

Heavy Flavor Measurements at spheric at sphe

IHEP EPD Seminar, May 24, 2021 Hideki Okawa (大川英希) Fudan University

Key Laboratory of Nuclear Physics & Ion-Beam Application (MOE) & Institute of Modern Physics

Quantum Chromodynamics (QCD)

- QCD is a non-Abelian gauge field theory (Yang-Mills theory), describing the fundamental interactions between quarks and gluons.
- It has unique features: (1) asymptotic freedom & (2) color confinement

Quark-Gluon Plasma

- QCD matter undergoes phase transition w/ high pressure and/or high density.
 - \rightarrow Outcome of many-body interaction, rich & non-trivial phenomenology
 - \rightarrow Interplay of perturbative & non-perturbative aspects
- Such a new form of QCD matter is called the Quark-Gluon Plasma (QGP).
- Early measurements at RHIC revealed that QGP is strongly interacting liquid state instead of gaseous state.

Evolution of the Universe

- QGP has an impact on the formation of large scale structure of the Universe.
- If the phase transition was the first order, the Universe would have been significantly more non-uniform.
 → Lattice QCD predicts a cross-over at zero chemical potential

QCD Phase Structure

- The QCD phase structure is crucial to understand the evolution of the Universe.
- Lattice QCD predicts that the transition was a smooth cross over.

Two outstanding questions:

- What is the inner workings of QGP? → sPHENIX & other RHIC/LHC experiments
 @ energy frontier
- Where is the critical point then? → RHIC Beam Energy Scan & future experiments (NICA, FAIR) [not this talk]

Heavy Ion Colliders

- High energy frontier: RHIC ($\sqrt{s_{AuAu}}$ =200 GeV), LHC ($\sqrt{s_{PbPb}}$ =2.76, 5.02 TeV)
- Low energy: RHIC Beam Energy Scan I&II [3-19.6 GeV], future facilities (NICA in JINR [3-11 GeV], FAIR in GSI [1-3 GeV])

RHIC Experiments

- STAR is currently the only operating experiment at RHIC & will continue along with sPHENIX.
- PHENIX ended its operation in 2016. **sPHENIX is its upgrade w/ a fully new detector.**
- Phobos for examining a very large number of rare Au-Au collisions (4π silicon multiplicity counters).
- BRAHMS for measuring charged hadrons over a wide range of rapidity and transverse momentum.

sPHENIX Mission

- A state-of-the-art jet detector; the first new detector at RHIC in >20 years.
- Completing the scientific mission of RHIC, as prioritized in DOE/NSF NSAC 2015 Nuclear Physics Long Range Plan.
- Complementarity in kinematics and medium property to LHC, also confirmed by ECFA WG5 (Heavy Ion group).
- Submitted Beam Use Proposal (BUP) on Aug. 31, 2020.
- sPHENIX as the highest priority for Runs 2023-2025 (PAC Report, Sep. 2020)

Complementarity b/w RHIC & LHC

- Generally, RHIC has better access to low p_T region.
- Future RHIC & LHC experiments have larger coverage in p_T & <u>more overlap</u> to compare the measurements.

sPHENIX Collaboration

Asian regional meetings were held annually during the pre-pandemic days (at Fudan in 2019)

- More than 320 members from 84 institutions in 14 countries (as of early 2021)
- 9 institutes from China (Fudan, CCNU, CIAE, IMP-CAS, PKU, SINAP, SYSU, THU, USTC)
 - Fudan team: 5 faculties, 2 postdocs and a few PhD students

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z <10 cm	z <10 cm
2023	Au+Au	200	24 (28)	9 (13)	3.7 (5.7) nb ⁻¹	4.5 (6.9) nb ⁻¹
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹
					4.5 (6.2) pb ⁻¹ [10%-str]	
2024	p^{\uparrow} +Au	200	-	5	0.003 pb ⁻¹ [5 kHz]	0.11 pb ⁻¹
					0.01 pb ⁻¹ [10%-str]	
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹

- Scientific mission of sPHENIX can be achieved with 3 year of running.
- Consistent with the currently envisioned Electron Ion Collider (EIC) schedule.
- If opportunity arises, additional runs can fully utilize the potential of the detector.

sPHENIX Detector

- High data rates: 15 kHz for all subdetectors
- 1.4 T Solenoid from BaBar
- Hermetic coverage: |η|<1.1
- Trigger capability also with streaming readout
- High resolution vertexing with MAPS Vertex detector (MVTX)
- Large acceptance hadronic support carriage calorimetry for jets

→ brings first b-jet tagging at RHIC w/ MVTX!!

Streaming Readout & pp Program

- DAQ will be a hybrid of TPC/INTT/MVTX streaming & calorimeter triggers
- Streaming readout: triggerless configuration recording 10% of collisions.
 → increases amount of Run-24 data by orders of magnitude
- Crucial for open heavy ion programs as well as some cold QCD measurements

Hideki Okawa

sPHENIX Tracking Detectors

Inner tracker:

- MVTX: Monolithic Active Pixel Sensors (3 layers)
 - Procurement copies of ALICE ITS IB staves integrated into sPHENIX
 - 30µm pitch. Precision vertexing
- INTT: 2 layers of silicon strips (86µm pitch)
 - Fast integration time. Can resolve one beam crossing
- DCA($r\phi$ or z) resolution < 50 μ m for p_T >1 GeV/c

Outer tracker:

- Compact GEM-based TPC: 48 layers with gateless and continuous readout
 - Main tracking device; provide momentum measurement
- $\delta p/p < 2\%$ for $p_T < 10$ GeV/c

Impact of MVTX on Tracking

- Tracking efficiency above 90% at p_T>1 GeV/c. → promising to measure rare processes such as Y(nS) production.
- DCA pointing resolutions in rφ & z ~ 40µm at p_T=0.5-1 GeV/c. → crucial for open heavy-flavor programs.
- Momentum resolution < 2% for p_T < 10 GeV/c. → Important for Y(nS) separation; δM/M < 125 GeV required.

sPHENIX Calorimeters

Full Electromagnetic and Hadronic calorimeter system

- Large Acceptance: 1.1 < $|\eta|$ and full 2π azimuthal coverage
- SiPM used for light collection & readout

EMCal

• Tungsten-scintillating fiber sampling calorimeter (SPACAL type). 18 X_0 , 1 λ .

Inner HCal

Aluminum absorber plates and scintillating tiles with embedded WLS fibers

Outer HCal

- Steel absorber plates and scintillating tiles with embedded WLS fibers
- $\sigma_{\rm E}/{\rm E}$ < 100%/ $\sqrt{\rm E}$ (single particle) for overall HCal.

sPHENIX EMCal

- Total 6144 blocks for EMCal. Consists of scintillating fibers embedded in a matrix of tungsten powder infused with epoxy (W/SciFi).
- Tower size $\Delta \eta \propto \Delta \phi = 0.025 \times 0.025$. Resolution ~ 16%/ $\sqrt{E \oplus 5\%}$.
- Cooperation with BNL, MIT & UIUC. Fudan is one of the main block construction site. 1248 blocks will be made by Fudan/PKU/CIAE.

sPHENIX EMCal Production

Material from Weihu Ma (Fudan)

Hideki Okawa

sPHENIX QA & Shipment

Material from Xiaozhou Yu & Weihu Ma (Fudan)

4 Core Physics Programs @ sPHENIX

Co-convenors of Heavy Flavor Topical Group: Jin Huang (BNL) & <u>Hideki Okawa (Fudan)</u>

- Unique probes for both perturbative & non-perturbative regimes.
 - $m_{b,c}$ >> $\Lambda_{QCD} \rightarrow pQCD$ prediction of initial production
 - m_{b,c} >> T_{QGP} → No thermal production of HF; c/b conserved from the initial hard scatterings & experience full QGP evolution; able to tag hadronization

Why Heavy Flavors?

pQCD Predictions

JHEP 05 (2021) 054

- pQCD provides important foundation to study the properties of the QGP.
- Various c & b-hadron production cross sections as well as b-jet cross section are well described by pQCD calculation (e.g. FONLL) both in LHC & RHIC.
- However, larger uncertainty in model prediction & modeling differential distributions to be improved.

