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If the S.I. Unit of Ignorance is the  
 
                           "IDK" 

Then we still rate 
 
                     950 milli-IDK  
   for the Composition of the Universe
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What is the Universe made of ?

68%

27%

"But Actual Composition 
950 milli I Don't Know"
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PHYSICS ITALIAN 
STYLE XENON10  
@ Gran Sasso

CDMS II: Winter 
@Soudan Minnesota

Sanford Lab 
LUX & LZ @Lead, 
South Dakota

30 years in dark matter
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Many International Efforts Over Last 20 Years

PICO

LZ
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Sanford Lab @ South Dakota
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LUX, Sanford Lab, 2011
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Sanford Lab, May 2012
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Where are you today?
•April 28, 2021 - 1 mile underground at Sanford Lab
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Deep Underground Laboratories - Escaping Cosmic Muons
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How Many Gammas/Day?

>1,000 γ/ second/human

Governor Rounds visits 
Sanford Lab, 2010
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Inside 9 m diameter water shield (Not Filled) at SURF
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(David Malling, June 2012)



Reactor building directly after Chernobyl accident

Full body CT scan

Average in US (excluding Radon gas in air)
Average in US (including Radon gas in air)
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Dark Matter Underground Searches - 1987
•First publication on an underground experimental search for cold dark matter  
(Ahlen et al. 1987. PLB 195, 603-608).
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•1986 operating a 0.8 kg Ge ionization 
detector at Homestake Mine, SD (adjacent 
to Ray Davis’s operating Solar Neutrino 
Experiment) 

33 kg-days

1 cts/keVee/kg/day

Sensitivity ~100 Events / kg / day
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Gaitskell (Graduate Work) Superconducting Nb Single Crystal Detector

•1 cm long - 12 g - 250 eV Threshold - “State of the Art in 1991” 
•Superconducting Tunnel Junction arrays detecting phonons and quasiparticles from Nb
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In Early 1990’s we studied exotic lattice photon and 
quasiparticle states to build sensitive dark matter detectors - 
today we appear to be coming full circle as see new proposals 

for MeV DM search experiments based on meV excitons
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Dark Matter Direct Detection MeV - TeV

•I prepared a List of the Search Experiments that have been 
   - Recently Completed (last 4 years), or 
   - About to Start, or 
   - Some of the Future (out 10 years) 
          (not exhaustive, doesn’t include more speculative ideas still in R&D)  

•Dates indicate the Start of Detector Operation and Science 
•(Forgive me for an omissions or slight errors in dates)
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Dark Matter Direct Detection MeV - TeV
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Dark Matter Direct Detection MeV - TeV
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The Practical Matter of a Rare Event Search
•Improvements in Dark Matter Search Reach 

•Progress is Incremental...but by orders of magnitude 
•e.g. x10 increases in target mass 

•Innovation 
•e.g. Entirely new target materials C3F8 
•e.g. Higher Field Operation of Ge Bolometric Target 
•e.g. Skipper Amp CCD Readout 
•e.g. Light nuclei (He) for Low Mass WIMP searches
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The Practical Matter of a Rare Event Search
•In ~33 rd year of searching - now at a sensitivity that 106 better than the first 
round - we need detectors with a  

     Low Sisyphean Index † 
•They must want to work correctly / do so without misleading us / low 
complexity - mustn’t roll back down the hill when we stop paying attention for a 
moment 

•And we will need to push them (pun indented) by another 102 before we reach 
the irreducible coherent neutrino backgrounds

21
† Experimentalist’s Perspective of the Technology itself, not the definition that the task can never be completed 
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Doubling every 2 years

Factor 10 every 6.5 years

http://education.mrsec.wisc.edu/SlideShow/images/computer/Moores_Law.png

http://education.mrsec.wisc.edu/SlideShow/images/computer/Moores_Law.png
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Doubling every 2 years

Moore: Factor 10 every 6.5 years

http://education.mrsec.wisc.edu/SlideShow/images/computer/Moores_Law.png

http://education.mrsec.wisc.edu/SlideShow/images/computer/Moores_Law.png
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LZ ‘20
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Journey Through the Theoretical Landscape
•Cumulative Theoretical work  
๏1966-1977 Massive Standard Model Neutrinos   

