Status of CEPC Physics and Detector

Haijun Yang Shanghai Jiao Tong University (for the CEPC Working Group)

The 2021 Workshop on CEPC Detector & MDI Mechanical Design IHEP Dongguan Campus, October 22-23, 2021

The second se

http://cepc.ihep.ac.cn/

Introduction of the CEPC

CEPC Physics Potential

CEPC New Detector Concept and R&D

CEPC Sites and Timeline

> Summary

Worldwide Lepton Colliders

- > 欧洲粒子物理战略规划提出:正负电子希格 斯工厂是优先级最高的下一代对撞机。
- An electron-positron Higgs factory is the highest-priority next collider.

IDT	I	LC P	re-La	b	ILC Lab.										
PP	P1	P2	P3	P4	1	2	3	4	5	6	7	8	9	10	Phys. Exp.

CEPC Major Milestones

The CEPC Study Group

August 2018

Editorial Team: 43 people / 22 institutions/ 5 countries

4

The CEPC Study Group

October 2018

Circular Electron Positron Collider (CEPC)

- The CEPC was initially proposed in 2012, as a Higgs (Z/W) factory in China.
- To run at $\sqrt{s} \sim 240$ GeV, above the ZH production threshold for ~1M Higgs; at the Z pole for ~Tera Z, at the W^+W^- pair (possible $t\bar{t}$ pair) production threshold.
- Higgs, EW, flavor physics & QCD, BSM physics (eg. dark matter, EW phase transition, SUSY, LLP,)
- Possible Super pp Collider (SppC) of $\sqrt{s} \sim 50-100$ TeV in the future.

The CEPC Physics Program

0	peration mode	ZH	Z	W⁺W⁻
	\sqrt{s} [GeV]	~240	~91.2	158-172
R	un time [years]	7	2	1
	<i>L</i> / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10
CDR	∫ <i>L dt</i> [ab⁻¹, 2 IPs]	5.6	16	2.6
	Event yields [2 IPs]	1×10 ⁶	3 32 5.6 16 1×10 ⁶ 7×10 ¹¹	2×10 ⁷
Latast	<i>L</i> / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	15.4
Lalesi	Event yields [2 lps]	1.7×10 ⁶	2.5×10 ¹²	3×10 ⁷

The large samples from 2 IPs: ~10⁶ Higgs, ~2x10⁷ W, ~7x10¹¹ Z bosons

• CEPC Conceptual Design Report:

Volume 1 – Accelerator, <u>arXiv:1809.00285</u>

Volume 2 – Physics & Detector, arXiv:1811.10545

CEPC Physics Performance (CDR)

e⁺e⁻ annihilations at the CEPC

- CEPC can make detailed study of various physics processes
- Higgs bosons are detected via recoil mass of the reconstructed Z, allowing for model independent & full investigation of the Higgs and any new physics that Higgs may reveal
- Very challenging events with missing neutrinos and jets are well reconstructed and identified

Chinese Physics C Vol. 43, No. 4 (2019) 043002

CEPC Physics Performance (CDR)

Order of magnitude improvement in precision \Rightarrow **Unknown / discoveries**

CEPC 使希格斯耦合参数测量精度 比HL-LHC实验提高 5-10 倍

Precision of Higgs coupling measurement (7-parameter Fit)

CEPC 对电弱参数测量精度比 当前实验精度提高约5-10倍

- **D** Precision EW measurements,
- □ Flavor physics (b, c, tau),
- **Given Study of QCD**,
- Probe physics BSM.

Discovery Potential for New Physics

EWPT & Matter-AntiMatter Asymmetry

٠ J.

Yuan, et al

Beyond Standard Model

11

10- 10^{-3} ~~~~~~ 10-4 e-10-5 **Long-lived Particle** 10^{-4} 10^{-3} 10^{-2} 10^{-1} 1 10 10^{2} 10^{3} 10^{4}

https://indico.ihep.ac.cn/event/13888/session/15

Flavor Physics

Analysis of $B_c \rightarrow \tau v_{\tau}$ at CEPC \rightarrow |Vcb|~O(1%) T. Zheng et.al., CPC 45, No. 2 (2021)

Analysis of $B_c \rightarrow \tau v_{\tau}$ at CEPC*

Taifan Zheng(郑太范)¹ Ji Xu(徐吉)² Lu Cao(曹璐)³ Dan Yu(于丹)⁴ Wei Wang(王伟)² Soeren Prell⁵ Yeuk-Kwan E. Cheung(张若筠)¹ Manqi Ruan(阮曼奇)^{4†}

¹School of Physics, Nanjing University, Nanjing 210023, China
²INPAC, SKLPPC, MOE KLPPC, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
³Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
⁴Institute of High Energy Physics, Beijing 100049, China
⁵Department of Physics and Astronomy, Iowa State University, Ames, IA, USA

Abstract: Precise determination of the $B_c \rightarrow \tau \nu_{\tau}$ branching ratio provides an advantageous opportunity for understanding the electroweak structure of the Standard Model, measuring the CKM matrix element $|V_{cb}|$, and probing new physics models. In this paper, we discuss the potential of measuring the process $B_c \rightarrow \tau \nu_{\tau}$ with τ decaying leptonically at the proposed Circular Electron Positron Collider (CEPC). We conclude that during the Z pole operation, the channel signal can achieve five- σ significance with $\sim 10^9$ Z decays, and the signal strength accuracies for $B_c \rightarrow \tau \nu_{\tau}$ yield is 3.6×10^6 . Our theoretical analysis indicates the accuracy could provide a strong constraint on the general effective Hamiltonian for the $b \rightarrow c\tau \nu$ transition. If the total B_c yield can be determined to Q(1%) level of accuracy.

