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. Search for new particles or new phenomena
| IS our major task in particle physics

* There are two ways to achieve that: direct search or
Indirect search

« Accordingly we have two directions in high energy
physics experiments: high energy and high intensity ...

There are many high intensity experiments: 2

« Belijing electron position collider (BEPC)

« Daya Bay neutrino experiment etc.

o B-factories (two machines)

« LHCDb

* There is even a super B-factory (Belle I1)
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The origin of flavour is one of the big, unsolved mysteries of fundamental physics!

While the Standard Model (SM) describes flavour physics very accurately,
it does not explain its mysteries:

v" Why are there 3 generations in nature?

v" What determines the extreme hierarchy of fermion masses?

v What determines the elements of the CKM matrix?

v" What is the origin of the matter-antimatter asymmetry (CP violation)?

The SM CP-violation is insufficient to explain the matter/antimatter asymmetry
= progress in flavour physics may help understand open questions in cosmology

History has shown that flavour physics often gives first evidence for new discoveries:
» Kaon mixing, BR(K", —pup) & GIM — prediction of charm

» CP violation — prediction of third quark family

» B mixing — mass of top is very heavy

» rare B-decays — SUSY parameter space constrained

CDLu 4



o
£k

Iiong ﬁme ago, we had only 3
flavors of quarks: u,d,s.

Experimentally we found that
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Later, more precise
experiments found that
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"=, Heavy flavor physics is a very important
hot topic In particle physics recently

= People expect the new physics signal from
the heaviest top quark, since it is very close
to the electroweak breaking scale

= But there are too few data of top quark production

= Therefore beauty quark is our best chance for new
physics signals, since they both belong to the third
family
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Current Flavor Anomalies

Y S.Sc; (g — 2), anomaly
~ 3.5¢ non-standard like-sign dimuon charge asymmetry
~ 3.5¢ enhanced B — D™)ry rates Rp
~ 3.50 suppressed branching ratio of Bs — oy~
~ 30 tension between inclusive and exclusive determination of |V |
~ 30 tension between inclusive and exclusive determination of | V|
2—3c anomalyin B8 — K*u™u~ angular distributions Pé
2 — 30 SM prediction for €' /e below experimental result
~ 2.50 lepton flavor non-universality in B — Ky u~ vs. B — Kete™ RK

~ 2.50 non-zero h— Tu
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Pure leptonic decays

(P(p)|lgy*Lq'|0)=if pp*. M

= The decay constant Is
the normalization of the meson
wave function I.e. the zero point of wave function

= The experimental measurement of pure leptonic decay

can provide the product of decay constant and CKM
matrix element.

= Theoretically decay constant can be calculated by
QCD sum rule or Lattice QCD

I—I—
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We have two hadrons in semi-leptonic
decays. It Is described by form factors

T

(m|uy“b|BY = p,“ f, + p “f, 4=Ps~ P

2 2 m Z_m 2
= (pg+p,)' ——2—"0" |[R(q°)+—2 " ~0“Fy(q°)

] ] +
Form factors can be calculated by / _I
lattice QCD, QCD sum rules, b ‘. u

light cone sum rules etc. B O /

In the quark model, it is calculated by the overlap of two
meson wave functions.

Not a constarit but a function
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CP violation, FCNC, sensitive to new physics contribution...

7T (K)

The standard model
describes interactions
b W u

amongst quarks and
B T leptons

dis) 7(K

In experiments,
we can only

W
M observe
b U
B

hadrons

T -
pi K puzzle etc.

How can we test the standard model without solving QCD?
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Bauer, Stech, Wirbel, Z. Phys. C29, 637 (1985); ibid 34, 103
(1987)

Hadronic parameters: Form factor and decay constant

<m'D7[H|B>=2a, <7z‘ay“ Ld‘0> <D‘67/y Lc|B)

Form factors calculated from quark model
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Generalized Factorization Approach

- Ali, Kramer, Lu, Phys. Rev. D58, 094009 (1998)

D =0
% 7}“
—d bh——4&n _d
fa

b
C, ~-02 ~  C,(1/3 +s5) = C,/N, ~ +1/3
—0
(B, [B7) = (ccmyty R

Non-factorizable contribution should be larger than expected,

characterized by effective N
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Generalized Factorization Approach

~ Ali, Kramer, Lu, Phys. Rev. D58, 094009 (1998)

D _ B
% 7 “ou
b —d b — W...léd
BY o 7 B d. —

C, ~-02 ~  C,(1/3 +s5) = C,/N, ~ +1/3

0—0
<7r D ‘Heﬁ

B’)= (Ci+C,IN,) fy FP=r
Non-factorizable contribution should be larger than expected,

characterized by effective N
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QCD Penguin operators