• Includes 1966 Gershtein & Zeldovich .... 1977 Dicus, Kolb & Teplitz,  
๏1977-83 Other candidates, including supersymmetric particles 

• Includes  1977 P. Hut .... 1983 Ellis, Hagelin, Nanopoulos, Olive & Srednicki 

•So WIMPs coined in 1984 by Turner and Steigman (term has evolved in modern use) 
๏Weak Mass Scale and Weakly Interacting 
๏By the late 1980s, it was widely appreciated that these specific candidates were but a few examples of a 

broader class of “WIMPs”  

•WIMPs have been the major focus of dark matter candidates  
๏mass >3 MeV to avoid altering successful BBN (Big Bang Nucleosynthesis) predictions 
๏mass <100 TeV to ensure Ωmatter < 0.3 

•WIMP is a very natural solution if we assume particle is in thermal equilibrium during 
early annihilation phase and are present in a radiation dominated early universe 

29

(Thanks to Dan Hooper, Fermilab ) 
For history - Bertone and Hooper, arXiv:1605.04909 
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WIMPs
• The thermal relic abundance calculation provides us with a collection of well-
motivated benchmark models and experimental targets  
๏Many of the most attractive WIMP candidates were expected to fall within the reach of 

planned direct detection and accelerator experiments  
๏We have covered 6 orders of magnitude in sensitivity – and yet no WIMPs have appeared  
๏The LHC has increase energy and intensity, and yet no compelling signs of dark matter (or 

other Beyond SM physics) have been discovered 

30

(Thanks to Dan Hooper, Fermilab )
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LHC (ATLAS) SUSY Particle Searches

31
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WIMPs
• The thermal relic abundance calculation provides us with a collection of well-
motivated benchmark models and experimental targets  
๏Many of the most attractive WIMP candidates were expected to fall within the reach of 

planned direct detection and accelerator experiments  
๏We have covered 6 orders of magnitude in sensitivity – and yet no WIMPs have appeared  
๏The LHC has increase energy and intensity, and yet no compelling signs of dark matter (or 

other Beyond SM physics) have been discovered 

32

(Thanks to Dan Hooper, Fermilab )
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•In order to Reconcile Dark Matter With Current Constraints from Cosmology, 
Astrphysics, Accelerator and Direct Detection.  
What do WIMP models look like? 
๏Need to ensure normal rate of annihilation in the early universe, UNSUPPRESSED,  

but the scattering probability on nucleons is SUPPRESSED. 
 
 

•For example: 
๏Co-annihilations with another particle in dominates the direct χχ annihilation in early universe. 
๏Annihilations to W/Z and/or Higgs bosons; but then scattering with nuclei occur through highly 

suppressed loop diagrams 
• wino-like and higgsino-like neutrinos...they have predicted c-s around those about to be probed 

๏Scattering cross sections contain powers of velocity (or momentum) 
๏Many models with mχ < 1 GeV (not the classic WIMP) but > 3 MeV (BBN) 

• Requires new types of detector with light nuclear targets and very low thresholds 

33

(Thanks to Dan Hooper, Fermilab )
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Dark Matter Direct Detection MeV - TeV
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Dark Matter Direct Detection MeV - TeV

36

Dark Matter Direct Detection MeV - TeV



Principle of WIMP detection in LXe TPC

37

■ Liquid xenon time 
projection chamber – 
LXe TPC.  

■ S1 – primary 
scintillation. 

■ S2 – secondary 
scintillation, 
proportional to 
ionisation. 

■ Position reconstruction 
based on the light pattern 
in the PMTs and delay 
between S2 and S1.
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LUX-ZEPLIN	@	Sanford	Lab	
(Full	Operations	Start	in	2021)

40

LZ TDR arXiv:1703.09144

https://arxiv.org/abs/1703.09144
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How have we spent the last few years at Brown?