Test of Lepton-Flavor-Universality (LFU) L.F. Li, T. Liu, JHEP 06 (2021) 064

	Experimental	SM Prediction
R_K	$0.745^{+0.090}_{-0.074} \pm 0.036$	1.00 ± 0.01 [4]
R_{K^*}	$0.69^{+0.12}_{-0.09}$	0.996 ± 0.002 [5]
R_D	0.340 ± 0.030	0.299 ± 0.003
R_{D^*}	0.295 ± 0.014	0.258 ± 0.005

at level of 2-3 σ . $R_{K^{(*)}} \equiv \frac{\text{BR}(B \to K^{(*)}\mu^+\mu^-)}{\text{BR}(B \to K^{(*)}e^+e^-)}$

 R_{κ^*} & R_{D^*} anomalies

b→s $\tau^+\tau^-$ is motivated to address LFU violating $R_{D^{(*)}} \equiv \frac{\text{BR}(B \to D^{(*)}\tau\nu)}{\text{BR}(B \to D^{(*)}\ell\nu)}$ puzzle involving 3rd generation lepton directly.

Channel	SM prediction for BR
$B^0 \to K^{*0} \tau^+ \tau^-$	$(0.98 \pm 0.10) \times 10^{-7} [11]$
$B_s \to \phi \tau^+ \tau^-$	$(0.86 \pm 0.06) \times 10^{-7} $ [11]
$B^+ \to K^+ \tau^+ \tau^-$	$(1.20 \pm 0.12) \times 10^{-7}$ [11]
$B_s \to \tau^+ \tau^-$	$(7.73 \pm 0.49) \times 10^{-7} $ [12]

12

White papers

- To promote the physics study at TDR & to converge to the Physics White Papers
- Physics white papers:
 - Physics handbooks for new comers: PostDoc/Student
 - Official references for the physics potential
 - Guideline for future detector design/optimization
- Higgs white paper published in 2019

CEPC Study for Snowmass: Physics (17 Lol)

1 40 H C.				19/		
	言自 <i>(</i> 121)		● ↑ ↓ 4	9% 🔲 11.33	WG	Lol
		_				Higgs boson CP properties at CEPC
			<u> 100</u>		EFUI	Measurement of branching fractions of Higgs hadronic decays
曼曼奇	王连涛	方亚泉	庄胥爱	开心		Study of Electroweak Phase Transition in Exotic Higgs Decays with CEPC Detector Simulation
			X		EF02	Complementary Heavy neutrino search in Rare Higgs Decays
刘真	GLI	杨思奇	张昊	李一鸣		Feasibility study of CP-violating Phase ϕ s measurement via Bs \rightarrow J/ $\Psi \phi$ channel at CEPC
		SPALEX		06 	EF03	Probing top quark FCNC couplings tq\gamma, tqZ at future e+e- collider
梁志均(蛋儿蛋儿	郑太范	賴培築	王伟		Searching for Bs $\rightarrow \phi$ vv and other b \rightarrow svv processes at CEPC
Å	-					Measurement of the leptonic effective weak mixing angle at CEPC
朱华星	朱宏博	廖红波	I_U	张华桥	EF04	Probing new physics with the measurements of $e+e- \rightarrow W+W-$ at CEPC with optimal observable
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Martin Martin Martin	- 52			NNLO electroweak correction to Higgs and Z associated production at future Higgs factory
			Wang	XCI au	EF05-07	Exlusive Z decays
	£π.	AL HIT	Wang J		EEOO	SUSY global fits with future colliders using GAMBIT
12		3		ist.	EFUO	Probing Supersymmetry and Dark Matter at the CEPC, FCCee, and ILC
李海波	李衡讷	李钊	李数	顾嘉荫		Search for t + j + MET signals from dark matter models at future e+e- collider
COD.	Â			1 - 2	EE00-10	Search for Asymmetric Dark Matter model at CEPC by displaced lepton jets
高俊	刘言东	lovecho	武雷 (王健	LF03-10	Dark Matter via Higgs portal at CEPC
The second		-		5		Lepton portal dark matter, gravitational waves and collider phenomenology
the second se	and the second se	the second se				

with optimal observables

.....

