

Introduction of CKM Triangle

Ying Li

Yantai University

Talk given in Henan Normal University, 2021-04-21

什么是高能物理?

我从哪来?

我到那去?

3

我从哪来?

我到那去?

高能物理的研究对象

6

"世界基本组成成分为何?" 和 "它们如何相互作用?"

基本粒子物理 或 高能物理

研究自然界的 基本相互作用(力)

大型强子对撞机可以探测10-20米

每个质子的能量是4TeV (4x10¹² eV) 相当于宇宙大爆炸后10⁻¹²到10⁻¹¹秒的温度

高能物理标准模型

• 集百年物理之大成

• 新元素周期表

就之一

宇宙万物可以用一个"简单公式"表示出来!

12

1、CKM

Contents

2, CP VIOLATION

3、RARE DECAYS

4. SUMMARY

CKM

.....

- Three generations of quarks (and leptons)
 - identical gauge quantum numbers
 - different masses
- Flavour physics describes interactions that distinguish between flavours.
- Parity violation of electroweak interactions
- left-handed quarks :SU(2)_L doublets

 $Q_j = \begin{pmatrix} u_L \\ d_L \end{pmatrix}, \begin{pmatrix} c_L \\ s_L \end{pmatrix}, \begin{pmatrix} t_L \\ b_L \end{pmatrix}$

16

• right-handed quarks: singlets

$$U_j = u_R, c_R, t_R \qquad D_j = d_R, s_R, b_R$$

Gauge couplings of the quarks

$$\mathcal{L}_{\text{fermion}} = \sum_{j=1}^{3} \bar{Q}_j i \not\!\!D_Q Q_j + \bar{U}_j i \not\!\!D_U U_j + \bar{D}_J i \not\!\!D_D D_j$$

with the covariant derivatives ($Y_Q = 1/6$, $Y_U = 2/3$, $Y_D = -1/3$)

> Flavour universality: gauge couplings are equal for all three generations

Yukawa couplings

- Flavour non-universality introduced by Yukawa couplings between

the Higgs field and the quarks:

$$\mathcal{L}_{\mathsf{Yuk}} = \sum_{i,j=1}^{3} (-Y_{U,ij} \bar{Q}_{Li} \tilde{H} U_{Rj} - Y_{D,ij} \bar{Q}_{Li} H D_{Rj} + h.c.)$$

where *i*, *j* are generation indices and $\tilde{H} = \epsilon H^* = (H^{*0}, -H^-)^T$

• replacing *H* by its vacuum expectation value $\langle H \rangle = (0, v)^T$, we obtain the quark mass terms

$$\sum_{i,j=1}^{3} (-m_{U,ij}\bar{u}_{Li}u_{Rj} - m_{D,ij}\bar{d}_{Li}d_{Rj} + h.c.)$$

with the quark mass matrices given by $m_A = vY_A (A = U, D, E)$. By hand!

• In general, the mass matrices m_U and m_D do not have to be diagonal, but they can be diagonalized with unitary transformations

$$u_L = \hat{U}_L u_L^m \qquad u_R = \hat{U}_R u_R^m \qquad d_L = \hat{D}_L d_L^m \qquad d_R = \hat{D}_R d_R^m$$

with m denoting quarks in the mass eigenstate basis.

• in this basis

$$m_U^{\text{diag}} = \hat{U}_L^{\dagger} m_U \hat{U}_R \qquad m_D^{\text{diag}} = \hat{D}_L^{\dagger} m_D \hat{D}_R$$

- The SM Lagrangian invariant under these field redefinitions
- Transformations of the right-handed quarks are indeed unphysical, i. e. they leave the rest of the Lagrangian invariant

• In SM, u_{Li} and d_{Li} form the SU(2)_L doublets Q_{Li} , kinetic term gives rise to the interaction

$$\frac{g}{\sqrt{2}}\bar{u}_{Li}\gamma_{\mu}W^{\mu+}d_{Li} \qquad \qquad D \qquad U$$

• transforming to the mass eigenstate basis, we obtain

$$\frac{g}{\sqrt{2}}\bar{u}_{Li}\hat{U}_{L,ij}^{\dagger}\hat{D}_{L,jk}\gamma_{\mu}W^{\mu+}d_{Lk}$$

• The combination $V_{CKM} = \widehat{U}_L^+ \widehat{D}_L$ is physical and is called the CKM matrix. It leads to flavour violating charged current interactions.

$$\hat{V}_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

- Unitary 3x3 matrix V can by parameterized by 3 Euler angles and 6 phases
- Not all phases are observable, since under phase redefinitions $q_L \rightarrow e^{i\phi}q_L$ of the quark fields:

$$V \to \begin{pmatrix} e^{-i\varphi_{u}} & 0 & 0\\ 0 & e^{-i\varphi_{c}} & 0\\ 0 & 0 & e^{-i\varphi_{t}} \end{pmatrix} V \begin{pmatrix} e^{i\varphi_{d}} & 0 & 0\\ 0 & e^{i\varphi_{s}} & 0\\ 0 & 0 & e^{i\varphi_{b}} \end{pmatrix}, \qquad V_{ij} \to e^{i(\varphi_{d}^{i} - \varphi_{u}^{j})} V_{ij}$$

• 5 of 6 phases can be eliminated by suitable choices of phase differences!

