Status of CEPC LINAC

Jingru Zhang

On behalf of linac group Institute of High Energy Physics, CAS

1 LINAC Physics design

.....

.....

.....

2 LINAC R&D activities

Requirements for linac

•The requirements of the booster to the Linac

- Old baseline: S-band
- New baseline: S+C-band

Parameter	Unit	Old Baseline (S)	New Baseline (S+C)
beam energy	GeV	10	20
Repetition rate	Hz	100	100
Bunch numbers per pulse	-	1	1
bunch population	-	9.4×10	9
	nC	1.5(3*)	
Energy spread		2×10 ⁻³	1.5×10 ⁻³
Emittance	nm	40	10

* The Linac designed value to preserve future upgrade potential

IARC 2021, May 11, 2021

- New baseline
 - Design difficulties of booster dipole and power supply
 - Large magnetic field range
 - ♦keep the potential of energy up to 180GeV
 - Low magnetic field @ low injection energy
 - ◆~29 Gs @ 10GeV
 - Increasing the energy of the Linac is the simplest and most effective measure to mitigate the difficulties
 - Redefined the Linac scheme, the Linac energy is 20 GeV
 - Considering high luminosity scheme at Higgs energy, the required emittance is decreased to 10 nm

Linac Layout

- The energy of electron bypass transport line (EBTL) is from 4GeV to 1.1 GeV
 - Reduce the layout design difficulty of the positron source section
 - The layout of the positron source is very complicated
 - No need consider the EBTL magnets
 - Better compatibility between different schemes
 - Can use c-band acceleration structure more, the starting energy can be from 1.1 GeV
 - ◆ All sections before the TAS could be fixed

Linac Layout

- The deflection direction of the EBTL is from horizontal to vertical, the distance between EBTL and main linac is from 2 m (H) to 1.2 m (V)
 - Easier layout design to avoid the interference with energy analyzing station, transport lines between the Linac and damping ring, waveguide and positron source
 - Reduce the tunnel width and no need to increase the height (3.5m)

IARC 2021, May 11, 2021

LINAC Physics design

	Parameter	Unit	S-band	C-band
• Emittance - Ionm @ 20Gev	Frequency	MHz	2860	5720
Electron beam	Length	m	3.1	1.8
 Norm. RMS. emittance is 100 mm-r 	nrad _{cavity} 2,6dpm		2π/3	3π/4
 Meet the requirement 	Aperture diameter	mm	20~24	11.8~16
Positron beam	Gradient	MV/m	21	45

- ♦ Norm. RMS. Emittance < 300 mm-mrad
- Lower emittance Damping ring is under design

• Emittance → 10nm @ 20GeV

- C-band accelerating structure from 1.1GeV
 - Transverse: emittance is 140nm@1.1GeV
 - Longitudinal: short bunch length ~ 0.5mm
 - Bunch compressor
 - ♦ Wakefield

Parameter	Unit	S-band	C-band
Frequency	MHz	2860	5720
Length	m	3.1	1.8
Cavity mode		2π/3	3π/4
Aperture diameter	mm	20~24	11.8~16
Gradient	MV/m	21	45

Chicane

- A chicane at the beginning of TAS was introduced to compress bunch length for C-band accelerating structure.
- C-type Chicane as bunch length compressor
 - ◆ Angle: 175mrad
 - ◆ R56=-0.1m

- Optics function
 - Dynamics results
 - Due to higher order effect of ETBL and Chicane, emittance growth is about 20%
 - Under optimization

Other consideration

- High luminosity scheme at Z energy
 - 200Hz
 - Two-bunch acceleration
 - Bunch space
 - Bunch space is about 77ns
 - If RF gun is used, the bunch space is more flexible
 - Energy
 - SLED timing for energy compensation
 - need more klystrons
 - BPM can distinguish the orbits of the two bunch
 - energy measurement and orbit correction

Challenge		frequ	ency	Multiple	Period	b
 Orbit correction 	Common frequency	13	MHz	1	76.9231	ns
beam commissioning	Two bunch	13	MHz	1	76.9231	ns
■ LLRF	SHB1	143	MHz	11	6.9930	ns
	SHB2	572	MHz	44	1.7483	ns
BPM	LINAC	2860	MHz	220	0.3497	ns
	Booster	1300	MHz	100	0.7692	ns
• • • • • • • • • • • • • • • • • • •	Ring	650	MHz	50	1.5385	ns
IARC 2021, May 11, 2021				11		

.....

.....

