

Ion channel

Lithium vapour

Wakefield acceleration

Recent Progress on CEPC Plasma Injector

Wei Lu @ Tsinghua University & Dazhang Li @ IHEP, CAS On behalf of the IHEP-THU-BNU AARG team is electrons May 12, 2021

Background: CEPC/CEPC plasma injector

Preliminary design v2

Current status: Simulations & experiments

Outlook: Future experiments

Circular Electron Positron Collider

IHEP-CEPC-DR-2018-01 IHEP-AC-2018-01

CEPC Conceptual Design Report

Volume I - Accelerator

The CEPC Study Group August 2018

CDR (Acc.) International Review @ 2018.6.28-6.30 & Final Released @ 2018.9.2

Recent progress on CEPC Plasma Injector @ IARC 2021 2021-05-12 3

Can we use a 10m scale plasma accelerator to boost the energy of the injector from 10GeV to about 45.5 GeV?

- Nominal field error: ~0.1%
- Uniformity requirement: ~0.05%
- Eddy current effect
 - Sextupole coils outside vacuum chamber

Recent progress on CEPC Plasma Injector @ IARC 2021 2021-05-12

Plasma-based wakefield acceleration

LWFA or PWFA? A simple math problem:
1nC, 100Hz, 10 → 40 GeV: △P_{ave} ~ 3kW
Laser → e-: ~1%, 1PW/30fs/10Hz ×1000??
e- driver → e- trailer: 60% per stage!!

Plasma wave excitation, 1~100GeV/m gradient

> THU team:

- Prof.: <u>W. Lu, J. F. Hua,</u>
- PhD: <u>S. Y. Zhou, S. Liu, B. Peng, Y. P. Wu, Y. Ma, T. L. Zhang, H. Y. Xiao, Z. Song, Y. Fang, F. Yang.....</u>

> IHEP team:

- Prof.: J. Gao, J. R. Zhang, <u>Y. S. Huang</u>
- Staff: D. Z. Li, M. Zeng, D. Wang, C. Meng, Y. W. Wang, X. H. Cui, G. Shu
- PhD: X. N. Wang, J. Wang

> BNU team:

Prof. W. M. An

Background: CEPC/CEPC plasma injector

Preliminary design v2

Current status: Simulations & experiments

Outlook: Future experiments

Recent progress on CEPC Plasma Injector @ IARC 2021 2021-05-12

CPI conceptual Design V1.0 \rightarrow **V2.0**

Booster Requirement

Energy (GeV)45.5Bunch Charge (nC)0.78Bunch length(um)<3000Energy Spread(%)0.2 $\epsilon_N(\mu m \cdot rad)$ <800Bunch Size(um)<2000

- ➢ Electron Acceleration → HTR
- ➢ Positron Acceleration → Stable mode
- Conventional Accelerator optimization
- Beam manipulations

Background: CEPC/CEPC plasma injector

Preliminary design v2

Current status: Simulations & experiments

Outlook: Future experiments

Recent progress on CEPC Plasma Injector @ IARC 2021 2021-05-12

What is High Transformer Ratio?

Nonlinear(Bubble) regime: nb/np>>1 or $\Lambda = n_b/n_p k_p^2 \sigma_r^2 > 1$ HIGH TRANSFORMER RATIO (r, ξ) Phase space (

$$E_z = \frac{\partial}{\partial \xi} \psi(\mathbf{r}_{\perp}, \xi) \simeq \frac{1}{2} r_b \frac{dr_b}{d\xi} \quad E_{\perp} = E_r - B_{\theta} = \frac{r}{2}$$

Lu W, Huang C, Zhou M, et al, PRL(2006)

For our case, we need $R \ge (45.5-10)/10=3.55$

HTR e- Acceleration—CDR (2018)

beam	Driver	Trailer		
Driver energy E(GeV)	10	10		
Nor. emittance $\epsilon_n(mm \ mrad)$	(head)≤50/≤500	≤100		
Length(ps)	2	0.267		
Spot size(um)	20	20		
Charge(nC)	5.8	1		
Beam distance(um)	149			

Density $n_0(cm^{-3})$	0.503×10^{-3}	16
Trailer E (GeV)	45	
TR	3.5	>
Efficiency (%)	60	
Acc. gradient(GV/m)	2.9	
Acc. distance (m)	12	

1) Matched beam \rightarrow Preserve the emittance

2) $Ez^{\uparrow} \rightarrow Trailer's Energy^{\uparrow} to 45.5 GeV$

3) Trailer's Q $\downarrow \rightarrow$ Flatten Ez \rightarrow Energy spread \downarrow

Simulation performed by Dr. S. Y. Zhou and Prof. W. Lu (2018)