CP: combination of parity transformation P and charge conjugation C

- $P: \psi(r) \to \gamma^0 \psi(-r)$ transforms left(right)-handed quark into right(left)-handed quark
- $C: \psi \rightarrow i(\bar{\psi}\gamma^0\gamma^2)^T$ transforms left(right)-handed quark into left(right)-handed antiquark

weak interactions neither invariant under P nor C > what about CP? $(g_W = g/\sqrt{2})$ $g_W \bar{u}_{Li} V_{\mathsf{CKM}, ik} \gamma_\mu W^{\mu +} d_{Lk} + h.c.$

$$= g_W \bar{u}_{Li} V_{\mathsf{CKM},ik} \gamma_\mu W^{\mu +} d_{Lk} + g_W \bar{d}_{Lk} V^*_{\mathsf{CKM},ik} \gamma_\mu W^{\mu -} u_{Li}$$

$$\xrightarrow{CP} g_W \bar{d}_{Lk} V_{\mathsf{CKM},ik} \gamma_\mu W^{\mu-} u_{Li} + g_W \bar{u}_{Li} V^*_{\mathsf{CKM},ik} \gamma_\mu W^{\mu+} d_{Lk}$$
$$= g_W \bar{u}_{Li} V^*_{\mathsf{CKM},ik} \gamma_\mu W^{\mu+} d_{Lk} + h.c.$$

> *CP* is violated because the CKM matrix is complex ($\delta \neq 0, \pi$)

- CP violation required to explain the different abundances of matter and antimatter in the universe.
- CP violation in quark sector requires $N \ge 3$ fermion generations.
- Model for explanation of CP violation led to prediction of the third generation!

Parametrizations of the CKM Matrix

$$R_{12} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad R_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} R_{13} = \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix}$$

$$V_{CKM} = R_{23} \times R_{13} \times R_{12} \qquad \qquad s_{ij} = \sin \theta_{ij} \\ c_{ij} = \cos \theta_{ij}$$

$$V_{\rm CKM} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

Experimentally: $s_{12} \sim 0.2$, $s_{23} \sim 0.04$, $s_{13} \sim 4 \cdot 10^{-3}$

CKM matrix is found to be close to the unit matrix

 $V_{\rm CKM} = \begin{pmatrix} 0.97427 \pm 0.00014 & 0.22536 \pm 0.00061 & 0.00355 \pm 0.00015 \\ 0.22522 \pm 0.00061 & 0.97343 \pm 0.00015 & 0.0414 \pm 0.0012 \\ 0.00886^{+0.00033}_{-0.00032} & 0.0405^{+0.0011}_{-0.0012} & 0.99914 \pm 0.00005 \end{pmatrix}$

also quark masses exhibit strong hierarchy

where does this hierarchical structure come from?

> flavour hierarchy problem

Parametrizations of the CKM Matrix

- Hierarchy of the quark transitions mediated through charged currents

• This hierarchy is reflected in the standard parametrization as follows:

$$s_{12} = 0.22 \gg s_{23} = 0(10^{-2}) \gg s_{13} = 0(10^{-3})$$

• New parameters: $s_{12} \equiv \lambda = 0.22$, $s_{23} = A\lambda^2$ $s_{13} = A\lambda^2(\rho - i\eta)$

$$\hat{V}_{\mathsf{CKM}} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\,\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\,\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

CKM matrix is unitary

9 conditions (6 normalisation, 3 orthoganality)

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0 \quad (db)$$

$$V_{us}V_{ub}^{*} + V_{cs}V_{cb}^{*} + V_{ts}V_{tb}^{*} = 0 \quad (sb)$$

$$V_{ud}V_{us}^{*} + V_{cd}V_{cs}^{*} + V_{td}V_{ts}^{*} = 0 \quad (ds)$$

$$V_{ud}V_{td}^{*} + V_{us}V_{ts}^{*} + V_{ub}V_{tb}^{*} = 0 \quad \text{(ut)}$$

$$V_{cd}V_{td}^{*} + V_{cs}V_{ts}^{*} + V_{cb}V_{tb}^{*} = 0 \quad \text{(ct)}$$

$$V_{ud}V_{cd}^{*} + V_{us}V_{cs}^{*} + V_{ub}V_{cb}^{*} = 0 \quad \text{(uc)}$$

• CKM matrix parametrises charged current interactions

$$V_{\mathsf{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

• its unitarity implies various relations among its elements, e.g.