41

Construction of the Central PMT Arrays for LZ at Brown University 
Cleanrooms --> Installation at Sanford Lab, SD



LZ Dark Matter

TPC: PMT arrays
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Bottom array Top array

253 (top) + 241 (bottom)  
3” Hamamatsu R11410-22 

PMTs

Photo credit: Matt Kapust, SDSTA
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Shipping LZ PMT Arrays from 
Brown University to Sanford Lab  
(2019)



Genealogy  
of The Noble Target Field

thanks to M. Schumann (Freiburg) 

(ZEPLIN I + II)

(followed by DARWIN 50-100t)
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Ar Detectors

Xe Detectors
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LXe TPC’s Improving Sensitivity on Multiple Fronts 
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XENON1T, Laura Baudis
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XENON1T (slightly more sensitive than latest Panda-X II and LUX results)
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XENON1T (slightly more sensitive than latest Panda-X II and LUX results)
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Dark Matter Direct Detection MeV - TeV
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Dark Matter Direct Detection MeV - TeV
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Dark Matter Direct Detection MeV - TeV
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Dark Matter Direct Detection MeV - TeV

Future Experiments with Noble Liquid
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Dark Matter Direct Detection MeV - TeV
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Dark Matter Direct Detection MeV - TeV

Modulation of DM Signals
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•ANAIS 100 kg NaI 
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https://arxiv.org/pdf/1910.13365.pdf
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Dark Matter Direct Detection MeV - TeV
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Dark Matter Direct Detection MeV - TeV

Future Cryogenic Detectors
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SuperCDMS @ SNOLAB

54
Y

Prisca Cushman, SuperCDMS, UMinn / Nigel Smith, SNOLAB



Dark Matter Searches              Rick Gaitskell, Brown University, LZ/DOE

Dark Matter Direct Detection MeV - TeV
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Dark Matter Direct Detection MeV - TeV
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Dark Matter Direct Detection MeV - TeV
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Dark Matter Direct Detection MeV - TeV
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Dark Matter Direct Detection MeV - TeV
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Our Goal Remains to Create the … 

QUIETEST KNOWN PLACES IN THE 
UNIVERSE
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Our Goal Remains to Create the … 

QUIETEST KNOWN PLACES IN THE 
UNIVERSE 

BUT NOT TOO QUIET 
WE REALLY ARE LOOKING FOR A 

SIGNAL
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Our Goal Remains to Discover Dark Matter … 

We have been beating Moore’s Law in terms of progress in the search-space  
c-s for some specific DM particle types.  

(It’s a big space so we need to make rapid progress :-)  
 
 

However, new models/experiments are also spreading laterally in the 
search-space in terms of candidate particle mass. A challenge will be to 
ensure that we have multiple experiments able to test possible signals 

that occur.  
 

New technologies can often introduce new pathologies for backgrounds and 
we will need a way to differentiate between real DM-related signals and 

unwanted background pathologies. 
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Conclusions - Direct Detection
•The Enthusiasm of Experimentalist Pursuing Direct Dark Matter Grows Unabated 
๏ LUX / PandaX-II / XENON1T reported final results 
๏ DAMA/LIBRA Phase 2 > 1 tonne x year - Annual Modulation Signal is still there 

•US G2 “Generation 2” Dark Matter Experiments: LZ, SuperCDMS, ADMX 
๏ LZ goal of operating at Sanford Lab in 2021 (US-DOE, UK) 

• Worldwide  
๏ XENONnT goal of operating at LNGS in 2021 (German, Swiss, US-NSF) 
๏ PandaX-4T goal of operating at Jinping in 2021 (China) 
๏ DarkSide20k (20 tonne - major upgrade on previous 50 kg instrument) seeking approval from multiple agencies  

• Low Mass DM signal(s) - many new technologies now aimed at sub-GeV and MeV candidates 
• Improving Search Sensitivity Continues Apace 
๏ New larger detectors are being delivered in order to keep rate of improvement for WIMP >5 GeV regime 
๏ Reductions in threshold deliver major advances in low mass sensitivity (then the challenge will be to scale detector mass) 
๏ Critically there has also been an improvement in our understanding of potential systematics in detector response 
๏ This Focus - Has brought the best out of people. Yes, we are combative, but that is the spice that makes the best sauce, and 

it has caused us to hone our arguments, and improve our detailed understanding of the detectors/backgrounds 
๏ Calibration strategies that can provide abundant statistics, and have low systematic uncertainties are critically important 

•The Spectre of Discovery is always upon us, and is a great responsibility 
๏ Clearly, multiple detectors / multiple techniques will be required to build a robust case of discovery
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• SLIDES END
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