Key Observables

Two popular & crucial observables for QGP studies

- 1. Collective flow \rightarrow "CMB" of the Heavy Ion "Little Bangs"
- Nuclear Modification Factor → quantitative measure for parton energy loss (i.e. "jet quench")

NSF 2015 Long Range Plan

Collective Flow: "CMB" of Little Bang

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}p_{\mathrm{T}}} = \frac{1}{2\pi} \frac{\mathrm{d}^{2}N}{p_{\mathrm{T}}\mathrm{d}p_{\mathrm{T}}\mathrm{d}y} \left\{ 1 + \sum_{i=1}^{\infty} v_{\mathrm{n}} \cos[n(\varphi - \Psi_{\mathrm{n}})] \right\}$$

- Fourier analysis of azimuthal distributions against the reaction plane.
- Elliptic flow (v₂) has been dominantly measured to constrain the QGP properties.

Nuclear Modification Factor

- The most widely used observable to quantify the jet quench. Compare the differential spectrum in pp & AA collisions.
- R_{AA}=1 (no quench); < 1 (jet quench)

Heavy Flavor Hadron Reconstruction

L. Gladilin, Eur. Phys. J. C (2015) 75:19

H _c	$f(c \rightarrow H_c)$ [%]	$f(b \rightarrow H_c)$ [%]
D^0	$54.2 \pm 2.4 \pm 0.7$	$58.7 \pm 2.1 \pm 0.8$
D^+	$22.5 \pm 1.0 \pm 0.5$	$22.3 \pm 1.1 \pm 0.5$
D_s^+	$9.2\pm0.8\pm0.5$	$13.8\pm0.9\pm0.6$
Λ_c^+	$5.7\pm0.6\pm0.3$	$7.3\pm0.8\pm0.4$
D^{*+} , rate	$23.4 \pm 0.7 \pm 0.3$	$23.3 \pm 1.0 \pm 0.3$
D^{*+} , double-tag	$24.4 \pm 1.3 \pm 0.2$	$17.5 \pm 2.0 \pm 0.1$
D^{*+} , combined	$23.6\pm0.6\pm0.3$	$22.1\pm0.9\pm0.3$

- Decays to **D** mesons are dominant for b,c quarks.
- Hadronic modes: $BR(D^0 \rightarrow K^-\pi^+)=3.89\%$; $BR(D^+ \rightarrow K^-\pi^+\pi^+)=8.98\%$.
- Displacement of D mesons allows us to discriminate b vs c.

Sensitivity to Initial EM Field & Tilt

- Strong initial electromagnetic field is generated by the Heavy Ion collisions.
- Formation of HF quarks limited to primordial stage of collisions due to large mass (T_f ~ 0.1fm/c for charm; when B field reaches its maximum) → much larger directed flow v₁ than light quarks
- HF quark v₁ has also access to the "tilt" (i.e. longitudinal profile) of the QGP → dragged from the distributed thermalized matter

$D^0 v_1$ measurement

ALICE, PRL 125 (2020) 022301

- First observation of D⁰ v₁ at STAR.
- Different slope between ALICE & STAR. Due to different B & E fields?
- Some tensions with theory calculations (an order of magnitude larger Δv_1 in data).
- <u>sPHENIX will provide outstanding precision of D⁰ v</u>₁ <u>measurements.</u>

Color Screening of Quarkonium

- sPHENIX can reconstruct Upsilons with excellent mass resolution with electrons: $\delta M < 125 \text{ MeV}$
- Excited Upsilon states have larger radius than Y(1s).