= Wilson coefficients o« o,

:ay“Lb-Zaj/ﬂLq
q

day“Lb, -%6 27.Ld,

_7“Lb-§57
d.y“Lb, -§qﬂya o

R=1+y°

CDLu 15

1
o

03
O,
C)5
06




Chiral enhanced penguin
Ali, Kramer, Lu, Phys. Rev. D58, 094009 (1998)

Fiertz transformation gives a //
Chiral enhanced factor m_2/m, h— )

In this paper, We also found that
This makes Br(B= 7#*K~) > Br(B= n*n-

Previously in BSW model it is the inverse case

CDLu
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Shortcomings of Nailve FA

Non-predictable of the non-factorizable
contributions

Form factors need input from experiments or
theoretical calculations

—most important theoretical uncertainty
Annihilation type diagram not calculable

Strong phase too small, and not quantitatively
calculable

— Direct CP asymmetry not predictable
Final state interaction not predictable
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- QCD factorization by BBNS: PRL 83 (1999)
S’ 1914: NPB591 (2000) 313

1
(LiLalQIB) = S EPRm3) [ duThw) ou(u)
- 0
J

1
+ S FPTmd) [ doTh(o) (o),
L 0

1
+ f dedudv T (£, u, v) By(€) i, (v) Sr (u)
0
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Endpoint divergence appears in these calculations
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The annihilation type diagrams are
Important to the source of strong phases

b e JJ‘
3
H"ﬁh__..r”- "'J ..r &
T §
. . d
"y X [ \ﬁ
~ e oy P~

-,

= However, these diagrams are similar to the form factor
diagrams, which have endpoint singularity, not perturbatively
calculable.

= These divergences are not physical, can only be treated in
QCDF as free parameters, which makes CP asymmetry not
predictable:

dy L' Iny 1
/ —xi [yt o (e
0o Y 0 Y 2
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Status of NNLO QCD factorization calculations

(MiM2|CiOi|B) e = > Cun) x {FHM1 X T (1, is)  fit, ®aty (pis)

terms
+/5Pr(ps) * {Tﬂ(ﬁmm) *JH(”I&#S)J * fry Py (14s) *fMZ‘I’Mz(ILs)}
1+... os+...
Status 2-loop vertex corrections (T/) 1-loop spectator scattering (T//)
/ [GB 07, 09] b [Beneke, Jager 05]

Trees 2 [Kivel 06]

—— [Pilipp 07]

Pengums %EEL in progress ﬁ [Beneke, Jager 06]

[Jain, Rothstein, Stewart 07]

[Beneke, Huber, Li 09]

With more and more precise data, power corrections are
urgently needed
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Picture of PQCD Approach

ﬂ'-l_ ................... _ ...... E d )
W (g@ g O—»”
..... U 7
L
4-quark B°(at rest)
operators

Keum, Li, Sanda, Phys.Rev. D63 (2001) 054008;
Lu, Ukal, Yang, Phys.Rev. D63 (2001) 074009

CDLu


演示者
演示文稿备注
引用超过500次


“sem®’ The leading order emission Feynman
| diagram in PQCD approach

5 / :
B T B
(c)
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Hard
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‘The leading order Annihilation type
“ Feynman diagram in PQCD approach
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Endpoint \/

singularity 5 (g

= Gluon propagator g " qgﬁk}
i i - -

(kl - kz)z ) _ 2Xym|523
= X,y Integrate from 0->1, that is endpoint singularity

= The reason is that, one neglects the transverse
momentum of quarks, which is not applicable at
endpoint.

= If we pick back the transverse momentum, the
divergence disappears

(kl _k2)2 B _2Xymé _(le _sz)2
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Endpoint -

7 singularity \/
.. b g
s It is similar for the — % —
e — ki1 Py — ko
quark propagator B £ % 4
L 1 By R
j Zdx=In=
X £

The logarithm divergence disappear if one has an
extra dimension
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However, with transverse momentum, means
one extra energy scale

The overlap of Soft and collinear divergence will give double
logarithm In° Pb, which is too big to spoil the perturbative
expansion. We have to use renormalization group equation to
resum all of the logs to give the so called Sudakov Form factor
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Sudakov Form factor exp{—S(x,b)}

29

This factor exponentially suppresses the contribution at
CDLu

the endpoint (small k), makes our perturbative

calculation reliable



“wem®’ CP Violationin B2 7z 7 (K)
N (real prediction before exp.)

