Flavour anomalies at LHCb

Jibo HE/何吉波(UCAS) Seminar @IHEP, 28th April 2021

Large Hadron Collider

27 km

CMS

Proton energy: up to 7 TeV (10¹² eV) speed: 0.999999991 c

ATLA

ALICE

Beauty/charm production

- Large production cross-section @ 7 TeV
 - Minibias ~60 mb
 - Charm ~6 mb
 - Beauty $\sim 0.3 \text{ mb c.f. 1nb} @Y(4S)$

Flavor factory!

Predominantly in forward/backward cones

- Compared to minimum bias (background)
 - Relatively high mass \rightarrow high *transverse momentum*
 - Relatively long lifetime \rightarrow large impact parameter (IP)
- Requires excellent vertexing, tracking, particleidentification

The LHCb experiment

The LHCb trigger (2018)

• LO, Hardware

- $-p_{\rm T}(\mu_1) \times p_{\rm T}(\mu_2) > (1.5 \text{ GeV})^2$
- $-p_{\rm T}(\mu) > 1.8 \,{\rm GeV}$
- $-E_{\rm T}(e) > 2.4 \, {\rm GeV}$
- $-E_{\rm T}(\gamma) > 3.0 {
 m GeV}$
- $-E_{\rm T}(h) > 3.7 \, {
 m GeV}$
- High Level Trigger
 - Stage1, partial Rec
 - Stage1, full selection

LHCb luminosity prospects

	LHC era	HL-LHC era			
Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2022-24)	Run 4 (2027-30)	Run 5+ (2031+)	
3 fb ⁻¹	6 fb⁻¹	23 fb ⁻¹	46 fb ⁻¹	>300 fb ⁻¹ ??	
		Phase-1 Upgrade!!	Phase-1b Upgrade!?	Phase-2 Upgrade??	

Indirect search for New Physics

- Precision measurement of heavy hadron decays
 - Flavour-Changing NC
 - Flavour-Changing CC
- Probe New Physics at high energy scale

Another way of search for NP

• Overconstrain the CKM triangle

$B^0_{(s)} \rightarrow \mu^+ \mu^-$, recent results

- $B_s^0 \rightarrow \mu^+ \mu^-$ observed in single experiment(s) LHCb (4.6 fb⁻¹): 7.8 σ , ATLAS (26 fb⁻¹): 4.6 σ , CMS (61 fb⁻¹): 5.6 σ
- Still compatible with SM, start to be interesting

$B_{\rm s}^0 \to \mu^+ \mu^-$ effective lifetime

• $B_{\rm s}^0$ mixing \Rightarrow effective τ

$$\tau_{\mu^{+}\mu^{-}} = \frac{\tau_{B_{s}}}{1 - y_{s}^{2}} \left[\frac{1 + 2A_{\Delta\Gamma}^{\mu^{+}\mu^{-}}y_{s} + y_{s}^{2}}{1 + A_{\Delta\Gamma}^{\mu^{+}\mu^{-}}y_{s}} \right]$$
$$A_{\Delta\Gamma}^{\mu^{+}\mu^{-}} \equiv \frac{R_{H}^{\mu^{+}\mu^{-}} - R_{L}^{\mu^{+}\mu^{-}}}{R_{H}^{\mu^{+}\mu^{-}} + R_{L}^{\mu^{+}\mu^{-}}} \quad A_{\Delta\Gamma} = 1 \text{ in SM}$$
$$y_{s} = \frac{\Delta\Gamma_{s}}{2\Gamma_{s}}$$

[PRL 118 (2017) 191801] First measurement, not yet sensitive to $A_{\Lambda\Gamma}$ $\tau(B_s^0 \to \mu^+ \mu^-) = 2.04 \pm 0.44 \pm 0.05 \text{ ps}$

 $1.70^{+0.61}_{-0.44}$ ps [CMS-PAS-BPH-16-004]

[De Bruyn et al., PRL 109 (2012) 041801]

12

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Rates and angular distributions sensitive to NP

Branching fraction of $b \rightarrow s\ell^+\ell^-$

• Pattern of tensions seen, theo. uncertainty?

