Zhijun Liang (IHEP)

Institute of High Energy Physics Chinese Academy of Sciences

MOST2 vertex detector R & D: Research Goal

- Produce a world class vertex detector prototype
 - Spatial resolution $3 \sim 5 \mu m$ (pixel detector)
 - Radiation hard (>1 MRad)
- Preliminary design of prototype •
 - Three layer, module $\sim 1 \text{ cm} \times 12 \text{ cm}^2$

Typical tracker

Typical module

Resolution

ATLAS/CMS upgrade (~15 µm)

> Alice upgrade (**5~10 µm**)

World leading This project (3~5 µm)

Overview of task2: vertex detector R & D

- Can break down into sub-tasks:
 - CMOS imaging sensor chip R & D

 - Detector assembly
 - Data acquisition system R & D

• Detector layout optimization, Ladder and vertex detector support structure R & D

Full size vertex detector Prototype

Beam test to verify its spatial resolution

MDI interface for vertex detector

- Liquid nitrogen cooling design for cooling was used in SLAC SLD detector
- ILC SID is also considering that

SID vertex detector

SLAC SLD vertex detector in MDI

Layout design

- Long barrel design vs Short Barrel +disk
 - Endcap design is not close yet, still under study
 - Installation of vertex detector with beam pipe needs study

Long Barrel 3D model by Quan

dy e needs study

CLICdp-Note-2014-002

5

Sensor prototyping

- Completed two round of sensor prototyping
- 1st Multi-wafer project chip (Taichupix1)
 - Submitted in June 2019, received in November 2019
- 2nd Multi-wafer project chip(Taichupix2)
 - Submitted in Feb 2020, received in July 2020
 - Major bugs fixed in Taichupix1
 - Radiation hard design (enclosed gate) in pixel analog
 - A full functional pixel array (64×192 pixels)
 - **Periphery** logics
 - Fully integrated logics for the data-driven readout •
 - Fully digital control of the chip configuration •
 - Auxiliary blocks for standalone operation
 - High speed data interface up to 4 Gbps
 - **On-chip bias generation** \bullet
 - Power management with LDOs ullet

Taichupix1 Chip size: 5mm×5mm Pixel size: 25µm×25µm

Taichupix2 Chip size: 5mm×5mm

TaichuPix2 test with ⁹⁰Sr source

- Digital readout (full chip)
- Analog readout (debug mode for one row of pixel)
 - High signal to noise ratio found in analog readout
- More studies are on-going

Analog waveform in beta tests

typical waveform in beta tests

TaichuPix2 test with 90 Sr source (2)

- exposure to ⁹⁰Sr at different threshold (ITHR)
- Finding a cluster for adjacent pixels with a timestamp window of 100 ns
- Mean cluster size around 3 for different ITHR

Hit map of TC2 exposure to ⁹⁰Sr for 400 s

Cluster size distribution

<Mean Cluster size> VS Threshold

Cluster size vs. ITHR of Sector 1

Laser test in last report (coarse scan) • Triggerless mode was used for the laser test \rightarrow full readout chain verified • Measured positions from Taichupix is consistent with expected laser movements

Light spot fitting for laser moving in y-direction with step of 200 μ m

Laser (1064 nm)

TaichuPix-2

Laser test (fine scan)

- Improved laser setup
 - Beam spot focused to few um
- Study pixel internal structure
- Study Uniformity of response

Scan direction

Spatial resolution study with laser

- Spatial resolution is measured with laser scan with X-Y-Z stage.
 - Consistent with expected resolution : pixel size (25µm) divided by $\sqrt{12}$ ~ 7 µm D
 - Plan to lower the threshold, increase charge sharing to reach 5 μm resolution

TaichuPix Spatial resolution with high threshold: $\sigma \sim 7 \mu m$

Alice ALPIDE chip: resolution vs threshold JINST 11 (2016) C11025

11

TaichuPix radiation test

- Completed two round of CMOS sensor prototyping
- Radiation to 30Mrad at BSRF, TaichuPix2 is still functional ullet
- TaichuPix-2 irradiated at BSRF 1W2B beamline (6 keV X-ray) ullet
 - Dose rate ~17.63 krad/min for the first 2.5 Mrad
 - then 211.56 krad/min for 51 min, then 1.24 Mrad/min for 15 min
 - Dose rates were calibrated with an ion chamber before test

Radiation test at BSRF for 2nd MPW chip

Full-size TaichuPix3 design (engineering run) Full-size Taichu pixel design ready, passed review, ready for submission 1024×512 Pixel array (25μm×25μm pixel size), Process: Towerjazz 180nm ulletFE-I3 like Periphery digital readout, high speed data interface ightarrowTime stamp precision: 25ns (modified process) -50ns (standard process)

