exchange, III: Instanton Induced Interaction A, B = finite numbers (flavor dependent)

	Ω-		N*		$\Lambda_{ m c}^*$		Λ_b^*		Δ		Λ	
	P-state	D-state	Р	D	Р	D	Р	D	Р	D	Р	D
OGE	_	+ <i>A</i>	+ <i>A</i>	+ <i>A</i>	+ <i>A</i>	+ <i>A</i>	+ <i>A</i>	+ <i>A</i>	-	+ <i>A</i>	+ <i>A</i>	+ <i>A</i>
Ш	_	_	-B	-В	_	_	_	-	_	/-	-В	-B
Sum	0	Α	~ 0	~ 0	Α	Α	Α	Α	0	Α	small	small
Exp (MeV)	?	?	~ 0	~ 0	36	?	8	7	~ 65?	~ 100?	~ 20?	?
Vanished					Observed			Unclear				
Yet to be measured (in J-PARC K10 Proj.)					to be studied (in J-PARC High-p)							1

Charmed Baryon Spectroscopy at J-PARC

High-p Beam Line %At present, E16 ($\phi \rightarrow e^+e^-$ in nuclei) is in operation with a 30GeV (primary) proton beam Dipole Magnet $-20 \text{ GeV/c} \pi$ for Spectrometer - Intensity $> 10^7 / s$ $-\Delta p/p^{\sim} 1/1000$ J-PARC Spectrometer Hadron Exp. Facility

Spectrometer System:

Acceptance: ~ 60% for D^* , ~ 80% for decay π^+ Resolution: $\Delta p/p \sim 0.2\%$ at ~5 GeV/c (Rigidity: ~2.1 Tm)

Spectrometer System:

Acceptance: ~ 60% for D^* , ~ 80% for decay π^+

Resolution: $\Delta p/p \sim 0.2\%$ at ~5 GeV/c (Rigidity: ~2.1 Tm)

Particle Identification in wide momentum range of 2~16GeV/c

Development of prototype RICH in progress

Precise Measurement of a Cherenkov radiation angle → Particle velocity

Mirror

Photon Sensor

Hadron Physics at High-p BL

- Baryon Spectroscopy
 - $p(\pi^-, D^{*-})Y_c^*$ (E50)
 - $-p(K^-,K^*)\Xi^*$, $p(K^-,K^+K^*)\Omega^*$ (Lol:KEK/J-PARC-PAC 2014-4)
 - Search for D_{30} Dibaryon State in $pp \to \pi^-\pi^-D_{30}$ (E79)
 - $-p(\pi^-,K^*)\Lambda(1405)$ at large s, t (to be proposed)
- Hadron Tomography
 - Exclusive DY, $\pi^- p \rightarrow \mu^- \mu^+ n$ (LoI: KEK/J-PARC-PAC 2019-7)
- For Strangeness Nuclear Physics
 - Λp Scattering for the study of high-dense nuclear matter (LoI: KEK/J-PARC-PAC 2020-08)
- For Neutrino Physics
 - Hadron Production for neutrino beams

Summary

- A heavy quark plays an inert particle in a hadron and is quite helpful to investigate internal motions and/or correlations of quarks.
 - Excitation Energy, Production Rate, and Decay Branching Ratio
- We conduct charmed baryon spectroscopy by means of missing mass technique at the J-PARC high-momentum beam line, where the intense pion beams up to 20 GeV/c will be delivered.
 - New platform of hadron physics will be covered owing to the general purpose spectrometer