HTR e- Acceleration--Optimized

beam	Driver	Trailer
plasma density n _p (× $10^{16} cm^{-3}$)	0.50	334
Driver energy E (GeV)	10	10
Normalized emittance $\epsilon_n(mm mrad)$	50→20	100
Length (um)	600	77
(matched) Spot size(um)	20→3.87	20→8.65
Charge (nC)	5.8	1→0.84
Energy spread δ_E (%)	0	0
Beam distance (um)	14	19

Accelerating distance (m)	10.65
Driver energy $E(GeV)$	1.30
Trailer energy $E(GeV)$	45.5
Normalized emittance $\epsilon_n(mm \ mrad)$	98.44
Charge(nc)	0.84 (0.78)
Energy spread $\delta_E(\%)$	0.56
TR	~ 4
Efficiency (%) (driver \rightarrow trailer)	59.1

- > 10 GeV \rightarrow 45.5 GeV e- acc. (on paper) work
- > Much smaller $\sigma_{x,y} \rightarrow$ Increase Linac difficulty
- > Trailer's charge close to minimum request
- > Start-to-end & error analysis studies

Simulation performed by Dr. X. N. Wang and Prof. W. M. An (2020)

Start-to-End simulation Linac \rightarrow PWFA

Recent progress on CEPC Plasma Injector @ IARC 2021 2021-05-12

Particle # dependent slice jitter

For simple estimation, slice jitter scales as N^{-1/2}, but more complicated in a real case

Recent progress on CEPC Plasma Injector @ IARC 2021 2021-05-12

Perturbation		Limitation	limiting factor		
beam charge	Driver	[-1%, 0.8%]	$egin{array}{c} {\cal E}_t \ {\delta}_E \end{array}$		
	Trailer	[-0.24%, 2%]	E_t		
hoom longth	Driver	±1%	E_t		
beam length	Trailer	±5%	E_t		
initial anarov	driver	[-1%, 0.38%]	E_t		
Initial energy	trailer	[-1.75%, 0.37%]	E_t		
initial energ	y spread	3.9%	$egin{array}{c} {\cal E}_t \ {\delta}_E \end{array}$		
Spoteizo	driver	[-40%, 2%]	E_t		
Spot size	trailer	[8%, 8%]	E_t		

Simulation performed by Dr. X. N. Wang and Prof. W. M. An (2020)

Perturbation		Limitation	limiting factor	Linac simu. data		
	Transverse position		±2.4um	$Q_{t} \ arepsilon_{N}$	Same level	
Centroid offset	roid set Transverse		On asing	E _t	2Eprod/60prod	
	velocity	Trailer	On going	E_t	Soniau/osniau	
Slice jitter	Transverse	Driver	On going	E_t	Need more	
Silce Jitter	position	Trailer	±3.7um	E_t	studies	
Beam distance		[-1um, 0.25um]	E_t	~3um (10fs)		
Plasma density		±0.3%	E_t			

Simulation performed by Dr. X. N. Wang and Prof. W. M. An (2020)

Overall Error Analysis Results

The sensitivity of trailer emittance to perturbations

The sensitivity of trailer length to perturbations

The sensitivity of trailer RMS spot size to perturbations

1) Better understanding the hosing instability

2) Lower TR / shorter drive beam

 10^{-6}

10⁻⁸

n

40000

 $z[c/\omega_p]$

60000

20000

Linac optimization for ideal beams

L-band photocathode rf gun under design.

Finished the preliminary linac design and the end-to-end simulation (e- gun \rightarrow FFS). Beam distribution improved but can not meet the requirements yet.

NEED MORE OPTIMIZATIONS

By Dr. Cai Meng rom IHEP (2020)

Damping Ring Optics Design V3.0

- Superconducting wiggler \rightarrow shorter damping time & smaller equilibrium emittance

By Dr. Dou Wang and Dr. Cai Meng from IHEP (2020)

3-Stage Bunch Compressor

- Energy: $400 \text{MeV} \rightarrow 2.4 \text{ GeV}$
- Bunch length: 4.4mm $\rightarrow 20$ um
- Energy spread: $0.054\% \rightarrow 1.8\%$

A "perfect" wakefield means:

- > Flat longitudinal wakefield, particles at different position experience same Ez
- > Transverse wakefield can provide focusing forces to the accelerated particles

So, the blowout wakefield in uniform plasmas is quite fit for e- acceleration, while unfit for e+ acceleration

Baseline method \rightarrow not very practical

- Low energy spread ~0.5%
- **Small emittance growth**
- Need e- driver, e+ trailer and plasma channel coaxial, not very practical