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

> unitarity triangle in the complex plane $\bar{\rho} = (1 - \frac{\lambda^2}{2})\rho$, $\bar{\eta} = (1 - \frac{\lambda^2}{2})\eta$

$$R_{b} = \left| \frac{V_{ud} V_{ub}^{*}}{V_{cd} V_{cb}^{*}} \right|$$

$$R_{t} = \left| \frac{V_{td} V_{tb}^{*}}{V_{cd} V_{cb}^{*}} \right|$$

$$\alpha = \arg\left(-\frac{V_{td} V_{tb}^{*}}{V_{ud} V_{ub}^{*}}\right), \quad \beta = \arg\left(-\frac{V_{cd} V_{cb}^{*}}{V_{td} V_{tb}^{*}}\right), \quad \gamma = \arg\left(-\frac{V_{ud} V_{ub}^{*}}{V_{cd} V_{cb}^{*}}\right).$$

$$V_{\rm CKM} = \begin{pmatrix} V_{\rm ud} & V_{\rm us} & V_{\rm ub} \\ V_{\rm cd} & V_{\rm cs} & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix} \quad [\approx \begin{pmatrix} 1 & \lambda & V_{\rm ub} \\ -\lambda & 1 & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix}$$

- First 2×2 sub-matrix: four $|V_{ij}|$ are measured by nucleus, pion, kaon and charm hadron decays.
- It is "almost" unitary with one single parameter.
- $\lambda (\equiv \sin \theta) = |V_{us}| = 0.2243 \pm 0.0005 [PDG2021]$

Some Details on V_{CKM}

$$V_{\rm CKM} = \begin{pmatrix} V_{\rm ud} & V_{\rm us} & V_{\rm ub} \\ V_{\rm cd} & V_{\rm cs} & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix} \approx \begin{pmatrix} 1 & \lambda & V_{\rm ub} \\ -\lambda & 1 & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix}$$

• |Vcb| and |Vub| measured by semi-leptonic Bu and Bd decays

$$|V_{cb}| = \begin{cases} (42.2 \pm 0.8) \times 10^{-3} & \text{Inclusive} \\ (41.9 \pm 2.0) \times 10^{-3} & \text{exclusive} \end{cases}$$

$$\begin{split} |V_{ub}| = \begin{cases} (4.49 \pm 0.16 \pm 0.17 \pm 0.17) \times 10^{-3} \text{Inclusive} \\ (3.70 \pm 0.10 \pm 0.12) \times 10^{-3} & \text{exclusive (Lattice)} \\ (3.67 \pm 0.09 \pm 0.12) \times 10^{-3} & \text{exclusive (LCQCDSR)} \end{cases} \end{split}$$

Exclusives systematically smaller than inclusive? Better QCD calculations needed.

Example-1: Semileptonic charged currents

Consider $b \rightarrow u l \bar{v}_l$ decay that is relevant for $|V_{ub}|$ measurements

• momentum of W boson propagator can be neglected:

$$\frac{g}{\sqrt{2}}V_{ub}(\bar{u}\gamma^{\nu}P_{L}b)\frac{g_{\mu\nu}}{p^{2}-M_{W}^{2}}\frac{g}{\sqrt{2}}(\bar{\ell}\gamma^{\mu}P_{L}\nu) \xrightarrow{p^{2}\ll M_{W}^{2}} -\frac{g^{2}}{2M_{W}^{2}}V_{ub}(\bar{u}b)_{V-A}(\bar{\ell}\nu)_{V-A}$$

effective Hamiltonian with the well-known Fermi constant

$$\mathcal{H}_{\rm eff} = \frac{4G_F}{\sqrt{2}} V_{ub}(\bar{u}b)_{V-A}(\bar{\ell}\nu)_{V-A} \qquad \text{with } \frac{G_F}{\sqrt{2}} = \frac{g^2}{8M_W^2}$$

Example: Semileptonic charged currents

- include known QCD corrections
- evaluate the form factors of $\langle \pi | (\bar{u}b)_{V-A} | B \rangle$ from Nonperturbative QCD approach.
- \blacktriangleright measuring the $B \rightarrow \pi l v$ branching ratio determines $|V_{ub}|$

$$|V_{ub}|^{\pi\ell\nu} = (3.72 \pm 0.16) \cdot 10^{-3}$$

• Note: it is a tree level transition, therefore highly unlikely affected by new physics!

Some Details on V_{CKM}

$$V_{\rm CKM} = \begin{pmatrix} V_{\rm ud} & V_{\rm us} & V_{\rm ub} \\ V_{\rm cd} & V_{\rm cs} & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix} \approx \begin{pmatrix} 1 & \lambda & V_{\rm ub} \\ -\lambda & 1 & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix}$$

• |Vcb| and |Vub| measured by semi-leptonic Bu and Bd decays

Arg Vcb =0 by a phase convention
Arg Vub=
$$\gamma$$
 by CP Violation in B-->DK
 $b \xrightarrow{g}{B^-} \xrightarrow{u}{u} \xrightarrow{g}{K^-} \xrightarrow{u}{u} \xrightarrow{k^+} V_{cb}V_{us}*V_{cd}*V_{us}$
 $b \xrightarrow{u}{u} \xrightarrow{c}{K^-} \xrightarrow{u}{u} \xrightarrow{g}{K^+} \xrightarrow{V_{ub}V_{cs}*V_{ud}*V_{cs}}$
 $b \xrightarrow{u}{u} \xrightarrow{c}{K^-} \xrightarrow{u}{K^-} \xrightarrow{u}{K^-} \xrightarrow{u}{K^-} \xrightarrow{v}{K^+} \xrightarrow{V_{ub}V_{cs}*V_{ud}*V_{cs}}$
 $Br (B^- \rightarrow [K^+\pi^-]_{D-mass} K^-) \neq Br (B^+ \rightarrow [K^+\pi^-]_{D-mass} K^+)$
 $Br (B^- \rightarrow [K^-\pi^+]_{D-mass} K^-) \neq Br (B^+ \rightarrow [K^+\pi^-]_{D-mass} K^+)$
 $\gamma = (73.5^{+4.2}_{-5.1})^{\circ}.$

