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Diffraction and Imaging

Huygens-Kirchhoff-Fresnel principle

~q = ~k − ~k ′

The interference pattern is given by the
superposition of spherical wavelets

f (Ω~q) =

∫
d3~r

(2π)3
F (~r)ei~q·~r

Fourier imaging
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Elastic scattering
Form Factors

Probing deeper using virtual photons

q = k - k'
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4M2
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(
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)2
= −m2

γ∗

1

ε
= 1 + 2(1 + τ)tan2 θe

2
GE = F1 − τF2

GM = F1 + F2

Hofstadter Nobel prize 1961

”The best fit in this figure indicates
an rms radius close to 0.74± 0.24× 10−13 cm.”

Imaging in transverse impact parameter space
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Deeply Inelastic Scattering
Parton Distributions

Optical theorem

p

*γ

Bx

2

X

ImΣ ∝
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The total cross section is given by
the imaginary part of the forward amplitude

ν = Eγ∗ , xB =
Q2

2Mν

σDIS(xB ,��Q2)→ scaling, point-like constituents

Oeep inelastic scattering: Comparisons with the quark model

Jerome I. Friedrnan
Oepartment of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts OZf 90

EARLY RESULTS

In the latter half of 1967 a group of physicists from the
Stanford Linear Accelerator Center (SLAC) and the
Massachusetts Institute of Technology (MIT) embarked
on a program of inelastic electron-proton scattering after
completing an initial study (Coward et al. , 1968) of elas-
tic scattering with physicists from the California Institute
of Technology. This work was done on the newly com-
pleted 20 GeV Stanford linear accelerator. The main
purpose of the inelastic program was to study the elec-
troproduction of resonances as a function of momentum
transfer. It was thought that higher-mass resonances
might become more prominent when excited with virtual
photons, and it was our intent to search for these at the
very highest masses that could be reached. For com-
pleteness we also wanted to look at the inelastic continu-
um, since this was a new energy region which had not
been previously explored. The proton resonances that we
were able to measure' showed no unexpected kinematic
behavior. Their transition form factors fell about as rap-
idly as the elastic proton form factor with increasing
values of the four-momentum transfer q. However, we
found two surprising features when we investigated the
continuum region (now commonly called the deep inelas-
tic region).

as a function of the square of the four-momentum
transfer, q =2EE'(1—cos8), for constant values of the
invariant mass of the recoiling target system 8' where
W =2M(E E')—+M q. —The quantity E is the ener-
gy of the incident electron, E' is the energy of the final
electron, and 8 is the scattering angle, all defined in the
laboratory system; M is the mass of the proton. The
cross section is divided by the Mott cross section in order
to remove the major part of the well-known four-
momentum-transfer dependence arising from the photon
propagator. The q dependence that remains is related
primarily to the properties of the target system. Results
from 10' are shown in the figure for each value of 8'. As
8 increases, the q dependence appears to decrease. The
striking difference between the behavior of the deep in-
elastic and elastic cross sections is also illustrated in this
figure, where the elastic cross section, divided by the
Mott cross section for 0= 10, is shown.
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(1)Weak q2 dependence

The first unexpected feature of thes~ early results
(Bloom et al. , 1969; Breidenbach et al. , 1969) was that
the deep inelastic cross sections showed a weak falloff
with increasing q . The scattering yields at the larger
values of q were between one and two orders of magni-
tude greater than expected.
The weak momentum-transfer dependence of the in-

elastic cross sections for excitations well beyond the reso-
nance region is illustrated in Fig. 1. The differential cross
section divided by the Mott cross section o.M,« is plotted
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*This lecture was delivered 8 December, 1990, on the occasion
of the presentation of the 1990Nobel Prize in Physics.
~W. K. H. Panofsky, in Proceedings of the XIV International
Conference on High Energy Physics, Vienna (1968), p. 23. The
experimental report, presented by the author, is not published
in the Conference Proceedings. It was, however, produced as a
SLAC preprint.
The Mott cross section,

FICr. 1. (d o./dQdE')/oM«„ in GeV ', vs q for 8 =2, 3, and
3.5 GeV. The lines drawn through the data are meant to guide
the eye. Also shown is the cross section for elastic e-p scatter-
ing divided by o-M«„(do-/d0)/o. M«„calculated for 0=10', us-
ing the dipole form factor. The relatively slow variation with q
of the inelastic cross section compared with the elastic cross
section is clearly shown.