CEPC Study for Snowmass: Detector R&D

Snowmass — Letters of Intent

14 CEPC-Related Detector Lol submitted

https://indico.ihep.ac.cn/event/12410/

Detector R&D	
Conveners: Joao Guimaraes Costa, WANG Jianchun, Mr. Manqi Ruan (IHEP)	
15:00 CEPC Detectors Overview LoI 1'	15:10 PFA Calorimeter 1'
SNOWMASS21-EF1_EF4-IF9_IF0-260.pdf	Speakers: Haijun Yang (Shanghai Jiao Tong University), Dr. Jianbei Liu (University of Science and Technology of China), Dr. Yong Liu (Institute of High Energy Physics)
Speakers: Joao Guimaraes Costa, Mr. Manqi Ruan (IHEP), WANG Jianchun Material: Paper & Slides 🔁	Material: Slides 📆
	15:11 High Granularity Crystal Calorimeter 1'
13.02 IDEA CONCEPT 1 Sneaker: Franco Redeschi (INEN-Pisa)	Speaker: Dr. Yong Liu (Institute of High Energy Physics)
Material: Paper 3	Material: Paper 🚱 Slides 📆
15:03 Dual Readout Calorimeter 1'	15:12 Muon Scintillator Detector 1'
Speaker: Roberto Ferrari (INFN)	Speaker: Dr. Xiaolong Wang (Institute of Modern Physics, Fudan University)
Material: Paper &	Material: document 📆
15:04 Drift Chamber 1'	15:13 Vertex LoI 1'
Speaker: Franco Grancagnolo	Speaker: Prof. Zhijun Liang (IHEP)
Material: Paper CP	Material: Slides 🔂
15:06 mu-RWELL (muons, preshower) 1'	15:15 MDI LoI 1 '
Speaker: Paolo Giacomelli (INFN-Bo)	Speaker: Dr. Hongbo ZHU (IHEP)
Material: Paper C	Material: Slides 🔁
15:08 Time Detector LoI 1'	15:16 TPC LoI 1'
Speaker: Prof. Zhijun Liang (IHEP)	Speaker: Dr. Huirona Qi (Institute of High Energy Physics, CAS)
Material: Slides 🔂	Material: Slides 📆
15:09 Kev4hep 1'	
Speakers: Dr. Weidong Li (高能所), Dr. Tao LIN (高能所), Prof. Xingtao Huang (Shandong University),	15:17 Solenoid R&D LoI 1'
Wenxing Fang (Beihang University)	Speaker: Dr. Feipeng NING (IHEP)
Material: Slides 🔂	Material: Slides 📩

The physics motivations dictate our selection of detector technologies

Physics process	Measurands	Detector subsystem	Performance requirement
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$
$H \to b \bar{b}/c \bar{c}/g g$	${ m BR}(H o b ar b / c ar c / g g)$	Vertex	$\sigma_{r\phi} = 5 \oplus rac{10}{p({ m GeV}) imes \sin^{3/2} heta} (\mu{ m m})$
$H \to q\bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma^{ ext{jet}}_E/E = 3 \sim 4\%$ at 100 GeV
$H \to \gamma \gamma$	$BR(H \to \gamma \gamma)$	ECAL	$\Delta E/E = {0.20 \over \sqrt{E({ m GeV})}} \oplus 0.01$

- Flavor physics \Rightarrow Excellent PID, better than 2σ separation of π/K at momentum up to ~20 GeV.
- EW measurements \Rightarrow High precision luminosity measurement, $\delta L / L \sim 10^{-4}$.

Conceptual Detector Designs

The 4th Conceptual Detector Design

> 提出新的CEPC探测器方案: 基于硅径迹探测器 + 漂移室PID + 晶体电磁量能器 + 薄螺线管磁铁介于电磁量能器和强子量能器之间

CEPC R&D: Machine Detector Interface (MDI)

CEPC R&D: Silicon Pixel Chips

CPV4 (SOI-3D), 64×64 array ~21×17 μ m² pixel size

CEPC R&D: Time Projection Chamber

MOST 1

cathode TPC Prototype + UV laser beams

Low power FEE ASIC

21

Challenge: Ion backflow (IBF) affects the resolution. It can be corrected by a laser calibration at low luminosity, but difficult at high luminosity Z-pole.

CEPC: Drift Chamber for Particle ID

Both TPC & DC in the two designs have good PID, with dE/dX or dN/dX (cluster counting).

The FST solution needs a supplement PID. A combination of different PID detectors is also possible.

• Aim is to for have $2\sigma \pi/K$ separation for P<~20 GeV/c.

- **Drift chamber** between the outer layers of FST. The dN/dX method is more efficient. It is a joint R&D effort with the IDEA DC. But the DC can be optimized for PID only, not its tracking capability.
- **Time of flight** detector, e.g. LGAD. The time resolution ~20-30 ps today. Resolution of 10 ps is possible by the time of CEPC.
- Other options, e.g. an aerogel **RICH**, will also be considered.