Electron Reconstruction

- For Upsilon measurements, we keep the criteria fairly loose to keep high efficiency.
- A simple E/p cut already provides good separation with π , K, p
- Separate working points to be developed for other purposes (e.g. soft-electron b-tag).

Upsilon R_{AA}

- Measuring centrality & p_T dependence is critical to compare with LHC. sPHENIX will be able provide measurement overlapping with the LHC kinematic regions.
- Measuring Y(3S) modification will be challenging due to the large suppression.
 Feasibility checks ongoing for Y(3S) modification.

Heavy Flavor Flow

D: PLB 813 (2021) 136054 J/ψ: JHEP 10 (2020) 141 e←b: arXiv:2005.11130 (accepted by PRL) Y(1S): PRL 123 (2019)192301 TAMU: PRL 124 (2020) 042301

- Charm quark flows in all systems! Bottom quark does not seem to flow in pp.
- Bottom quark also flows in AA, but close to zero. However, Upsilon flow~0??
- In general, phenomenologically challenging to describe flow & R_{AA} at the same time for heavy flavors. More precise measurements from various probes are crucial.

Heavy Flavor Flow in sPHENIX

- sPHENIX will provide precise measurements of prompt/non-prompt-D⁰ flow.
- High p_T flow can be probed by b-jets.
- Determine b-quark flow \rightarrow clean access to diffusion at RHIC

Hadronization

Recombination/coalescence

Grazia Luparello

- Hadronization occurs through a complicated interplay between fragmentation & recombination.
- Phase space is filled with partons in pp/AA collisions, leading to modified hadron p_T spectrum.
- Characteristic phenomena:
- 1. Enhancement of baryon/meson ratios at intermediate p_T .
- 2. Enhancement of heavy-flavor mesons with a strange quark due to the abundance of strange in QGP.
- Ratio of production yields between various hadron species will be important probes

Λ_c Hadronization

- Λ_C/D⁰ significantly larger than the baseline Pythia calculation in pp, pA, AA. Important probe to understand the hadronization (effects from coalescence?).
- Also, charm baryons & charm-strange mesons give sizable contributions to the total charm xsec.
- sPHENIX will provide precision measurement at $p_T \sim 3-8$ GeV.

Parton Energy Loss in QGP

Two categories of energy loss

- 1. Collisional (elastic scatterings in QGP)
- 2. Radiative (medium-induced gluon radiation)
 - Dead-cone effect in heavy-flavor jets: suppression of gluon radiation from heavy quarks at small angles.

A. Buzzatti and M. Gyulassy Phys. Rev. Lett. 108, 022301 (2012)

Q

Prompt/Non-prompt D⁰/D_s/e R_{AA}

- Observed features still to be understood.
- Mass dependence disappears in $p_T > 20$ GeV?
- Requires precise measurements both from hadrons and jets.

3

4 5 6 7 8 10

20

p_{_} (GeV/c)

30 40

100

0.6 0.4

0.2

B-meson Projections

- Streaming readout allows us to measure R_{AA}.
- Precise measurement of non-prompt-D⁰ suppression
- Determine b-quark $\mathsf{R}_{\mathsf{A}\mathsf{A}}$ \rightarrow clean access to diffusion at RHIC

DCAD° D°

b-jet Identification

- Jets are useful to access the initial parton kinematics.
- RHIC has an advantage over LHC for having much less b-jets from gluon splitting (g→bb).

lorh

- Heavy flavor jets have distinct signatures with:
 - Tracks with large DCA
 - Presence of secondary vertex
 - Presence of displaced lepton
- Taggers making use of the first two features are investigated so far.

b-jet Identification

sPH-HF-2018-001 - MVTX Proposal

- Already compatible as CMS benchmark performance in Heavy Ion.
- Further studies ongoing to combine the two tagging schemes as well as making use of displaced leptons.
- Machine learning approach is currently under development.