Reviews of Modern Physics, Vol. 63, No. 3, July 1991 Copyright 1991 The Nobel Foundation 615

Discovery of quarks, SLAC-MIT group, 7-18 GeV electron
Friedman, Kendall, Taylor, Nobel prize 1990

lim
Q2→∞

σDIS(xB) =

1∫
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∑
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)

1-D distribution in longitudinal momentum space
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Deep Exclusive Scattering
Generalized Parton Distributions

*γ γ

ξx-ξx+

p'p
t

GPDs

factorization

*γ φ, ω, ρ

ξx-ξx+

p'p
t

GPDs

DAs

γ∗p → γp′, γ∗p →

 ρp′

ωp′

φp′

Bjorken regime :
Q2 →∞, xB fixed

t fixed � Q2 , ξ → xB
2−xB

P+

2π

∫
dy− eixP

+y− 〈p′|ψ̄q(0)γ+(1 + γ5)ψ(y)|p〉

= N̄(p′)
[
Hq(x, ξ, t)γ+ + Eq(x, ξ, t)iσ+ν ∆ν

2M

+ H̃q(x, ξ, t)γ+
γ

5 + Ẽq(x, ξ, t)γ5 ∆+

2M

]
N(p)

spin N no flip N flip

q no flip H E

q flip H̃ Ẽ

3-D Imaging conjointly in transverse impact parameter and longitudinal momentum
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GPDs and Transverse Imaging
(xB , t) correlations

qX (x, ~b⊥) =

∫
d2~∆⊥

(2π)2

[
H(x, 0, t)−

E(x, 0, t)

2M

∂

∂by

]
e−i~∆⊥·~b⊥

M. Burkardt, Int. J. Mod. Phys. A 18 173 (2003) QCDSF coll. PRL98 222001 (2007)

Lattice calculation

5/32



Energy Momentum Tensor

Gravitational Form Factors definition :

〈p′|T̂ q
µν |p〉= N̄(p′)

[
Mq

2 (t)
PµPν
M

+ Jq(t)
ı(Pµσνρ+Pνσµρ)∆ρ

2M
+ dq

1 (t)
∆µ∆ν−gµν∆2

5M

]
N(p)

Confinement forces from space-space components of EMT
The graviton with spin 2 couples directly to EMT
But gravity is too weak to produce count rates in the detector

We can construct a spin 2 operator using two spin 1 operators
→ use a process with two photons to measure the EMT?
X. Ji PRL78 610 (1997) ; M. Polyakov PLB555 57 (2003)

p'p
t

νµT

Graviton

p'p
t

νµT

Photon
Pair
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GPDs and Energy Momentum Tensor
(x , ξ) correlations

Form Factors accessed via second x-moments :

〈p′|T̂ q
µν |p〉= N̄(p′)

[
Mq

2 (t)
PµPν
M

+ Jq(t)
ı(Pµσνρ+Pνσµρ)∆ρ

2M
+ dq

1 (t)
∆µ∆ν−gµν∆2

5M

]
N(p)

Angular momentum distribution

Jq(t) =
1

2

∫ 1

−1
dx x [Hq(x , ξ, t) + Eq(x , ξ, t)]

Mass and force/pressure distributions

Mq
2 (t)+

4

5
d1(t)ξ2 =

1

2

∫ 1

−1
dx xHq(x , ξ, t)

d1(t) = 15M

∫
d3~r

j0(r
√
−t)

2t
p(r)

Distribution of pressure
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Deeply Virtual Compton Scattering
The cleanest GPD probe at low and medium energies

*γ γ

ξx-ξx+

p'p
t

GPDs

e-’

!

pe-

"*

 hadronic plane

leptonic plane

"

ep → epγ

ALU =
d4σ→ − d4σ←

d4σ→ + d4σ←
twist-2
≈

α sinφ

1 + β cosφ

α ∝ Im

(
F1H+ ξGMH̃ −

t

4M2
F2E

)
H(ξ, t) = iπH(ξ, ξ, t) + P

∫ 1

−1
dx

H(x , ξ, t)

x − ξ

AUL ∝ Im

(
F1H̃+ ξGMH+ GM

ξ

1 + ξ
E + · · ·

)
sinφ
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CLAS in Hall-B
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CLAS proton Beam Spin Asymmetry
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Qualitative model agreement, quantitative constraints on parameters

F.-X. G. et al., PRL 100 (2008) 162002
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CLAS proton cross-section

More than 3k bins

Dispersion relation :

Re H =

[∫
Im H

]
+ ∆

green band shows
difference with BH

→ sensitivity to d1

H.-S. Jo et al. PRL 115 (2015) 212003
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Global Fits to extract the D-term
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Beam Spin Asymmetries

ImH(ξ, t) = N
1+x

(
2ξ

1+ξ

)−αR (t) ( 1−ξ
1+ξ

)b ( 1−ξ
1+ξ

t
M2

)−1

Unpolarized cross-sections
Use dispersion relation:

ReH(ξ, t) = ∆ + P
∫

dx

(
1

ξ − x
−

1

ξ + x

)
ImH(ξ, t)

pure Bethe-Heitler
local fit + uncertainty range
resulting global fit
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DVCS Dispersion: subtraction constant results
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1+ξ
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M2

)−1

αR is fixed from small-x Regge phenomenology
b is a free parameter for the large x behavior
p is fixed to 1 for the valence
M is a free parameter controlling the t dependence

∆(t) = ∆(0)

(
1−

t

M2

)−α
= 2

∫ 1

−1
dz

D(z, t)

1− z

D(z, t) = (1− z2)
∞∑
k=1

[
e2
u du

2k−1(t) + e2
d dd

2k−1(t)
]

C
3/2
2k−1(z)

Hereafter assume du
2k−1 ≈ dd

2k−1
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Separation of the GFF d1

In the χQSM:
d1(0) ≈ −4.0 ; d3(0) ≈ −1.2 ; d5(0) ≈ −0.4

H(x, ξ, t) = · · · + θ

[
1−

x2

ξ2

]
D(

x

ξ
, t)

D(z, t) =
(

1− z2
) [

d1(t)C
3/2
1 (z) + d3(t)C

3/2
3 (z) + · · ·

]
C

3/2
1 (z) = 3z

C
3/2
3 (z) =

5

2

(
7z3 − 3z

)
C

3/2
5 (z) =

21

8

(
33z5 − 30z3 + 5z

)

To separate orthogonal Gegenbauer polynomials:
requires measurement of (x , ξ) dependence (or at least z = x/ξ dependence)
different reaction such as DDVCS, will require higher luminosity

For now, to make progress it is necessary to make assumptions
Use guidance from models such as χQSM or lattice results
Also implement constraints from theory into phenomenological fits
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Separation of the GFF d1

Dq( xξ , t) =
(

1− x2

ξ2

) [
dq

1 (t)C
3/2
1 ( xξ ) + dq

3 (t)C
3/2
3 ( xξ ) + · · ·

]
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1

(t) = d1d

)2-t (GeV

(t
)

1d

t-dependence of the D-term :

Dipole gives singular pressure at r = 0

Power law implied by counting rules?

Exponential?

· · ·

d1(0) < 0 dynamical stability of bound state
d1(0) = −2.04± 0.14± 0.33

First Measurement of new fundamental quantity
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D-term comparison with theory

Dispersion Relation Analysis

Chiral quark soliton model

Lattice results LHPC

Global fit

M. V. Polyakov, P. Schweitzer Int.J.Mod.Phys. A33 (2018)
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Proton Pressure distribution results
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The pressure at the core of the proton is ∼ 1035 Pa
About 10 times the pressure at the core of a neutron star

Positive pressure in the core (repulsive force)
Negative pressure at the periphery: pion cloud
Pressure node around r ≈ 0.6 fm

Stability condition :
∞∫
0

dt r2p(r) = 0

Rooted into Chiral Symmetry Breaking

World data fit

CLAS 6 GeV data

Projected CLAS12 data E12-16-010B
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Projected impact on GPD extraction methods

Using simulated data
based on VGG model.
Input GPD H extracted
with good accuracy
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Projected impact on GPD extraction methods

Using simulated data
based on VGG model.
Input GPD H extracted
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Projected impact on GPD extraction methods

Using simulated data
based on VGG model.
Input GPD H extracted
with good accuracy
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Precision tomography in the valence region
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DVCS with a Polarized Positron beam

PEPPo production injecting 60 MeV 100 nA positron polarized at 60%
(PEPPo Collaboration) D. Abbott et al. , PRL116 (2016) 214801 ; L. Cardman et al. AIP CP 1970 (2018) 050001

Proposal 100 days (80+20) at L = 0.6× 1035 cm−2s−1
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Impact of the CLAS12 Positron data

Global analysis of CLAS12 program observables {σUU,ALU,AUL,ALL,A
C
UU,A

C
LU}

unpolarized beam charge asymmetry AC
UU sensitive to the amplitude real part

polarized beam charge asymmetry AC
UU sensitive to the amplitude imaginary part

Fitting {H, H̃} assuming model values for {E, Ẽ}

Improvement of the statistical and systematical uncertainties

Model independent separation of the Interference with BH and DVCS2
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Summary and Outlook

I Generalized Parton Distributions and Imaging

I New perspective on Exclusive Reactions Physics: Mechanical Properties!

I First Measurement of Gravitational Form Factors

I Opens a new avenue to test confinement mechanism

I Partonic Energy Momentum Tensor

I Essential part of the EIC program
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