IHEP-NDL LGAD-V2 Pixel size 1.3×1.3 mm²

CEPC R&D: PFA Calorimeters

CEPC R&D: ScW-ECAL Prototype

- → ScECAL prototype with 6700 channels
 - 32 active layer (EBU), 22 x 22 cm², ~22X₀
 - Scintillator (2x5×45mm³) + MPPC S12571
 - Embedded FEE (192 SPIROC2E ASICs)
 - It has been tested with cosmic rays & an electron beam at IHEP (Nov. 2020).

Granularity: 5mm × 5mm Position resolution: 1.6-1.8mm

CEPC R&D: High Granularity Crystal ECAL

CEPC R&D: PFA HCAL

0.7

0.65

 -10^{2}

Rate(kHz/cm²) 10³

RWell

CEPC R&D: Muon Detector

• **RPC** R&D applies to both SDHCAL & Muon.

- An alternative is μ-RWELL technology. The concept was proved. Currently focus mainly on industrialization and cost reduction.
- Scintillator Muon detector. R&D overlaps with Belle II
 - Building a prototype detector
 - Scintillator strips, improving quality & cost-reduction.
 - WLS fiber: purchased Kuraray, focusing on optical couplings.
 - SiPM Hamamatsu S13360-13**CS, and MPPC option.

Fudan U. Muon: Xiaolong Wang

Achieved $\sigma_t \sim 2ns$, Aim for 100-200 ps.

CEPC R&D: Solenoid Magnet

Collaboration with Industry (CIPC)

The CEPC Industrial Promotion Consortium (CICP) is established in Nov 2017. Till now, More than 60 companies joined CICP, with expertise on superconductor, superconducting cavities, cryogenics, vacuum, klystron, electronics, power supply, civil engineering, precise machinery, etc. The CIPC serves as a communication forum for the industrial and the HEP community.

- 1) Superconduting materials (for cavity and for magnets) 2) Superconductiong cavities 3) Cryomodules 4) Cryogenics 5) Klystrons 6) Magnet technology 7)Vacuum technologies 8) Mechanical technologies
- 能环形正负电子对撞机国 9)Electronics practional Workshop on the Nigh Eac 10) SRF 11) Power sources 12) Civil engineering 13) Precise machinery More than 40 companies first phase of CIPC, and 70 companies now.

.....

CEPC产业促进会2018年会 企业代表与高能所合影 Representatives of enterprises in the annual meeting, in July. 26, 2018 40余家企业,80余人参会

Nov 27, 2018, IHEP, Beijing, China

CEPC产业促进会第二次全体会议 企业代表与高能所合影 Representatives of enterprises in the plenary meeting, in Nov. 13, 2018 30余家企业代表

Review of CIPC annual meeting

CIPC working group meeting On June 4,2019

CEPC产业促进会-基金会 企业代表与高能所合影 **Representatives of CIPC Foundations in** the plenary meeting, in Nov. 21, 2019

CEPC产业促进会第三次全体会议 企业代表与高能所合影 Representatives of enterprises in the plenary meeting, in Nov. 19, 2019 64位代表,52个报告

CEPC Project Timeline

30

- > 2013-2025: Key technology R&D, from CDR to TDR, Site selection
- > Ideal situation: Approval in the 15th Five-Year Plan (2026-2030)

CEPC Project Timeline

Ī	Pre-Studies	Key Tech. R&D Engineering Design	Pre- Construction	Construction		Data Ta	aking		SPPC
CEPC-SPPC Concept	• 201 • 201	 2016.6 R&D fund 2018.5 1st Works 2018.11 Release 8.9 Project kick-off meeti 5.3 Release of Pre-CDR 	 Site selection technology & Accelerator international ded by MOST shop outside of China of CDR Shop Shop State of China of CDR 	n, engineering design, & system verification TDR, MoU, Il collaboration	•	Higgs Tunnel and infrastru Accelerator compor Installation, alignme commissioning Decision on detector detector TDRs; Cons installation and com	Z ucture constru nents producti ent, calibration ors and release struction, nmissioning	w on; n and e of	(рр/ер/ек)
		• 2018.2 1 st :	10 T SC dipole magne	et t & HTS cable R&D	• 20 Nb ₃ Sr	T SC dipole magnet R h+HTS or HTS	&D with		

HTS Magnet R&D Program

CEPC Site Selection

- Site selection is based on geology, electricity supply, transportation, environment, Local support & economy, ...
- Initial CDR study is based on Qing-Huang-Dao site

- * More invitations from local governments: Changsha, Changchun, ...
- ◇ 团队调研长沙和长春:具有良好的地质条件和便利的交通(近大城市和国际机场~20公里)
- * 长沙市政府非常积极,5月访问高能所;委托湖南大学在9月4日组织召开《中国(长沙)环形 正负电子对撞机暨国际科学新城项目论证报告》专家论证会,对项目及国际科学城定位及规 划的系统性、技术及投资的可行性等方面给予正面评价;当地政府非常支持项目落地建设。

CEPC Site Selection

- One of the best international image city of China (mainland), the UNESCO Creative City of Media Arts and the Culture City of East Asia.
- Changsha site and its surroundings have slight seismic activity in history, and are free of active faults. The peak ground acceleration is 50 Gal (0.5m/s²) and the seismic intensity is VI. The tectonic structure is stable.
- Site located in the north of Changsha City,
 - 15 km from Xiangjiang science town
 - 20 km from downtown & international airport
- Accessibility and transport conditions: The existing transport and road network is sound and complete, with convenient access to downtown and airport. The site has open landform, pleasant environment with mountain and river, and complete supporting facilities around.