Simulation performed by THU team in 2018, based on the hollow channel idea [S. Gessner et al., Nat. Commun. 7, 11785 (2016)]

charge_slice_xz $T = 8.0[1/\omega_p]$ $x_{offset} = 0.1 \mu m$ 6 4 2 x[c/w_p] 0 -2 -4-610 8 6 4 2 n $\xi[c/\omega_p]$

Modified design \rightarrow asymmetry driver

S. Y. Zhou, W. Lu, et al., arXiv: 2012.06095v1, Submitted to PRL (2020.12)

Recent progress on CEPC Plasma Injector @ IARC 2021 2021-05-12 25

Plasma dechirper experiment @ THU

- 1. Decrease the energy spread from 1% to 0.1%
- 2. Study Hollow channel impact on beam quality

Planned to finish it before February, but delayed by COVID-19. Re-started in Oct. 2020

Slides from Dr. Shuang Liu (2020)

Energy spread from 1% to 0.1%

Slides from Dr. Shuang Liu (2020)

Recent progress on CEPC Plasma Injector @ IARC 2021 2021-05-12 27

- Background: CEPC/CEPC plasma injector
- Preliminary design v2
- Current status: Simulations & experiments
- Outlook: Future experiments

Laser system upgrade (finished)

Pulse compressor efficiency: 72%

\$	2 04					6.5	1	mJ	
2 RANGE		DATA		λ 300 nm	RANGE Auto	MODE Energy	ZERO Off	DISPLAY Statistics	,
800 nm Auto	Energy Off Statistics	ACQUESITION	Δ	verage Va	alue:	INCOLUMN A	6 39	ml	
Average Value:	8.87 mJ		N	1aximum	Value:		6.59	mJ	
Maximum Value:	9.20 mJ		Ν	Minimum	Value:		6.05	mJ	
Minimum Value:	8.53 mJ		F	RMS Stabi	lity:		1.253	3 %	
RMS Stability: PTP Stability:	1.198 % 7.576 %	Running	F	PTP Stabil	ity:		8.346	5 % Ri 51	unn 13 p
					Q	?			1
	🥐 🅢	-W-							

Amplifier output profile before expander

Pulse duration

Slides from Dr. Bo Peng (2020)

Recent progress on CEPC Plasma Injector @ IARC 2021 2021-05-12 30

Recent progress on CEPC Plasma Injector @ IARC 2021 2021-05-12 31

SLAC National Accelerator Laboratory

FACET-II PROPOSAL

Date: Sep. 13th 2020

A. EXPERIMENT TITLE: Two Stage Cascaded High-Transformer-Ratio Plasma Wakefield Accelerator

weilu@tsinghua.edu.cn

NSEC, DOE

3-5years

Wei Lu, Mark Hogan, Chan Joshi, Jie Gao

Tsinghua University, SLAC, IHEP

Shiyu Zhou, Jianfei Hua, Dazhang Li

SLAC National Accelerator Laboratory

FACET-II PROPOSAL

Date: Sep. 13th 2020

A. EXPERIMENT TITLE: Stable Mode in Hollow Channel

B. PROPOSERS & REQUESTED FACILITY:

Principal Investigator:	Wei Lu, Chan Joshi, Mark Hogan, Jie Gao
Institution:	Tsinghua/UCLA/SLAC/IHEP
Contact Information:	weilu@tsinghua.edu.cn
Experiment Members:	Shiyu Zhou, Jianfei Hua, Dazhang Li,
Collaborating Institutions:	
Funding Source (optional)	NSFC、DOE
Approximate Duration:	3 years

Hello Wei,

Principal Investigator:

Contact Information:

Experiment Members:

Approximate Duration:

Collaborating Institutions: Funding Source (optional)

Institution:

B. PROPOSERS & REQUESTED FACILITY:

E-mail from Prof. Mark Hogan, head of plasma acc. group in SLAC

So good to hear from you! I very much agree that these are important ideas that can be very impactful for our field. I want to do everything we can to ensure that the proposals are highly reviewed and that we develop a plan that ensures the best chance of success. Two proposals has been reviewed last year, and both got "good" remarks

HTR e- acceleration

- Start-to-end simulation performed, CPI requirement to linac updated
- Preliminary results for single-parameter error analysis
- Detailed analysis is ongoing, multi-parameter effects under consideration
- Linac can not meet the CPI requirement yet, both sides work on it
- For plasma accelerator, lower plasma density or lower TR can help

e+ acceleration

- More schemes are under consideration
- Detailed error analysis and linac design should be finished in 2021

Experiments affected by COVID-19, but almost recovered now

Test facility for PWFA is crucial and under consideration

• Feasibility report (2022-2023) \rightarrow TDR: Still a long way to go

Thank you!