- Pixel array 1024*512
- Periphery
- DAC & Bias generation
- Data interface
- LDO (test blocks)
- Chip interconnection features
- Scribe-able top power
 - connection
 - features

- Process improved for better power supply: 6 Metals to 7M with 1 Thick Top
 - Will help for the full size chip power integrity
- 25 µm×25 µm pixel, unique design (S1)
- A 1024×512 Pixel array

Periphery logics

- Unique design for FE-I3 like readout
- High speed data interface
 - Optimized for trigger mode and low power: optional low power LVDS port added
- On-chip bias generation
 - Bugs detected & solved from the Tcpx2 test
- IO placement in the final ladder manner
 - chip interconnection bus features included for ladder
- LDO will be independently tested as a test block due to the remain issues

13

Detector module (ladder) R & D

- Completed preliminary version of detector module (ladder) design
 - Detector module (ladder)= 10 sensors + support structure+ flexible PCB+ control board
 - Sensors will be glued and wire bonded to the flexible PCB
 - Flexible PCB will be supported by carbon fiber support structure
 - Signal, clock, control, power, ground will be handled by control board through flexible PCB

3D model of the ladder

Design of Flexible PCB prototype

- Double side flex + rigid PCB for 10 chips(15.31 X 25.6mm)
 - 17.31mm X 257mm for flex part.
- Copper thickness: 0.5oz (18um)
- Signal width: 3mil/3mil, power supply width:20~60mil

Profile of flexible PCB

	Achieved	Op
	Thickness (µm)	go
Polyimide	25	
Adhesive	28	
Plating Cu	17.8	
kapton	50	
Plating Cu	17.8	
Adhesive	28	
Polyimide	25	

14

New idea in Taichu pixel design – inter-chip connection

- Inter-chip connection for slow controls through wire bonding
- \rightarrow Save some metal for PCB (reduce material budget)

ough wire bonding rial budget)

Vertex Detector Prototype R & D Completed preliminary version of detector engineering design

- - 3 double layer barrel design
 - 7 modules in inner layer, 22 modules in 2nd layer, 32 modules in outer layer
- Physics simulation to optimize vertex detector layout design.
 - The length of inner layer pixel should be the same as other two layers
 - Inner pixel radium should be as close to beam pipe as possible •

Impact parameter resolution Vs beam pipe radius

Tooling Design for Barrels Assembling

- 3 sets of tooling for 3 layer of barrel assembling.
- Tooling and special tool for inner and middle barrels assembling.

bling. lle barrels assembling.

Gantry for vertex detector prototype assembly 3~5um good position resolution require high assembly precision Cooperate with domestic company on R & D Gantry automatic module assembly. Pattern recognition with high resolution camera

- •
- Automatic chip pick-up and positioning •
- Automatic Glue dispending •

Gantry system

automatic glue dispending **Pattern recognition** 〒 昭 昭 🥴 🭳 🔍 🙁 28% ▼ 未处理同僚: K N

Carbon fiber Support structure of the ladder Fabricated first support structure prototype of the ladder (IHEP designed)

- 4 layer of carbon fiber, 0.12mm thick
- ~3 time thinner than conventional carbon fiber
- More details from Jinyu's talk

4

5

6

19

Cooling design

- Air cooling is baseline design for CEPC vertex detector
- Sensor Power dissipation:
 - Taichupix : $\leq 100 \text{ mW/cm}^2$. (trigger mode) ; CEPC final goal : $\leq 50 \text{ mW/cm}^2$
- Cooling simulations of a single complete ladder
 - Testbench setup has been designed and built for air cooling , vibration tests

The EMMI (Emission Microscope) For Taichupix2

Power consumption

Cooling design

- Air cooling is baseline design for CEPC vertex detector
- Sensor Power dissipation:
 - Taichupix : $\leq 100 \text{ mW/cm}^2$. (trigger mode)
 - CEPC final goal : $\leq 50 \text{ mW/cm}^2$
- Cooling simulations of a single complete ladder with detailed FPC were done. • Need 2 m/s air flow to cool down the ladder to 30 °C
- - Testbench setup has been designed for air cooling , vibration ...