Z	K4-17 154	STREET, SALES
Contraction of the second	155	156
Left Ball	157	158
1 minu	159	160
It and south	161	Ta Busie

Summary

- ➤ CEPC 是希格斯工厂 + Z工厂 + W工厂,具有丰富的物理和探索新物理的巨大潜力
- ≻积极准备CEPC白皮书:希格斯物理(已发表),电弱物理,味物理,QCD物理及新物理等
- > 提出了新的探测器概念设计,积极开展探测器关键技术预研
- > 探测器关键技术预研取得了多项重要进展:
 - ▶ 成功研制硅像素芯片,空间分辨率达到5微米,功耗为53mW/cm²;
 - ≻ 成功研制TPC原理样机,空间分辨好于100微米;低功耗,高集成度的读出电子学ASIC芯片,~2mW/ch
 - > 成功研制国际首个基于闪烁体和硅光电倍增管的高颗粒度电磁量能器技术样机,单层位置分辨好于2毫米
- ≻召开了一系列CEPC国际研讨会:
 - ▶ 中国: 北京 (2017.11, 2018.11, 2019.11), 上海 (2020.10), 扬州 (2021.4), 南京 (2021.11) 香港科技大学 (2015起-)
 - > 欧洲: 罗马 (2018.05), 牛津 (2019.04), 马赛 (2022.05 ?)
 - ≻ 美国: 芝加哥(2019.09), 华盛顿特区 (2020.04, online)
- > 经费资助:科技部,基金委,中科院,地方政府
- >CEPC关键技术预研工作稳步推进,并取得了一系列重要进展,感谢大家的积极参与!

Recent CEPC Workshops

THE 2018 INTERNATIONAL WORKSHOP ON HIGH ENERGY CIRCULAR ELECTRON POSITRON COLLIDER

November 12-14, 2018 Institute of High Energy Physics, Beijing, China https://indico.ihep.ac.cn/event/7389 Submissions of abstracts are encouraged.

The International Workshop on the Circular Electron Positron Collider EU EDITION 2019

Oxford, April 15-17, 2019

Next CEPC International Workshop

at Nanjing University, Nov. 8-12, 2021

You are very welcome to participate

https://indico.ihep.ac.cn/event/14938/

October 26-28, 2020 Shanghai Jiao Tong University, Shanghai, China

https://indico.ihep.ac.cn/event/1144

The 2021 International Workshop on the High Energy Circular Electron Positron Collider

Scientific Program C	ommittee				
Franco Bedtschi (Colichar)	INFh/Pea	Xintgarg He	TOURS. St	Michael Karesey Museif (Colichae)	DURUMARS
Media Dana Bierdal	INFL/Costral	Side for chicker	THU	Hard too Koraa	CEDN
Arton Boomsalks	PIN?	Stien In	NIU	Anatoly Sizorin	JAR
Dan de Homolate	(http://	Ertic Karfate	CMAN /	Younguk Sohn	ROSINGH
Shikma Gresslar (Co-chair)	Wesmann	Elii Kaso	HES	Makeco Tabiyana	KCE
Orishong Cap	PKL	Weidong Li	# IDP	Toshinobu Jimo	KCK.
Lour Guinne ses da Costa	IHEP	Jimmi Liu	USTC	Averandre Vien	INFINITIAN
Nathanial Crais	COSE	zhan Hu	U Minneszta	Janchin Weng	THE!
Angeles Kous Golfe Xio chard-	LIC ab/Ontry	Michalangalo Mhagano (Colichari)	CERN	onto: Viong	U Cheage
Lis Goo (Co-chair!	II IEP	Draco Mellado	U.W.twatersrand	Mong Wand	SOU UCB
Yuarning Geo	PKL	Carlo Pagari	IN "NAHEand	Xueqing Yan	PKU
Peolo Ciscone li	INFN/Sologna	Roman Poscili	LAL	Heijur, Yerig	SITUTOL
Dirittopie Orojeen	DESY.	Jan wing Qan	UMichigan	-rank //immaninanin	CERN

谢谢大家的关注和支持!