2 LINAC R&D activities

9

Accelerating structure

• 3 meters long S band accelerating structure

Cavity shape optimization

- Rounding the cell :
 - Improve the quality factor by >12%
 - Reduce the power consumption
 - Increase the shunt impedance by ~10.9%
- elliptical the irises shape (r2/r1=1.8)
 - Reduce the peak surface electrical field by 13%

Superfish is used to optimize the single cell

• The main parameters of the structure

Parameters	Values	Unit
No. of Cells	84+2*0.5	-
Phase advance	2π/3	rad
Total length	3.1	m
Length of cell (d)	34.988	mm
Disk thickness (t)	5.5	mm
Shunt impedance (Rs)	60.3~67.8	MΩ/m
Quality factor	15465~15373	-
Group velocity: Vg/c (%)	2% ~ 0.94%	-
Filling time (t _f)	784	ns
Attenuation factor (τ)	0.46	Np
Power (@30MV/m)	74	MW

• Coupler design

- The asymmetry of the coupling cavity will cause emittance growth
- The shape of the coupling cavity is racetrack dual-feed type

The calculation model

• Factors to limit the gradient (cavity):

- 3D program CST is used to confirm the design
- The 1st cell is simulated for Pin=75 MW
- The values are safe. Both E_peak and Sc locates at the iris area

E_peak=73 MV/m. Surface electric field

H_peak=86 kA/m. Surface magnetic field Sc_max=0.59 MW/mm². Modified Poynting vector

E_peak < 160MV/m at S-band

• 2.3 MW/mm² @ 1µs pulse length

• Factors to limit the gradient (coupler):

- To reduce the pulsed heating, the coupler window edge is rounded
- For S-band copper: $\Delta T[^{\circ}c]=127 |H_{||}[MA/m]|^2 \sqrt{f.[GHz].t_p[uS]}$
- For 75 MW input power, the maximum value of the peak surface magnetic field is $2.1*10^5$ A/m. for 1µS pulse length, ΔT =9.4°C

• S-band $\Delta T < 50^{\circ}C$ is safe

Windows

Mechanical design

- Inner water-cooling has been adopted. 8 pipes are around the cavity.
- Compact coupler arrangements. The splitter is milling together with the coupling cavity.
- Two tuners are outside the cavity.

Cold test result

- The phase shift and the cumulative phase shift are less than 1 deg
- The VSWR is 1.02 at working frequency
- Filling time is 780 nS
- The total attenuation is 4.2 dB

IARC 2021, May 11, 2021

• High power test result (with SLED)

- The modulator voltage is 37.5 kV
- the SLED energy multiplication factor: 1.8
- The tested gradient has reached 33 MV/m

$$P_{in} = \frac{(V * L)^2}{RL(1 - e^{-2\alpha L})M^2}$$

The waveform without SLED

Modulator and klystron

High power test bench

The input power with SLED

Boonton 45	500C Pulse				Chan 1 ≻	Selection
Freq VidBW	2.86 GHz High	TrA +CI TrB	H1 39.9 MW Off	VScale VCent	20 MW 78.86 MW	CH 1
Avging	16	Tr Dly	-1.16 us	Offset	96.70 dB	Channel
155	.4 ^{>MK1}	673.	727 ^{Ratio}	2	3.07 ^{MK2}	On Off
						Vert Scale
						20 MW/Div
						Vert Center
						78.86 MW
				\mathbf{h}		Calibration
					-	MENU
	\rightarrow					Extensions
-6.16 us		1	us/Div		3.84 us	MENU
Iriggered						

IARC 2021, May 11, 2021

•The coupler design $(\lambda g/4)$

- The coupler is asymmetry. The cavities in the hydrogen furnace is not at the center place. That will make the welding temperature control difficult
- λg/4 short plane opposite the input port will be used
- The coupler cavity shape is racetrack shape

Pulse compressor

- It is used to improve the peak power from the klystron and saving cost
 - Input power: 80 MW
 - Pulse width: be compressed from 4uS→0.8uS
 - Mode converter & spherical cavity

Parameter	Value
SLED water temperature	30 °C
Room temperature	25 ℃
Filling time	780 ns
Klystron output power	80 MW
Pulse width	4 µs
Pulse repetition rate	100 Hz

Mode converter

- The TE₁₀ mode input from Port 1 will be converted into two degenerated TE₁₁ modes at Port 3
- There are two degenerated TE₁₁₃ modes in the spherical cavity, The phase difference of the two modes is about 90°
- The input port S₁₁ is -62.7 dB
- The S₄₁ is -71dB for port 4 is for vacuum

Spherical cavity

- Two degenerated TE₁₁₃ modes in a single spherical cavity
- f₀=2855.9986 MHz, 2855.9994 MHz,
- Q₀=139583, 139551
- Cavity diameter
 - ∎ 365mm

Parameter	value
VSWR	≤1.1
Coupling factor	~6.9
Tuning rang	≥±1 MHz
Peak power gain	≥7dB
Energy gain factor	~1.6

- Thermal stress analysis
 - The maximal temperature rise is on the coupling hole of 2.5
 °C (the water cooling flow set as 50 L/min)
 - The frequency tunable range of ±1 MHz is enough for all the frequency shift resulted from the input power, vacuum pumping, air pressure, etc.