Previous b-jet R_{AA} Measurements

- Evidence of jet quench also in b-jets.
- Suppression compatible with inclusive jets, which was unexpected.
- Is this true? Any effect from the gluon-splitting (g→bb)?
- We also like to see the behavior in low p_T region (challenging at LHC).

b-jet R_{AA} Projection

 sPHENIX is the only detector at RHIC with full b-tag capability.

Advantage at RHIC

- 1. Less contributions from the gluon splitting.
- 2. Access to the low jet p_T region.
- sPHENIX will provide outstanding precision in low b-jet p_T region. (but this is not the full story)

Even more with b-jet Pairs

Kang, Reiten, Vitev, Yoon, Phys. Rev. D 99, 034006.

- Considering the correlation between two b-jets will further suppress gluon splitting.
- Two ways to produce 1D integral of 2D di-jet distribution
 - Di-b-jet p_T balance: sensitive to geometry fluctuation (our previous studies in the backup)
 - <u>Di-b-jet mass</u>: enhance sensitivity to transport property

b-jet Pair Mass

Inclusive b-jet

0<u>-</u> 35

40

45

50

- Covers 35-70 GeV/c² in di-b-jet invariant mass.
- Strong sensitivity to parton-QGP coupling.
- x2 effect against 10% variation on g_{med}!

70

75

55

60

65

Di-jet invariant mass [GeV]

b-jet Pair vs Light-jet Pair

- b-jet vs light-jet pair mass ratio has strong sensitivity to parton mass effect.
- Partial cancellation of experimental systematic uncertainties.
- <u>1-8 times enhancement on the</u> mass effect against g_{med} variations by taking this ratio.
- An excellent example of fruitful collaboration between the experimental/theory communities.

b-jet vs light-jet

More studies under way

- D-D correlation
- Diffusion of D inside HF jets
- b-jet substructure

D- \overline{D} Correlation

- **D**- \overline{D} correlation is a more sensitive observable than $R_{AA} \& v_2$ to constrain the diffusion properties of the charm quark.
- Need high statistics at the LHC (full Run 2 or even Run 3)
- Feasibility studies ongoing at sPHENIX

Toward the First Data Taking

SC magnet (former BaBar magnet)

From Yasser Morales

OHCal All sectors completed!!

EMCal Sectors

MVTX stave production complete!!!

INTT ladder production in progress

Construction will be completed by the end of this year

Toward the First Data Taking

- Currently going through 1st Mock Data Challenge (MDC1) to test the full chain of generation \rightarrow G4 simulation \rightarrow reconstruction \rightarrow analysis
 - 50 million full simulation samples produced for ccbar & bbar signals (as ٠ well as samples for other analyses)
- KFParticle successfully implemented in sPHENIX.
- Will have another set of production later this year for HF jet studies. Hideki Okawa

Ever

500

400

250 S Ë 200

ш

1.7 1.75 1.8

sPHENIX Simulation

1.75 1.8 1.85 1.9 1.95 2 2.05 2.1 2.15

m_{KKπ}[GeV]

sPHENIX Note sPH-HF-2021-001

1.75 1.8 1.85 1.9 1.95 2 2.05 2.1 2.15

m_{KKπ} [GeV]

Summary

- Still many mysteries in QGP measurements, especially in the heavy flavor sector.
- sPHENIX brings precision measurements to the b-quark sector at RHIC.
 - Upsilons to probe QGP with different size.
 - Comprehensively covers wide p_T range for open heavy flavor
 - > initial electromagnetic field, diffusion properties, hadronization, parton energy loss
- Despite the challenges from COVID-19, the construction is progressing, targeting the first data in 2023.
- Currently going through the 1st Mock Data Challenge to validate the full analysis framework.
- Preparation under way for the first data taking in 2023! Stay tuned!

Thank you for your attention! 谢谢大家!