Some Details on V_{CKM}

$$V_{\rm CKM} = \begin{pmatrix} V_{\rm ud} & V_{\rm us} & V_{\rm ub} \\ V_{\rm cd} & V_{\rm cs} & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix} \approx \begin{pmatrix} 1 & \lambda & V_{\rm ub} \\ -\lambda & 1 & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix}$$

|Vcb| and |Vub| measured by semi-leptonic Bu and Bd decays
 Arg Vcb =0 by a phase convention
 Arg Vub= γ by CP Violation in B-->DK

 $V_{tb} \approx 1$ if we assume V_{CKM} to be unitary $|V_{td}| \times |V_{tb}|$ by Bo-Bo oscillation frequency (Δm_d) $|V_{ts}| \times |V_{tb}|$ by Bs-Bs oscillation frequency (Δm_s)

 $|V_{td}| = (8.1 \pm 0.5) \times 10^{-3}$ $|V_{ts}| = (39.4 \pm 2.3) \times 10^{-3}$ errors are totally theoretical. $\Delta m_d = (0.5064 \pm 0.0019) \,\mathrm{ps}^{-1}$ $\Delta m_s = (17.757 \pm 0.021) \,\mathrm{ps}^{-1}$

 $|V_{td}/V_{ts}| = 0.210 \pm 0.001 \pm 0.008.$

Example-2: $Bs - \overline{B}s$ mixing

box diagram mediating $B_s - \bar{B}_s$ mixing:

$$\frac{G_F^2}{16\pi^2} M_W^2 \sum_{i,j=u,c,t} V_{ib}^* V_{is} V_{jb}^* V_{js} F(x_i, x_j)$$

Simplifications:

- external quark momenta negligible
- GIM mechanism: mass-independent piece of $F(x_i, x_j)$ drops out
- $m_i \ll m_t$ and $|V_{ib}^*V_{is}| \ll |V_{tb}^*V_{ts}|$ (i = u, c) > only top quark contribution relevant
- perturbative QCD corrections can be included by adding a factor η_B (known from tedious calculations)

Example-2: $Bs - \overline{B}s$ mixing

> effective Hamiltonian for $B_s - \bar{B}_s$ mixing:

$$\mathcal{H}_{\text{eff}}^{B_s - \bar{B}_s} = \frac{G_F^2}{16\pi^2} M_W^2 \eta_B (V_{tb}^* V_{ts})^2 S_0(x_t) (\bar{b}s)_{V-A} (\bar{b}s)_{V-A} + h.c.$$

with
$$S_0(x_t) = \frac{4x_t - 11x_t^2 + x_t^3}{4(1 - x_t)^2} - \frac{3x_t^3 \ln x_t}{2(1 - x_t)^3}$$

now sandwich $\mathcal{H}_{eff}^{B_s - \bar{B}_s}$ between initial and final state meson to obtain mixing matrix element:

$$M_{12} = \frac{1}{2m_{B_s}} \left\langle \bar{B}_s \left| \mathcal{H}_{\mathsf{eff}}^{B_s - \bar{B}_s} \right| B_s \right\rangle^*$$

with the hadronic matrix element $\langle \bar{B}_s | (\bar{b}s)_{V-A} | \bar{B}_s \rangle$ calculated on the lattice $\equiv \frac{8}{3} B_{BS} f_{BS}^2 m_{BS}^2$

$$\Delta m = \frac{G_F^2 m_W^2}{16\pi^2} |V_{tb} V_{ts}^*|^2 S_0(x_t) \eta_{QCD} \frac{1}{m_{Bs}} \langle B_s^0 | (\bar{s}b)_{V-A} (\bar{s}b)_{V-A}) | \bar{B}_s^0 \rangle$$

Some Details on V_{CKM}

$$V_{\rm CKM} = \begin{pmatrix} V_{\rm ud} & V_{\rm us} & V_{\rm ub} \\ V_{\rm cd} & V_{\rm cs} & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix} \approx \begin{pmatrix} 1 & \lambda & V_{\rm ub} \\ -\lambda & 1 & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix}$$

• |Vcb| and |Vub| measured by semi-leptonic Bu and Bd decays

Arg Vcb =0 by a phase convention

Arg Vub= γ by CP Violation in B-->DK

 $V_{\text{tb}} \approx 1$ if we assume V_{CKM} to be unitary

 $|V_{td}| \times |V_{tb}|$ by Bo-Bo oscillation frequency (Δm_d)

 $|V_{\rm ts}| imes |V_{\rm tb}|$ by Bs-Bs oscillation frequency ($\Delta m_{
m s}$)

arg V_{td} by CP violation in $B_d \rightarrow J/\psi K_S$

arg V_{ts} by CP violation in $B_s \rightarrow J/\psi \varphi$ See later!