Max temperature of ladder ($^{\circ}\mathrm{C}$) (air temperatur						
Power Dissipation (mW/cm2)	Air speed (m/s)	5	4	3		
100		19.6	21.8	25.0	30	
150		26.9	30.1	35	43	
200		34.2	38.6	45.1	56	

Test setup for ladder cooling Use compressed air for cooling

Air Cooling test

- Test bench setup for air-cooling
- **Vibration follows Gaussian distribution**
 - Maximum displacement can above 10µm ullet
 - **Core of Gaussian is still under control** \bullet

-0.022

Test setup prototype for ladder cooling Use compressed air for cooling (See more from Jinyu's talk)

Displacement

Discussion

- Radiation:
 - From preliminary study, the chips can survive 30Mrad TID radiation
- Cooling:
- From simulation + experimental measurement •
- ullet
- Need to discuss the thermal load of beam pipe
- Discuss the possibility of SLC-like Liquid nitrogen cooling design ullet
- Mechanics:
- Vertex Endcap support structure design
- Installation of vertex detector, together with Beampipe •

We may be able to cool down vertex detector better than $30 \,^{\circ}\text{C}$ (150 mW/cm² power consumption)

Plan for test beam

- Expect to perform beam test in DESY(3 7GeV electron beams)
 - IHEP test beam facility as backup plan (a few hundreds MeV 2.5GeV electrons)
- Enclosure for detector with air cooling is developed for beam test
 - Beam is shooting at one sectors of vertex detectors \bullet

Install one sector of ladder in vertex detector

Plan for test beam (2)

New opportunity in Beijing Synchrotron Radiation Facility (BSRF)

- High energy electron (0.2~2.5 GeV) leakage from BEPC •
- High trigger rate (up to 50Hz/cm²)
- Need to filter low energy particles for vertex test beam

	DESY	IHEP E3 beam	
Momentum	1-6 GeV	<1 GeV secondary beam	
Particles	electrons	Protons/ Pions/ /Electrons	
Trigger rate	4000 Hz/cm ²	0.6 Hz/cm ²	

Energy spectrum measured by calorimeter (by Yong Liu)

Energy deposition in the BGO Calorimeter

Summary

- Sensor:
 - Completed two round of CMOS sensor prototyping, finalized full-size sensor design
 - New readout architecture to reduce pixel size to $25 \mu m^* 24 \mu m$
- → Reach midterm Assessment index (实现中期指标)
 - First irradiation test up to 30 Mrad >1Mrad total ionization dose radiation
- Mechanics:
 - Build the support structure prototype for ladder prototype
 - Finalize the design for full vertex detector

	Mid-term	Final goal	Status
Spatial resolution	Pixel size less than 25*25 µm	Spatial resolution 3~5 µm	Reach mid-term goal
Radiation hardness	> 1MRad in simulation	>1MRad In radiation test	First test up to 30 Mrad. Chip is still functional

yping, finalized full-size sensor design e to 25µm*24µm

Backup: International collaboration

- **IFAE(Spain)**: very active in CMOS Sensor design and testing
- Liverpool (UK): Tracker mechanical design,
- Oxford(UK): CMOS sensor design validation, thermal design
- RAL(UK): Pixel module design
- Queen Mary(UK): module mechanical design (Zero mass concept)
- Strasbourg (FR): CMOS sensor design, Tracker mechanical design
- University of Massachusetts (US): Tracker mechanical design, thermal design

In 2019, we have one engineer visited Oxford and Liverpool for 4 weeks, learned a lots about silicon.

Main specs of the full size chip for high rate vertex detector

- Bunch spacing
 - CEPC Z+Higgs (240GeV): 680ns;
 - WW threshold scan (160GeV): 210ns;
 - CEPC Z pole runing (90GeV) Z: 25ns ullet
- High Hit density
 - 2.5hits/bunch/cm² for Higgs/WW runs
 - 0.2hits/bunch/cm² for Z pole running ullet

For Vertex	Specs	For High rate Vertex	Specs	For Pro
Pixel pitch	<25µm	Hit rate	120MHz/chip	Pix
TID	>1Mrad	Date rate	3.84Gbps triggerless ~110Mbps trigger	Po De
		Dead time	<500ns for 98% efficiency	Ch

28

New proposed readout architecture in TaichuPix

- New readout architecture ullet
- \rightarrow reduce power consumption and reduce pixel size **CEPC** readout time requirement: <500ns deadtime @40MHZ(Z pole)
- ullet
- - Priority based data driven readout; time stamp at EOC Dead time: 2 CLK for each pixel (50ns @40MHz CLK)
- Two digital pixel designs: FEI3-like and ALPIDE-like design **2-level FIFO architecture**
 - L1: column level, to de-randomize injecting charge
 - L2: chip level, to match in/out data rate between core and interface
- Trigger readout:
 - Coincidence by time stamp, matched event read out

Taichu-1 Column-drain readout

Pixel Analog design

- **CEPC time stamping precision requirement:**
- 25-100ns, better to time stamping each collision at Z pole
- **Taichu-1 pixel analog design:**
- 50ns~150ns (based one standard CMOS MAPS tech.)
- **Consider to use depleted CMOS MAPS** \bullet

Standard : no full depletion

Modified : full depletion, faster charge collection

Backup: Ladder Mechanical testing

Detailed designs of platform and tooling for different test.