CP(%) FA BBNS PQCD Exp
(2001) (2004)
K- | +9+3 +54+9 ~17+5 | -115F1.8
KT | 48+ 2 | 749 | 13 +4 | +4 + 4
K117+ 01| 1+1 | -1.0+05| -2 +4
7 x~ | -5+3 @2 +304-10 +@IO
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3 ® CP Violation in B> 7 7 (K)
Includlng Iarge annlhllatlon fixed from exp.

e
CP (%) FA [Cheng,HY @ PQCD EXp
(2001)
7'K™ | +9£3 7450 1745 | 97¥12
7°K* | +8 = 2 0.28+0.10 -13 +4 | 4.7 + 2.6
77K |17+ 0.149+59 -1.0+05| 0.9 £25
ara —-5+3 17+ 13 +30x10 @7

CDLu
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Perturbative calculations

= In principle, all hadronic physics should be calculated
by QCD

= In fact, you can always use QCD to calculate any
process,

provided you can renormalize the infinities and do all
order calculations.

= Perturbation calculation means order by order
= Involving loop diagrams
= Therefore divergences unavoidable
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Divergences

= Ultraviolet divergences = renormalization

= Infrared divergences ? Infrared divergence in virtual
corrections should be canceled by real emission

= In exclusive QCD processes = factorization

. \MW(

e e
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Factorization can only be proved in power
expansion by operator product expansion. To
— achieve that, we need a hard scale Q

In the certain order of 1/Q expansion, the hard dynamics
characterized by Q factorize from the soft dynamics
Hard dynamics is process-dependent, but calculable
Soft dynamics are universal (process-independent) j‘>
predictive power of factorization theorem

Factorization theorem holds up to all orders in a,, but to

certain power in 1/Q
In B decays the hard scale Q is just the b quark mass
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_,;;_ﬂ._.__._%l;;&_ﬁ_‘.,."EIQCD-methods based on factorization work
well for the leading power of 1/myexpansion

collinear QCD Factorization approach
[Beneke, Buchalla, Neubert, Sachrajda, 99’ ]

Perturbative QCD approach based on kt factorization
[Keum, Li, Sanda, 00’; Lu, Ukali, Yang, 00" ]

Soft-Collinear Effective Theory
Bauer, Fleming, Pirjol, Stewart, Phys.Rev. D63 (2001) 114020

~~ Work well for most of charmless B decays, except for nnr, K
puzzle etc.



- S el W
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By -1 oL
=
T
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4B The prove of factorization of QCD from
=R alectroweak is not needed

e Flavour SU(3) irreducible matrix elements

e Topological amplitudes (often with flavour SU(3) or SU(2))

T,C,P, Pew,S,E,A,...

SU(3) breaking effect was lost. Limited precision!
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““eme®;’ Factorization assisted topological diagram
~ approach first applied in hadronic D decays

[L3, Lu, Yu, PRD86 (2012) 036012]

[FAT]

__Predictions of Direct CP asymmetries

Modes Ap(FSI) Acp(diagram) Afy A%

D’ — 7t~ 0.02 = 0.01 0.86 0 058 e=
D'— KtK~ 0.13 = 0.8 —0.48 0 —042 &=

D’ — 797" —0.54 = 0.31 0.85 0 0.05 Acp =
D — KK —0.28 = 0.16 0 L11 138 1 10
D’ — 7'n 1.43 = 0.83 —0.16 —-0.33 —0.29

D’ — 797/ —0.98 *+ 0.47 —0.01 053 1.53

D’ — nnq 0.50 = 0.29 —0.71 0.29 0.18

D’ — 7y’ 0.28 £0.16 0.25 —0.30 —0.94

Fa

CDLu

37



’}-_:_'- o _".':.I':.:_] :
}__,\ - gL
s
Tu
. Exp Averages
.
.

- 2011
—————y
2012, Theory [Li,Lu,FSY,PRD2012]
2012 I 2012, Theory [Cheng,Chiang,PRD2012]
——
2013 ——
2014 ——i
2016 e
2019 -
| | | |
-10 -9 0 3 x10-3
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Tree topology diagram contrlbutlng to
Charmless B decays

W, 8P i

For the color favored diagram (T), it
IS proved factorization to all order of

o, expansion in soft-collinear effective

theory, a a
(@) T

The decay amplitudes Is just the decay constants and
form factors times Wilson coeficients of four quark

operators. The SU(3) breaking effect is automatically

W u

o
Y

kept PP .GF BP
I = EEV@HQ*M (1) foo (M — Mgy ) Fy (my,),
No free TPV = V2GpVuV, a1 (1) fymy FE~F (m}) (€} - p),

parameter

= V2GrVisV,y a1(p) frmv AT~ (m) (3, - pB),
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.

iy ‘For other diagrams, we extract the amplitude and
“= strong phase from experimental data by 2 fit

We factorize out the decay constants and form factor to
keep the SU(3) breaking effect

\w Ja For the color suppressed
b W | d, s

—WNW— tree diagram (C), we have
two kinds of contributions
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3 The penguin emission diagram(P)

< 1s the dominant diagram
comparable with color favored b |
tree (T). [¢

It is approved factorization in =~ ——=+owwrrl 4
SCET, we can calculate without

ambiguity. The additional chiral - : -
enhanced penguin of this
diagram need to be fitted

G .