.....

.....

CP Violation 1. CPV in mixing $|B^0\rangle \quad \dots \quad t \quad \dots \quad \beta \; |\bar{B}^0\rangle$ $|\bar{B}^0\rangle$ $\bar{\beta} |B^0\rangle$ if $|\beta|\neq |\bar\beta|$, it is possible to measure CPV in decays to final states accessible only to $B^0 {\rm or}~\bar B^0$ 2. CPV in decay $\Gamma(B \to f) \neq \Gamma(\bar{B} \to \bar{f})$ $A(B \to f) = \sum A_k e^{i(\delta_k + \phi_k)} \longrightarrow A(\bar{B} \to \bar{f}) = \sum A_k e^{i(\delta_k - \phi_k)}$ from QCD from CKM CPV in the interference of decays with and without mixing

CP Violation

There are three quantities that drive CPV effects:

$$\left|\frac{q}{p}\right|, \left|\frac{\bar{A}_{\bar{f}}}{A_{f}}\right|, \lambda_{f} = \frac{q}{p}\frac{\bar{A}_{f}}{A_{f}}$$

- CPV in mixing: $|q/p| \neq 1$
- lacksquare CPV in decay: $|ar{A}_{ar{f}}/A_f|
 eq 1$
- CPV in the interference between decay and mixing: $\lambda_f \neq \pm 1$

CP Violation

Given a final state f, let us introduce the two amplitudes $A_f = \langle f | \mathcal{H}_d | B^0 \rangle$ and $\bar{A}_f = \langle f | \mathcal{H}_d | \bar{B}^0 \rangle$, and the quantity: $\lambda_f = \frac{q A_f}{p A_f} = -\frac{M_{12}^*}{|M_{12}|} \frac{A_f}{A_f} \left| 1 - \frac{1}{2} \text{Im} \frac{\mathsf{I}_{12}}{M_{12}} \right|$ Master equations: $\Gamma(B^0(t) \to f) = \mathcal{N}_f |A_f|^2 e^{-\Gamma t} \left\{ \frac{1+|\lambda_f|^2}{2} \cosh \frac{\Delta \Gamma t}{2} + \frac{1-|\lambda_f|^2}{2} \cos(\Delta m t) \right\}$ $-\operatorname{Re}\lambda_f \sinh \frac{\Delta\Gamma t}{2} - \operatorname{Im}\lambda_f \sin(\Delta m t) \Big\}$ $\Gamma(\bar{B}^0(t) \to f) = \mathcal{N}_f |A_f|^2 (1+a) e^{-\Gamma t} \left\{ \frac{1+|\lambda_f|^2}{2} \cosh \frac{\Delta \Gamma t}{2} - \frac{1-|\lambda_f|^2}{2} \cos(\Delta m t) \right\}$ $-\operatorname{Re}\lambda_{f} \sinh \frac{\Delta \Gamma t}{2} + \operatorname{Im}\lambda_{f} \sin(\Delta m t) \Big\}$

 $\sin 2\beta$ in $B \rightarrow J/\psi K_s$

$\sin 2\beta$ in $B \rightarrow J/\psi K_s$

- The final state is a CP eigenstate (with eigenvalue -1)
- This process is mediated by both tree and penguin operators:

$$A = T_{c\bar{c}s} V_{cb} V_{cs}^* + P_s^u V_{ub} V_{us}^* + P_s^c V_{cb} V_{cs}^* + P_s^t V_{tb} V_{ts}^*$$

= $(T_{c\bar{c}s} + P_s^c - P_s^t) V_{cb} V_{cs}^* + \underbrace{(P_s^u - P_s^t) V_{ub} V_{us}^*}_{H-N \text{ Li, 2004}}$ H-N Li, 2004

penguin pollution

The last term is doubly suppressed: $\frac{V_{ub}V_{us}^*}{V_{cb}V_{cs}^*} \simeq 10^{-2}$

 $P/T \sim O(0.1)$

$$\frac{A(B^0 \to J/\psi K^0)}{A(\bar{B}^0 \to J/\psi \bar{K}^0)} \simeq \frac{V_{cb}V_{cs}^*}{V_{cb}^* V_{cs}}$$

Sin2β in $B → J/ψK_s$

- \square There is a problem: $B^0 \to K^0$ and $\bar{B}^0 \to \bar{K}^0$
- \Box K_s is the lighter mass eigenstate: $|K_s\rangle = p_K |K^0\rangle + q_K |\bar{K}^0\rangle$
- Interference between $B^0 \to J/\psi K_s$ and $\bar{B}^0 \to J/\psi K_s$ is only possible through K mixing:

$$\frac{A(B^0 \to J/\psi K_s)}{A(\bar{B}^0 \to J/\psi K_s)} = \frac{A(B^0 \to J/\psi K^0)}{A(\bar{B}^0 \to J/\psi \bar{K}^0)} \frac{p_K}{q_K} = -\eta_{\psi K_s} \frac{V_{cb} V_{cs}^*}{V_{cb}^* V_{cs}} \frac{V_{cs} V_{cd}^*}{V_{cs}^* V_{cs}} \frac{V_{cs} V_{cs}^*}{V_{cs}^* V_{cs}} \frac{V_{cs} V_{cs}}{V_{cs}^* V_{cs}} \frac{V_{cs} V_{cs}}{V_{cs}} \frac{V_{cs} V_{cs}}{V_{cs}} \frac{V_{cs} V_{cs}}{V_{cs}^* V_{cs}} \frac{V_{cs} V_{cs}}{V_{cs}^* V_{cs}} \frac{V_{cs} V_{cs}}{V_{cs}^* V_{cs}}} \frac{V_{cs} V_{cs}}{V_{cs}^* V_{cs}} \frac{V_{cs} V_{cs}}{V_{cs}} \frac{V_{cs} V_{cs}}{V_{cs}} \frac{V_{cs} V_{cs}}{V_{cs}} \frac{V_{cs} V_{cs}}{V_{cs}} \frac{V_{cs} V_{cs}}{V_{cs}} \frac{V_{cs} V_{cs}}{V_{cs}} \frac{V_{cs} V_{cs}}{V_$$

Putting everything together:

$$\lambda_{\psi K_{s}} = \frac{q}{p} \frac{A_{\psi K^{0}}}{\bar{A}_{\psi \bar{K}^{0}}} \frac{p_{K}}{q_{K}} = \eta_{\psi K_{s}} \frac{V_{tb}^{*} V_{td}}{V_{tb} V_{td}^{*}} \frac{V_{cb} V_{cs}^{*}}{V_{cb}^{*} V_{cs}} \frac{V_{cs} V_{cd}^{*}}{V_{cs}^{*} V_{cs}} = \eta_{\psi K_{s}} e^{-2i\beta}$$

and the time dependent CP asymmetry is

$$\mathcal{A}_{\psi K_s} = \frac{\Gamma(\bar{B}^0(t) \to J/\psi K_s) - \Gamma(B^0(t) \to J/\psi K_s)}{\Gamma(\bar{B}^0(t) \to J/\psi K_s) + \Gamma(B^0(t) \to J/\psi K_s)}$$

= $-\eta_{\psi K_s} \sin(2\beta) \sin(\Delta m_{B_d} t)$

$Sin2\alpha$ in $B \rightarrow \pi\pi$

 $\sin 2\alpha$ in $B \to \pi\pi$

$$\lambda_{\pi\pi} = \frac{q}{p} \frac{A_{\pi\pi}}{\bar{A}_{\pi\pi}} = \underbrace{\frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*}}_{V_{tb}^* V_{td}^*} \underbrace{\frac{V_{ub} V_{ud}^*}{V_{ub}^* V_{ud}}}_{e^{-2i\gamma}} \frac{1 + r_{\pi\pi} \kappa}{1 + r_{\pi\pi} \kappa^*} = e^{2i\alpha} \frac{1 + r_{\pi\pi} \kappa}{1 + r_{\pi\pi} \kappa^*}$$

$$\square \text{ The time-dependent CP asymmetry is:}$$

$$\mathcal{A}_{\pi\pi} = -C_{\pi\pi} \cos(\Delta m_{B_d} t) + S_{\pi\pi} \sin(\Delta m_{B_d} t)$$

$$S_{\pi\pi} = \sin(2\alpha) + O(r_{\pi\pi})$$

$$C_{\pi\pi} = O(r_{\pi\pi})$$

U What do we get from experiments

$$S_{\pi\pi}^{\exp} = -0.59 \pm 0.09$$

$$C_{\pi\pi}^{\exp} = -0.39 \pm 0.07$$

$Sin2\alpha$ in $B \rightarrow \pi\pi$

Solutions:

- use effective theories to calculate rππ
- use SU(3) flavor symmetry to relate $B \rightarrow K\pi$ and $B \rightarrow \pi\pi$
 - isospin analysis

Up to isospin breaking corrections we can describe

$$A(B^+ \to \pi^+ \pi^0), \ A(B^0 \to \pi^+ \pi^-), \ A(B^0 \to \pi^0 \pi^0)$$

in terms of two isospin amplitudes

$$A(B \rightarrow [\pi\pi]_0), \ A(B \rightarrow [\pi\pi]_2)$$

At the end of the day we are able to eliminate $r_{\pi\pi}$ and extract sin(2 α)

RARE DECAYS

.....

.....

Topologies & Classification

- Classification (depends on the flavour content of the final state):
 - Only tree diagrams.
 - Tree and penguin diagrams.
 - Only penguin diagrams.

• Operator product expansion (OPE): \Rightarrow

$$\langle f | \mathcal{H}_{\text{eff}} | i \rangle = \frac{G_{\text{F}}}{\sqrt{2}} V_{\text{CKM}} \sum_{k} C_{k}(\mu) \left\langle f | Q_{k}(\mu) | i \right\rangle$$

[$G_{\rm F}$: Fermi constant, $V_{\rm CKM}$: CKM factor, μ : renormalization scale]

- The operator product expansion allows a separation of the short-distance from the long-distance contributions:
 - *Perturbative* Wilson coefficients $C_k(\mu) \rightarrow$ short-distance physics.
 - Non-perturbative hadronic MEs $\langle f|Q_k(\mu)|i\rangle \rightarrow$ long-distance physics.
- The Q_k are local operators, which are generated through the electroweak interactions and QCD, and govern "effectively" the considered decay.
- The Wilson coefficients $C_k(\mu)$ describe the scale-dependent "couplings" of the interaction vertices that are associated with the operators Q_k .