Accordingly, if we use the water temperature to tune the frequency, the temperature need to be ±3.6 °C change

• Vacuum speed and vacuum level

The pumping speed of the ion pump 100 L/s is enough

machenical design

Machining in progress

- For the diameter (365 mm) is large, in order to reduce cost, Sheet Forming process has used
- Then fine machining

After fine machining

- The FLUX concentrator is the important part of the positron source
- It produces a pulsed magnetic field of 6 T to 0.5 T
- FLUX concentrator has made and finished high power test
- When cunrrent is 15kA, the center peak pulse magnetic field is 6.2T

Test result of the FLUX magnetic field

• Damping ring

DR V2.0	Unit	Value
Energy	GeV	1.1
Circumference	m	75.4
Storage time	ms	20
Bending radius	Μ	3.565
Dipole strength B ₀	Т	1.03
U ₀	keV	36.3
Damping time x/y/z	ms	15.2/15.2/7.6
δ ₀	%	0.05
ε ₀	mm.mrad	376.7
σ _{z, inj}	mm	5.0
Nature σ_z	mm	7.5
ε _{inj}	mm.mrad	2500
ε _{ext x/y}	mm.mrad	530/180
$\delta_{inj}/\delta_{ext}$	%	0.2/0.05
Energy acceptance by RF	%	1.0
f _{RF}	MHz	650
N /		

IARC 2021, May 11, 2021

β (m)

Y.D. Liu

• Longitudinal loss factor and power($\sigma_z \& 5mm$)

- RF cavity model and longitudinal impedance
- The cavity diameter is 90 mm

<i>k</i> =4.12V/pC
<i>P</i> =51.8w&10mA

Beta tune	3.84/4.81
Bunch length	5mm
Bunch number	2
Synchtron tune	0.062
Beam current	10mA

cavity parameters

	Unit	Value
Beam tube aperture	mm	45
Total length	mm	1383.66
Cell length	mm	5*230.61
Outside diameter	mm	345
π -mode frequency	MHz	649.993
Q0		31665
R/Q	Ω	1316
Shunt impedance	MΩ	20.8
Accelerating voltage	MV	1.2 (2.0)
Accelerating gradient	MV/m	1.04 (1.73)
Dissipated cavity power (20% margin)	kW	45 (120)

- Diameter of the tuner
 - \$94
- Tuning rang (1.2MHz)
 - 649.635kHz (-30mm)
 - 650.829kHz (+30mm)

O.Z. Xiao

• Input coupler and doorknob for DR 5 cell cavity

IARC 2021, May 11, 2021

Coupling factor simulation

coupling loop angle (degree)	coupling degree
0	6.4
20	5.8
40	3.8

- The coupling ring is perpendicular to the direction of the magnetic field, and the coupling degree is 6.4
- Coupling degree ~ 5 at rotation angle ~ 28 degrees

- The diameters of neck tubes of tuner and vacuum ports are 94mm
- 2 pump ports near the ceramic of coupler and 1 pump port for each tuner with flanges CF35 are considered. The inner diameters of these pump ports are 38mm
- The aperture plates are installed near the vacuum ports

•vacuum

- Two 100L/s ion pump in the No.1 & N0.5 cavities, one 15L/s is in the coupler
- The vacuum pressure distribution in the cavity is uniform, 3.0e-7 ~ 3.5e-7 Pa
- The vacuum at the coupler position is about 3.4e-7 Pa
- The vacuum at the tuner position is about 5.2e-7 Pa

Ion pump distribution

Vacuum degree distribution

X.D. Weng

Machenical design

Cavity

Tunner

Coupler

- In order to meet the booster requirements, the linac baseline design also change to 20 GeV
- The EBTL section changed from 4GeV to 1.1 GeV
- The S band structure of CEPC has finished and the gradient up to 33MV/m on the test bench with SLED
- A spherical cavity compressor has developed. To reduce cost, sheet forming process is used
- The FLUX concentrator has finished
- The DR 5 cell cavity has designed

Thank you

IARC 2021, May 11, 2021