The 2021 Workshop on CEPC Detector & MDI Mechanical Design IHEP Dongguan Campus, October 22-23, 2021

10 GeV

Injector

e-

Collider

Ring

100 km

e+

CEPC Accelerator Baseline (CDR)

CEPC

CEPC Accelerator: Yuhui Li

36

CEPC Accelerator Design Improvement

	Higgs	W	Z (3T)	Z (2T)
Number of IPs		2		
Beam energy (GeV)	120	80	4	5.5
Circumference (km)		100		
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.036	
Crossing angle at IP (mrad)		16.5 × 2	2	
Piwinski angle	3.48	7.0	2	3.8
Particles /bunch Ne (1010)	15.0	12.0	8	3.0
Bunch number	242	1524	12000 (10% gap)
Bunch spacing (ns)	680	210	25	
Beam current (mA)	17.4	87.9	40	51.0
Synch. radiation power (MW)	30	30	1	6.5
Bending radius (km)		10.7	•	
Momentum compaction (10 ⁻⁵)		1.11		
β function at IP β_x^* / β_y^* (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001
Emittance x/y (nm)	1.21/0.0024	0.54/0.0016	0.18/0.004	0.18/0.0016
Beam size at IP $\sigma_x/\sigma_y(\mu m)$	20.9/0.06	13.9/0.049	6.0/0.078	6.0/0.04
Beam-beam parameters ξ_x/ξ_y	0.018/0.109	0.013/0.123	0.004/0.06	0.004/0.079
RF voltage V _{RF} (GV)	2.17	0.47	0	.10
RF frequency f_{RF} (MHz)		650		
Harmonic number		216816		an
Natural bunch length σ_{z} (mm)	2.72	20	nes	I9 ¹
Bunch length $\sigma_{\overline{z}}$ (mm)	4.4	line	V	
Damping time $\tau_x/\tau_y/\tau_E$ (ms)	006	e	049.5/84	19.5/425.0
Natural Chrometici	g Ba-	1101	-491/-1161	-513/-1594
Bat a Q CV		363.10/36	5.22	
2010	0.065	0.040	0.	028
y (2 cell)	0.46	0.75	1	.94
Natural energy spread (%)	0.100	0.066	0.038	
Energy spread (%)	0.134	0.098	0.	080
Energy acceptance requirement (%)	1.35	0.90	0	.49
Energy acceptance by RF (%)	2.06	1.47	1	.70
Photon number due to beamstrahlung	0.082	0.050	0.	023
Beamstruhlung lifetime /quantum lifetime [†] (min)	80/80	>400		
Lifetime (hour)	0.43	1.4	4.6	2.5
F (hour glass)	0.80	0.94	0	.99
Luminosity/IP $(10^{34} \text{ cm}^{-2}\text{s}^{-1})$	3	10	17	22

	ttbar	Higgs	W	Z		
Number of Ips		2				
Circumference [km]	100.0					
SR power per beam [MW]		30				
Half crossing angle at IP [mrad]		16.5	5			
Bending radius [km]		10.7				
Energy [GeV]	180	120	80	45.5		
Energy loss per turn [GeV]	9.1	1.8	0.357	0.037		
Piwinski angle	1.21	5.94	6.08	24.68		
Bunch number	35	249	1297	11951		
Bunch population [10^10]	20	14	13.5	14		
Beam current [mA]	3.3	16.7	84.1	803.5		
Momentum compaction [10^-5]	0.71	0.71	1.43	1.43		
Beta functions at IP (bx/by) [m/mm]	1.04/2.7	0.33/1	0.21/1	0.13/0.9		
Emittance (ex/ey) [nm/pm]	1.4/4.7	0.64/1.3	ian	0.27/1.4		
Beam size at IP (sigx/sigy) [um/nm]	39/113	15/2	Jesig.	6/35		
Bunch length (SR/total) [mm]	2.2/2.9	aroveu .	2.5/4.9	2.5/8.7		
Energy spread (SR/total) [%]	221 IM		0.07/0.14	0.04/0.13		
Energy acceptance (DA/RF) [%]	021	1.6/2.2	1.2/2.5	1.3/1.7		
Beam-beam parameters (ksix/ksiy)	0.071/0.1	0.015/0.11	0.012/0.113	0.004/0.127		
RF voltage [GV]	10	2.2	0.7	0.12		
RF frequency [MHz]	650	650	650	650		
HOM power per cavity (5/2/1cell)[kw]	0.4/0.2/0.1	1/0.4/0.2	-/1.8/0.9	-/-/5.8		
Qx/Qy/Qs	0.12/0.22/0.078	0.12/0.22/0.049	0.12/0.22/	0.12/0.22/		
Beam lifetime (bb/bs)[min]	81/23	39/18	60/717	80/182202		
Beam lifetime [min]	18	12.3	55	80		
Hour glass Factor	0.89	0.9	0.9	0.97		
Luminosity per IP[1e34/cm^2/s]	0.5	5.0	16	115		

CEPC SCRF Test Facility

CEPC SCRF test facility (Lab): Beijing Huairou (4500m²)

New SC Lab Design (4500m²)

Crygenic system hall in Jan. 16, 2020

Vacuum furnace (doping & annealing)

Nb/Cu sputtering device Cavity inspection camera and grinder 9-cell cavity pre-tuning machine