Topologies & Classification

- Four-quark operators Q_k^{jr} $(j \in \{u, c\}, r \in \{d, s\})$:
 - Current-current operators (tree-like processes):

– QCD penguin operators:

$$\begin{array}{lcl} Q_3^r &=& (\bar{r}_{\alpha}b_{\alpha})_{\mathsf{V}-\mathsf{A}}\sum_{q'}(\bar{q}'_{\beta}q'_{\beta})_{\mathsf{V}-\mathsf{A}}\\ Q_4^r &=& (\bar{r}_{\alpha}b_{\beta})_{\mathsf{V}-\mathsf{A}}\sum_{q'}(\bar{q}'_{\beta}q'_{\alpha})_{\mathsf{V}-\mathsf{A}}\\ Q_5^r &=& (\bar{r}_{\alpha}b_{\alpha})_{\mathsf{V}-\mathsf{A}}\sum_{q'}(\bar{q}'_{\beta}q'_{\beta})_{\mathsf{V}+\mathsf{A}}\\ Q_6^r &=& (\bar{r}_{\alpha}b_{\beta})_{\mathsf{V}-\mathsf{A}}\sum_{q'}(\bar{q}'_{\beta}q'_{\alpha})_{\mathsf{V}+\mathsf{A}} \end{array}$$

- EW penguin operators:

$$\begin{array}{rcl} Q_{7}^{r} & = & \frac{3}{2}(\bar{r}_{\alpha}b_{\alpha})_{\mathsf{V}-\mathsf{A}}\sum_{q'}e_{q'}(\bar{q}'_{\beta}q'_{\beta})_{\mathsf{V}+\mathsf{A}} \\ Q_{8}^{r} & = & \frac{3}{2}(\bar{r}_{\alpha}b_{\beta})_{\mathsf{V}-\mathsf{A}}\sum_{q'}e_{q'}(\bar{q}'_{\beta}q'_{\alpha})_{\mathsf{V}+\mathsf{A}} \\ Q_{9}^{r} & = & \frac{3}{2}(\bar{r}_{\alpha}b_{\alpha})_{\mathsf{V}-\mathsf{A}}\sum_{q'}e_{q'}(\bar{q}'_{\beta}q'_{\beta})_{\mathsf{V}-\mathsf{A}} \\ Q_{10}^{r} & = & \frac{3}{2}(\bar{r}_{\alpha}b_{\beta})_{\mathsf{V}-\mathsf{A}}\sum_{q'}e_{q'}(\bar{q}'_{\beta}q'_{\alpha})_{\mathsf{V}-\mathsf{A}} \end{array}$$

Here α , β are $SU(3)_{\mathsf{C}}$ indices, V $\pm \mathsf{A}$ refers to $\gamma_{\mu}(1 \pm \gamma_5)$, $q' \in \{u, d, c, s, b\}$ runs over the active quark flavours at $\mu = \mathcal{O}(m_b)$, and the $e_{q'}$ are the electrical charges

Factorization

- Recent developments:
 - QCD factorization (QCDF): Beneke, Buchalla, Neubert & Sachrajda (1999–2001); ...
 - Perturbative Hard-Scattering (PQCD) Approach:
 Li & Yu ('95); Cheng, Li & Yang ('99); Keum, Li & Sanda ('00); Ali, Lü, et al. ('07); ...
 - Soft Collinear Effective Theory (SCET):
 Bauer, Pirjol & Stewart (2001); Bauer, Grinstein, Pirjol & Stewart (2003); ...
 - QCD sum rules:

Khodjamirian (2001); Khodjamirian, Mannel & Melic (2003); ...

 $Data \Rightarrow$ theoretical challenge remains ...

- Theoretical description through effective low-energy Hamiltonians:
 - The NP particles (such as the charginos, squarks in the MSSM) are "integrated out" as the W boson and the top quark in the SM:
 - * Initial conditions for RG evolution: $C_k(\mu = M_W) \rightarrow C_k^{SM} + C_k^{NP}$
 - Operators, which are absent or strongly suppressed in the SM, may actually play an important rôle:
 - * Operator basis: $\{Q_k\} \rightarrow \{Q_k^{SM}, Q_l^{NP}\}$
- Popular NP scenario: Minimal Flavour Violation (MFV)
 - Flavour and CP violation still governed by the SM Yukawa matrices.
 - Essentially no effects in CP asymmetries, but various interesting correlations between rare decay observables, mixing parameters, etc.

$$\langle M_1 M_2 | \mathcal{O} | B \rangle = F^{BM_1} \int du \, T'(u) \phi_{M_2}(u) + \int d\omega \, du \, dv \, T''(\omega, u, v) \phi_B(\omega) \phi_{M_1}(u) \phi_{M_2}(v)$$

- ▷ Vertex corrections: $T'(u) = 1 + O(\alpha_s)$
- ▷ Spectator scattering: $T''(\omega, u, v) = O(\alpha_s)$ (power suppressed if M_1 is heavy)
- ▷ Strong phases are perturbative $[\mathcal{O}(\alpha_s)]$ or power suppressed $[\mathcal{O}(\Lambda/m_b)]$.