• P'_5 with $B^0 \to K^{*0} \mu^+ \mu^-$ • $P'_5 = \frac{S_5}{\sqrt{F_L(1-F_L)}}$, less form-factor dependent [S. Descotes-Genon, et al., JHEP 01 (2013) 048]

• Also measured by Belle, ATLAS, CMS

[LHCb, JHEP 02 (2016) 104] [Belle, PRL 118 (2017) 111801 [ATLAS, JHEP 10 (2018) 047] [CMS, PLB 781 (2018) 517]

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$, latest results

 $A_{\rm FB}$

0.5

▲Run 1 ▼2016

• Combined

• Updated with 2016 data

 $P'_{5,2}$ with $B^+ \rightarrow K^{*+} \mu^+ \mu^-$

- All data, $K^{*+} \rightarrow K_S^0 \pi^+$
- Local deviation from SM, $3\sigma \text{ in } P_2' = \frac{2}{3}A_{\text{FB}}/(1-F_L)$

New physics, or QCD?

- Charm loop effects? [Lyon, Zwicky, arXiv:1406.0566]
 - Large non-factorisable effects (or NP) required to have consistent picture between BESII $e^+e^- \rightarrow$ hadrons data and the LHCb result

Lepton flavor universality

• Three lepton families (e, μ, τ) have identical couplings to the gauge bosons

Lepton flavor universality violation? New Physics!

Experimental test of LFU

• Well established in SM, e.g. *W->lv*

LFU in B system, pre-LHCb

• R(D^(*)), Babar reported deviation of ~3.2 σ

No deviation seen in FCNC b->sll decays

R(D^{*}) using munoic τ decays

- Measure R(D^{*}) using munoic τ decays
 - Pros: $\mathcal{B}(\tau \rightarrow \mu X)^{17.4\%}$, B vertex rec'ible
 - Cros: no τ vertex

R(D*), results

- 3D fits, $\mathcal{R}_{D^*} = 0.336 \pm 0.027 \pm 0.030$
 - Signal yields: 16 500 ± 1 670

R(D^{*}) using 3-prong τ decays

- Measure R(D^{*}) using 3-prong τ decays
 - Pros: $\mathcal{B}(\tau 3\pi^{\pm}X)^{9\%} + 4\%(\geq 1\pi^{0})$, B/τ vertex rec'ible
 - Cros: soft π^{\pm} , bkg; different from norm. decay

R(D*), results

• Normalized to $B^0 \rightarrow D^{*-}3\pi$

 $R_{had}(D^*) = \frac{\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)} \qquad R(D^*) = R_{had}(D^*) \times \frac{\mathcal{B}(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)}{\mathcal{B}(B^0 \to D^{*-} \mu^- \nu_{\mu})}$

- 3D fits, R(D*)=0.286 ± 0.019 ± 0.025 ± 0.021
 - Signal yields: 1273 ± 85

c.f. muonic: 16 500 ± 1 670

Recent update from Belle

- Most precise measurement of R(D) and R(D*) to date
- First R(D) measurement performed with a semileptonic tag
- Results compatible with SM expectation within 1.2σ
- R(D) R(D*) Belle average is now within 2σ of the SM prediction
- R(D) R(D*) exp. world average tension with SM expectation decreases from 3.8σ to 3.1σ

G. Caria, Moriond EW, March 19

$R(J/\psi)$ using munoic τ decays

- Measure $R(J/\psi)$ using munoic τ decays
 - Pros: 3μ, ℬ(τ->μX)~17.4%

[PRL 120 (2018) 121801]

PV

B_c+→J/ψτν

J/ψ

B

- Cros: small $\sigma(B_c^+)$, no τ vertex
- Run-I, 1400 \pm 300 signal (3 σ)

......

μ†

29

Summary of LFU in b->clv decays

• Deviations from SM seen by Babar/Belle/LHCb

R(K), introduction

Double ratio to control systematics

Bremsstrahlung corrections

Signal line shape

• Split acording to number of brem-photons

Signal yields with all data

• 9 fb⁻¹ of data:

 $-N(B^+ \to K^+ e^+ e^-) = 1640 \pm 70$ $-N(B^+ \to K^+ \mu^+ \mu^-) = 3850 \pm 70$

Trigger strategy

- Trigger on signal (TOS)
- Trigger Independent of Signal (TIS)
- Bottleneck: L0/Hardware

Trigger strategy (cont.)