Temperature & X-ray

mapping system

Second sound cavity

quench detection system

Helmholtz coil for Vertic cavity vertical test

Vertical test dewars

Horizontal test cryostat

38

CEPC R&D: High Q SCRF Cavities

- Booster 1.3 GHz 9-cell SCRF cavity: Q = 3.4E10 @ 26.5 MV/m (中温退火)
- Collider ring 650 MHz 2-cell SCRF cavity: Q = 6.0E10 @ 22.0 MV/m (掺氮)
- > IHEP研制的超导加速腔性能指标已经达到并超过了CEPC的设计指标 Q = 3 E10

CEPC R&D: High Efficiency Klystrons

- 高效率束调管是CEPC加速器的关键核心技术之一
- 首个束调管样机通过测试,最大输出功率达到 700 kW (CW) 和 800 kW (Pulsed mode),<mark>转换效率达到</mark> ~ <mark>62</mark>%
- 第二个束调管样机已经研制成功,将运送到怀柔先进光源研发与 测试平台 (PAPS)进行测试,<mark>设计效率:~77%</mark>
- 多束流束调管设计已完成, <mark>设计效率:</mark> ~80.5%

第二个束调管组装

HTS SC Magnet (12T)

Full Silicon Tracker Concept

Proposed by Berkeley and Argonne

Drawbacks: higher material density and limited particle identification (dE/dx)

Dual Readout Calorimeter & SCEPCAL

A 3×3 towers ECal-size prototype has been built, waiting for testbeam.

Dual Readout calorimeter in the IDEA design

•

160 scint. fibers 160 Cherenkov fibers Tower: 20 rows \times 16 columns

Combining Crystal ECal and DR Calorimeter by Eno, Lucchini, and Tully et al. (arXiv:2008.00338)

CEPC Accelerator: Plasma Injector

Plasma dechirper exp. at THU

CEPC Accelerator Design Improvement

High luminosities at H and Z factories

- Optimization of parameters, improving dynamic aperture(DA) to include errors and more effects
- New lattice for high luminosity at Higgs
- New RF section layout
- More detailed study of MDI
- Optimization of the booster design and magnets
- A new alternative design of the LINAC injector
- A new plasma injector design
- Injection design
- •
- Accelerator Review Committee (ARC)
 - Recommended by the IAC, established & met in November, 2019
 - $\circ~$ Next ARC meeting will be held in Nov., 2021

CEPC Accelerator Design Improvement

	Higgs	W	Z (3T)	Z (2T)		
Number of IPs		2				
Beam energy (GeV)	120	80	45.5			
Circumference (km)		100	100			
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.036			
Crossing angle at IP (mrad)		16.5 × 2				
Piwinski angle	3.48	7.0	23.8			
Particles /bunch Ne (1010)	15.0	12.0	8.0			
Bunch number	242	1524	12000 (10% gap)			
Bunch spacing (ns)	680	210	25			
Beam current (mA)	17.4	87.9	461.0			
Synch. radiation power (MW)	30	30	16.5			
Bending radius (km)	10.7					
Momentum compaction (10 ⁻⁵)	1.11					
β function at IP β_x^* / β_y^* (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001		
Emittance x/y (nm)	1.21/0.0024	0.54/0.0016	0.18/0.004	0.18/0.0016		
Beam size at IP $\sigma_x/\sigma_y(\mu m)$	20.9/0.06	13.9/0.049	6.0/0.078	6.0/0.04		
Beam-beam parameters ξ_x/ξ_y	0.018/0.109	0.013/0.123	0.004/0.06	0.004/0.079		
RF voltage V _{RF} (GV)	2.17	0.47	0	.10		
RF frequency f_{RF} (MHz)	650					
Harmonic number	216816					
Natural bunch length σ_{z} (mm)	2.72	20	nes	19 .		
Bunch length σ_{z} (mm)	4.4	line				
Damping time $\tau_x/\tau_y/\tau_E$ (ms)	006	e	o49.5/849.5/425.0			
Natural Chrometici	g Ba-	1101	-491/-1161	-513/-1594		
Bat a Q CV		363.10/36	/ 365.22			
2010	0.065	0.040	0.028			
y (2 cell)	0.46	0.75	1.94			
Natural energy spread (%)	0.100	0.066	0.038			
Energy spread (%)	0.134	0.098	0.080			
Energy acceptance requirement (%)	1.35	0.90	0.49			
Energy acceptance by RF (%)	2.06	1.47	1.70			
Photon number due to beamstrahlung	0.082	0.050	0.023			
Beamstruhlung lifetime /quantum lifetime [†] (min)	80/80	>400				
Lifetime (hour)	0.43	1.4	4.6	2.5		
F (hour glass)	0.80	0.94	0	.99		
Luminosity/IP $(10^{34} \text{ cm}^{-2}\text{s}^{-1})$	3	10	17	22		