QCD Factorization

Two hard-scattering kernels for each operator insertion: T' (vertex), T'' (spectator)

 $\langle M_1 M_2 | \mathcal{O}_i | B \rangle \simeq F^{BM_1} T_i' \otimes \phi_{M_2} + T_i'' \otimes \phi_B \otimes \phi_{M_1} \otimes \phi_{M_2}$

and two classes of topological amplitudes: "Tree", "Penguin".

QCD Factorization

$$T \equiv a_1(\pi\pi) = 1.009 + [0.023 + 0.010i]_{\text{NLO}} + [0.026 + 0.028i]_{\text{NNLO}} - \left[\frac{r_{\text{sp}}}{0.485}\right] \left\{ [0.015]_{\text{LOsp}} + [0.037 + 0.029i]_{\text{NLOsp}} + [0.009]_{\text{tw3}} \right\} = 1.00 + 0.01i \rightarrow 0.93 - 0.02i \quad (\text{if } 2 \times r_{\text{sp}})
$$C \equiv a_2(\pi\pi) = 0.220 - [0.179 + 0.077i]_{\text{NLO}} - [0.031 + 0.050i]_{\text{NNLO}} + \left[\frac{r_{\text{sp}}}{0.485}\right] \left\{ [0.123]_{\text{LOsp}} + [0.053 + 0.054i]_{\text{NLOsp}} + [0.072]_{\text{tw3}} \right\} = 0.26 - 0.07i \rightarrow 0.51 - 0.02i \quad (\text{if } 2 \times r_{\text{sp}})$$$$

	Theory I	Theory II	Experiment
$B^- ightarrow \pi^- \pi^0$ $ar{B}^0_d ightarrow \pi^+ \pi^-$ $ar{B}^0_d ightarrow \pi^0 \pi^0$	5.43 + 0.06 + 1.45 (*) 7.37 + 0.86 + 1.22 (*) 0.33 + 0.11 + 0.42 - 0.08 - 0.17	5.82 + 0.07 + 1.42 (*) 5.82 + 0.06 - 1.35 (*) 5.70 + 0.70 + 1.16 (*) 0.63 + 0.12 + 0.64 - 0.10 - 0.42 BELLE CKM 14:	$5.59^{+0.41}_{-0.40}$ 5.16 ± 0.22 1.55 ± 0.19 0.90 ± 0.16

Main limitation of QCDF approach, e.g. weak annihilation

• convolutions diverge at endpoints \Rightarrow non-factorisation in SCET-2

currently modelled with arbitrary soft rescattering phase

Pure annihilation decays

 $10^6 \operatorname{Br}(B_d \to K^+ K^-) = 0.13 \pm 0.05$ ($\Delta D = 1$, exchange topology)

 $10^6 \operatorname{Br}(B_s \to \pi^+ \pi^-) = 0.76 \pm 0.13$ ($\Delta S = 1$, penguin annihilation)

extract weak annihilation amplitudes from data [Wang, Zhu 13; Bobeth, Gorbahn, Vickers 14; Chang, Sun, Yang, Li 14]

 \triangleright Or use "clean" combinations, *e.g.* $\Delta = T - P$ in penguin mediated decays

Perturbative QCD Approach

Perturbative QCD Approach

$$A \sim \int d^4k_1 \, d^4k_2 \, d^4k_3 \, C(t) \Phi_B(k_1) \, \Phi_1(k_2) \, \Phi_2(k_3) \, H(k_1, k_2, k_3, t) \, \exp\{-S(t)\}$$

- $\Phi(k)$ is wave function in the light cone, which is universal.
- C(t): Wilson coefficients of corresponding four quark operators
- exp{-S(t)} are Sudukov form factor (double log resummation), which relate the long distance contribution and short one. And the long distance effects have been suppressed.
- $H(k_1, k_2, k_3, t)$ is six quark interaction, and it can be calculated perturbatively, and it is process depended.

表 2.1 推广的因子化方法 (GFA), QCD 因子化方法 (BBNS) 和微扰 QCD 方法 (PQCD) 的比较。

	GFA	BBNS	PQCD
可计算		重 → 轻衰变的	形状因子
		不可因子化贡献	不可因子化贡献
			湮灭图贡献
不可计算	形状因子	形状因子	末态相互专用
	不可因子化贡献	末态相互专用	
	末态相互专用		
忽略部分	湮灭图贡献	湮灭图贡献	末态相互专用
	末态相互专用	末态相互专用	
输入参数	形状因子	形状因子	波函数
		波函数	
强相位产生机制	BSS	BSS	湮灭图
		非因子化相应	非因子化效应

SUMMARY

.....

.....

- In my view , flavor physics remains one of the most promising windows search for CP Violation and new physics.
- Many new results require better statistics and further measurements: potential for multiple 5-sigma effects.
- Conversely if nothing is found in LHC the new colliders will significantly push up the effective scale of flavor.
- More interplays between experimentalists and theorists are needed.

Thanks for your attentions!