[arXiv:1406.6482] • $B^+ \rightarrow K^+ e^+ e^-$ split by the way how the signal is triggered (40 McV/c² LHCb LHCb (40 MeV/c² 40.MeV/c LHCb (a) (b) $J/\psi K^+$ (c) a000 . 1 500 5 1 5 00 5400 5600 m(K⁺e⁺e⁻) [MeV/c²] 5400 5600 m(K⁺e⁺e⁻) [MeV/c²] 5400 5600 m(K⁺e⁺e⁻) [MeV/c²] 5000 5200 5000 5200 5000 5200 MeV/c2 40 MeV/c LHCb LHCb LHCb MeVI 20 (d) (e) (f) $e^+e^-K^+$ Candida 5400 5600 m(K⁺e⁺e⁻) [MeV/c²] 5400 5600 m(K⁺e⁺e⁻) [MeV/c²] 5000 5200 5000 5200 5000 5200 $5400 5600 m(K^+e^+e^-) [MeV/c^2]$ • $R_{K} = 0.745^{+0.090}_{-0.074} \pm 0.036$, compatible with SM within 2.6 σ - neither electron - kaon - combination LHCb
 BaBar --- Belle RK -2 ($\log L$ - $\log L_{best}$ LHCb LHCb 1. SM 0.5 0 2 0 5 10 15 20 1 $q^2 \,[{\rm GeV}^2/c^4]$ DQC R_K Jibo HE (CERN) July 5, 2014 12/15 Electroweak penguins at LHCb

Checks on efficiency

• Flatness of $r_{J/\psi} = \frac{\mathcal{B}(B^+ \to J/\psi(\mu^+ \mu^-)K^+)}{\mathcal{B}(B^+ \to J/\psi(e^+ e^-)K^+)}, r_{\psi(2S)}$

R(K), latest results

• Devivation from SM, 3.1σ by LHCb

From R(K) to BR

• Electron mode more close to SM prediction?

[arXiv:2103.11769]

Contribution of $J/\psi \rightarrow e^+ e^- \gamma$

- Synergy with BES-III
- Theoretical calculation by Jichen Pan & Yu Jia

R(K^{*0}), results with Run-I data

• Deviations from SM seen by LHCb ($\sim 2.4\sigma$)

R(pK), results with Run-I+2016 Compatible with 1, difficult to predict R(pK)? R_{pK} LHCb Combinatorial $\rightarrow K^+ K^- \mu^+ \mu^-$ 1.2 $\rightarrow \overline{K}^{*0} \mu^+ \mu^-$ Candidates per 1. 09 00 00 09 00 1.0 444 ± 23 0.8 40 LHCb 0.6 20 2 6 0 5.4 5.8 5.6 $a^2 \left[\text{GeV}^2 / c^4 \right]$ $m(pK^{-}\mu^{+}\mu^{-})$ [GeV/c²] Weighted candidates 50 Candidates per 50 MeV/ c^2 45 LHCb LHCb Combinatorial 40 $\rightarrow pK^{-}\pi^{0}e^{+}e^{-}$ 35 $pK^{-}J/\psi$ $\rightarrow K^+K^-e^+e^-$ 30 30 $\rightarrow \overline{K}^{*0}e^+e^-$ 25 20 122 ± 17^{-3} 20 15 10 10 0 1500 2000 2500 0 5 5.5 $m(pK^{-})$ [MeV/c²] 6 $m(pK^{-}e^{+}e^{-})$ [GeV/ c^{2}]

[JHEP 05 (2020) 040]

Global fit

LU deviations are consistent with $b \rightarrow s \mu \mu$ BR and angular analyses if NP only in muon

Prospects

• LHCb upgrades (2025: 23 fb⁻¹, Upgrade-II: 300 fb⁻¹)

Observable	Current LHCb	LHCb 2025	Belle-II	LHCb Upgrade-II	ATLAS &CMS
$R_K(1 < q^2 < 6 \text{ GeV})$	0.1	0.025	0.036	0.007	
$R_{K^*}(1 < q^2 < 6 \text{ GeV})$	0.1	0.031	0.032	0.008	
R_{ϕ}, R_{pK}		0.08, 0.06		0.02, 0.02	
$\frac{\mathcal{B}(B^0 \to \mu^+ \mu^-)}{\mathcal{B}(B^0_s \to \mu^+ \mu^-)}$	90%	34%		10%	21%
$ au_{B^0_S o \mu} + \mu^-$	22%	8%		2%	4%?
$R(D^*)$	0.026	0.0072	0.005	0.002	
$R(J/\psi)$	0.24	0.071		0.02	

Summary

- Some anomalies seen at LHCb
 - Electroweak penguin, differential branching fraction, P_5' in $B \to K^* \mu^+ \mu^-$, $\mathcal{R}_{K^{(*0)}}$
 - LFU in semi-leptonic decay, \mathcal{R}_{D^*}

to be confirmed or refuted with more data

• Your suggestions are always appreciated!