PPP = =2V, V! [aa(p) v (M — My ) Fy ™ (m3),
ﬁ q

PV = —V2G ViV, as(p) fymal "mi (e}, - pa),

P'F = —\@GFVEEFV;} aq (1) @ |femyAg " (m%) (e} - pB)-
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decays

Global Fit for all B=>PP, VP and PV

with y%/d.of = 45.2/34 = 1.3.

35 branching Ratios and 11 CP violation observations
data are used for the fit

— (.48 + 0.086,
¢ = 0.42 +0.16,
xZ = 0.057 & 0.005,
= 0.10 +0.02,

vF¢ = 0.048 + 0.003,
F& = 0.039 + 0.003,

XPA — 0.0059 + 0.0008,

CDLu

th _ .\ 2
Axi |
67 = —0.61 % 0.02. Large
stron
"¢ = 1.56 + 0.08, g
phase

Fe = 0.68 £0.08, Zhou, Zhang, Lyu and L,
¢ ,
¢,PA — 151 4+0.00 EPJC (2017) 77: 125
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CKM angle gamma extraction

All the tree amplitudes in charmless B decays are
proportional to V)V, 4" ; while the penguin amplitudes are
proportional to thth,s* - _(Vubvud,s* +Vcchd,s*)'

Except V,, = |V, ,|e7™, all other CKM matrix elements are
approximately real numbers without electroweak phase.

So after input the magnitudes of the following CKM matrix
elements,

Va| = 0.97420 £+ 0.00021,  |Vis| = 0.2243 +0.0005, [Viy| = 0.00394 + 0.00036,
V| = 0.218 £ 0.004, V| =0.997 £0.017,  [Vi| = 0.0422 =+ 0.0008.

We can extract the CKM angle gamma by global fit all
the charmless B decays
43



Global Fit for all B> PP, VP and PV

decays with gamma as free parameter

with x2/d.o.f = 45.4/33 = 1.4.

~ = (69.8 +2.1)°

We use 37
branching ratios
and 11 CP
violation
observations of all
B—PP,PV
decays from the
current
experimental data

v = 0.41 £ 0.06,
y¢ =0.40 £0.17,
vZ = 0.06 £ 0.006,
P = 0.09 £ 0.003,
e = 0.045 + 0.003,
Fe = 0.037 4 0.003,
XPA — 0.006 =+ 0.0008,

o° = —1.74 +0.09,

¢¢ = 1.78 +£0.10,
o¥ = 2.76 +0.13,
¥ = 2.55 + 0.03
¥ = 1.53 +0.08,
ofc = 0.67 £0.08,
ot = 1.49 + 0.09,
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Global Fit for all B> PP, VP and PV

decays with gamma as free parameter

with x2/d.o.f = 45.4/33 = 1.4.

We use 37
branching ratios
and 11 CP
violation
observations of all
B—PP,PV
decays from the
current
experimental data

y¢ =0.40 £0.17,
vZ = 0.06 £ 0.006,
P = 0.09 £ 0.003,
e = 0.045 + 0.003,
Fe = 0.037 4 0.003,
f’ﬂ — 0.006 =+ 0.0008,

= (69.8 £2.1£0.9)°

- N\
Uncertainty from
Input parameters

v = 0.41 £ 0.06,

¢° = =114 L uv.uy,
¢¢ = 1.78 +£0.10,
o¥ = 2.76 +0.13,
¥ = 2.55 + 0.03
¥ = 1.53 +0.08,
ofc = 0.67 £0.08,

¢4 = 1.49 £ 0.09, .



Comparison of gamma measurement

v = (69.8+£2.1+0.9)

HFLAV Collaboration 7 = (71-1J—r§:g)0

Less
CKMfit Collaboration Y= (73.51@;:%){, uncertainty

than others

UTfit Collaboration = (70.0+£4.2)° Zhou and Lu
CPC 44 (2020) 063101

Recent LHCb result -y = *(74.0130)°
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Summary/Challenges

= Hadronic B Decays are important in the test of
standard model and search for signals of new physics.

= Power corrections in QCDF are very important that
need to be calculated precisely

= Such as The annihilation type diagrams are the key
point in explaining the K pi puzzle and large direct CP
asymmetry found in B decays

= Next-to-leading order perturbative calculations is
needed to explain the more and more precise
experimental data
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