Update on the HV-CMOS Sensors

Hongbo Zhu (IHEP) On behalf of the Silicon Tracker WG

- ATLASPix3 characterization
- New sensor design

ATLASPix3

Depleted CMOS sensor (HV-CMOS)

Fully integrated readout
Fast charge collection
Low material budget

ATLASPIX3 FEATURES:

- $\,\circ\,$ Pixel size 50 $\times 150\,\mu m^2$
- $\,\circ\,$ Reticle size 20 $\times 21\,mm^2$
- $_{\odot}$ TSI 180 nm HV process on 200 Ωcm substrate
- $_{\odot}$ 132 columns × 372 rows
- $_{\odot}\,$ Digital part of the matrix located on periphery
- $_{\odot}\,$ Both triggerless and triggered readout possible
- $_{\odot}$ Up to 1.28 Gbps downlink

ATLASPix3 Distribution

• Wire-bonded ATLASPix3 sensors distributed to participating institutes • Liverpool & IHEP: wire-bonding and distribution centers

ATLASPix3 IV Scan

• IV scan to confirm sensor basic electrical characteristics

Most sensors showed consistent IV results

Low leakage current up to the breakdown voltage of 60 V

ATLASPix3 Tunings

• Trimming: threshold voltage for each pixel tuned to achieve homogenous sensor response

Consistent trimming results obtained by different institutes (minor variation from chip to chip); no significant change for thinned sensors

• Time-over-Threshold (ToT): to measure deposited energy

21 May 2021

Response to Radioactive Sources

• ATLASPix3 tested with radioactive sources at different sites IHEP

Edinburgh/Bristol/Lancaster

QuadModule Assembly

Milano

• QuadModule flex PCB electrically tested; module assembly underway

 Defined wire bonding options; to prepare for the test firmware & Software (command decoding configuration fully tested)

More on ATLASPix3

• ATLASPix3.1 (back from foundry)

- Reduced detector capacitance by replacing M2 shield with M3 shield (250 fF to 130 fF)
- $_{\odot}\,$ Modified design of the guard ring
- $_{\odot}\,$ Larger distance between DN and PW ring
- $_{\odot}\,$ M1 ring disconnected from PW
- $_{\odot}$ Idea set substrate to -120V and M1 ring to -60V
- Added stability capacitor to the power regulator

• Optimization for the CEPC tracker (submitted)

- $_{\odot}$ Smaller pixel size (25µm) in ϕ direction
- Lower capacitance
- $_{\odot}\,$ Amplifier and comparator design
- Electronics in pixel or periphery
- \circ Daisy chain of readout

Migration to New Process

- Started new sensor design with the <u>HLMC 55 nm HV-CMOS</u>
- MPW: 3×4 mm², 50 dies; caveats: low bulk resistivity wafers (10 ohm), no deep P-well
- Engineering run: deep P-well possible (being tried out for their CIS process of the same feature size); high resistivity wafers to be negotiated

MPW submission date: 16 August, 2021

Sensor Design

Biweekly meetings to coordinate the design effort

• Pixel size: $25 \times 150 \ \mu m^2$, to meet the spatial resolution requirement

M. Zhao

- Design of in-pixel electronics, e.g. charge pre-amplifier, on-going
 - Simulation with Hspice (Spice model provided)

W. Lu, K. Wang