	ttbar	Higgs	W	Z		
Number of Ips	2					
Circumference [km]	100.0					
SR power per beam [MW]	30					
Half crossing angle at IP [mrad]	16.5					
Bending radius [km]	10.7					
Energy [GeV]	180	120	80	45.5		
Energy loss per turn [GeV]	9.1	1.8	0.357	0.037		
Piwinski angle	1.21	5.94	6.08	24.68		
Bunch number	35	249	1297	11951		
Bunch population [10^10]	20	14	13.5	14		
Beam current [mA]	3.3	16.7	84.1	803.5		
Momentum compaction [10^-5]	0.71	0.71	1.43	1.43		
Beta functions at IP (bx/by) [m/mm]	1.04/2.7	0.33/1	0.21/1	0.13/0.9		
Emittance (ex/ey) [nm/pm]	1.4/4.7	0.64/1.3	ian	0.27/1.4		
Beam size at IP (sigx/sigy) [um/nm]	39/113	15/2	Jesig.	6/35		
Bunch length (SR/total) [mm]	2.2/2.9	aroveu .	2.5/4.9	2.5/8.7		
Energy spread (SR/total) [%]	221 IM		0.07/0.14	0.04/0.13		
Energy acceptance (DA/RF) [%]	021	1.6/2.2	1.2/2.5	1.3/1.7		
Beam-beam parameters (ksix/ksiy)	0.071/0.1	0.015/0.11	0.012/0.113	0.004/0.127		
RF voltage [GV]	10	2.2	0.7	0.12		
RF frequency [MHz]	650	650	650	650		
HOM power per cavity (5/2/1cell)[kw]	0.4/0.2/0.1	1/0.4/0.2	-/1.8/0.9	-/-/5.8		
Qx/Qy/Qs	0.12/0.22/0.078	0.12/0.22/0.049	0.12/0.22/	0.12/0.22/		
Beam lifetime (bb/bs)[min]	81/23	39/18	60/717	80/182202		
Beam lifetime [min]	18	12.3	55	80		
Hour glass Factor	0.89	0.9	0.9	0.97		
Luminosity per IP[1e34/cm^2/s]	0.5	5.0	16	115		

- CEPC 650MHz 800kW klystron: high efficiency (80%), fabrication will be completed in 2021, test in 2022 \succ
- CEPC 650MHz SC accelerator system (cavities and cryomodules): to complete test cryomodule in 2022 \succ
- \succ
- Luci to complete short Luci t \succ
- \succ

- **Collimator: to complete model test in 2022** \geq
- Linac components: to complete key components test in 2022
- Civil engineering design: to complete reference implementation design in 2022 \succ
- Plasma wakefield injector: to complete the electron accelerator test in 2022 \succ
- 18KW@4.5K cryoplant: industrial partner

CEPC R&D: High Q SCRF 650 MHz 1-Cell Cavity

CEPC R&D: 650MHz SCRF Module

国内首个超导腔大功率 高阶模吸收器(5kW)

国内首个可拆卸大功率 高阶模耦合器(1kW)

650MHz主耦合器 (400kW) 世界上最大的耦合器之一

超导腔调谐器

HL-LHC Magnet and HTS SC Magnet

Layout of the HL-LHC Magnets and Contributors

China will provide 12+1 units CCT superconducting magnets for the HL-LHC project

After more than 1 month test and training at 4.2K, both apertures reached the design current ar ultimate current, and the field quality is within the limit.

Applied High Temperature Superconductor Collaboration (AHTSC)

- R&D from Fundamental sciences of superconductivity, advanced HTS superconductors to Magnet & SRF technology.
- Regular meetings every 3 months from Oct. 2016
- ➢ Goal:
- Increasing J_c of iron-based superconductor by 10 times.
- Reducing the cost of HTS conductors to be similar with "NbTi conductor"
- Industrialization of the advanced superconductors, magnets and cavities

2020年国内首个HL-LHC超导磁铁样机(2*2.6T) 运到CERN,通过了测试。目前正在批量试制中。

高能所与国内科研单位紧密合作,开展实 用化高温超导磁铁研制,取得了重要进展。

HTS SC Magnet

Fabrication and test of **IBS solenoid coil at 24T**

https://doi.org/10.1088/1361-6

Letter

45

IOP Publishing

Supercond. Sci. Technol. 32 (2019) 04LT01 (5pp)

First performance test of a 30mm iron-based superconductor single pancake coil under a 24T background field

Dongliang Wang^{1,2,5}, Zhan Zhang^{3,5}, Xianping Zhang^{1,2}, Donghui Jiang⁴, Chiheng Dong¹, He Huang^{1,2}, Wenge Chen⁴, Qingiin Xu^{3,6} and Yanwei Ma

Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy Sciences, Beijing 100190, People's Republic of China University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China ³Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic China

⁴ High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, People's Republic China

HTS SC Magnet (16T)

LPF3 16T二极磁体研制: Nb₃Sn 12~13 T + HTS 3~4 T

CEPC R&D: Magnets etc.

> Magnets, EM-separators, Vacuum Pipes, ...