Static (different support and load cases)

>Vibration and cooling + pressed air (different cases): >Measure Deformation, temperature, air speed, flow rate, etc. Soal: Measure vibration to 1 µm level with air cooling with laser interferometer

Static mechanical test

Vibration and cooling test

Data acquisition system

- Preliminary design of data acquisition system(DAQ) •
 - Ladders are reader by readout boards ullet
 - All readout boards connected to computer through a switch ullet
 - User interface developed ullet
 - DAQ tested in five modules equipped with MIMOSA sensors \bullet

DAQ Tests with 5 MIMOSA chips

DAQ system data display **Tested with MIMOSA modules**

Main specs of the full size chip for high rate vertex detector

- Bunch spacing
 - CEPC Z+Higgs (240GeV): 680ns;
 - WW threshold scan (160GeV): 210ns;
 - CEPC Z pole runing (90GeV) Z: 25ns ullet
- High Hit density
 - 2.5hits/bunch/cm² for Higgs/WW runs
 - 0.2hits/bunch/cm² for Z pole running ullet

For Vertex	Specs	For High rate Vertex	Specs	For Pro
Pixel pitch	<25µm	Hit rate	120MHz/chip	Pix
TID	>1Mrad	Date rate	3.84Gbps triggerless ~110Mbps trigger	Po De
		Dead time	<500ns for 98% efficiency	Ch

33

backup:

Good chip function and noise performance proved to 2.5 Mrad,

Backup:

shifted to see noise floor in S-curves, so the threshold level was set higher.

The threshold was initially set at the minimum level. After ~1 Mrad, the pedestal level was

Task 2: Physics goal

- Higgs precision measurement
 - $H \rightarrow bb$ precise vertex reconstruction ullet
 - $H \rightarrow \mu \mu$ (precise momentum measurement) ullet

Need tracking detector with high spatial resolution, low material

Main technology

- High spatial resolution technology \rightarrow pixel detector ullet
- Low-mass detector technology ullet
- Radiation resistance technology ullet

Electrical test Electrical performance verified by injecting an external charge into pixel front-end

Sector	Pixel front-end	Pixel digital	
Sector 1	Same as S1 of TC1, reference design	FEI3-like	
Sector 2	M6 with guard-ring, PMOS in independent nwell	FEI3-like	
Sector 3	M6 in enclosed layout, PMOS in independent nwell	FEI3-like	
Sector 4	Increasing M3, M4, M9. M6 in enclosed layout, PMOS in independent nwell	FEI3-like	
Sector 5	Same FE as S2, with smaller sensor	ALPIDE-like	
Sector 6	Same FE as S1	ALPIDE-like	

Electrical test (2)

- Four sectors with FEI3-like digital logic works well
- and show similar noise performance for 4 different pixel design.
- S1 sector design shows the minimum threshold.

rks well different pixel design. hold.

					V
0	relimin	Mean (mV)	Threshold <u>rms</u> (mV)	Random noise (mV)	Total ec noise
1	S1	248.3	46.3	27.3	5
	S2	272.9	50.7	25.0	5
	S3	358.0	54.3	22.7	5
	S4	383.1	52.6	24.6	5

X ray tests and beta source tests

- Analog output waveform agreed with the simulation

Beta source Tests

CMOS MONOLITHIC PIXEL SENSOR

- CMOS Monolithic pixel (CIS process) is ideal for CEPC application
 - low material budget (can be thin down to 50μm)
 - This project use TowerJazz CIS 180nm technology
- Hybrid pixel technology developed by ATLAS and CMS
 - Thickness of sensor is about 200~300 μm
 - Need to bump bonding with readout ASIC (ASIC thickness is about $300 \mu m$)
 - Material budget about silicon sensor is about 10 times larger than CIS process

Monolithic Pixels

TaichuPix radiation test (2)

- Good chip function and noise performance proved to 2.5 Mrad,
- no deterioration observed when TID up to 30 Mrad.

proved to 2.5 Mrad, 30 Mrad.

TaichuPix radiation test (3)

No deterioration observed when TID up to 30 Mrad. •

Simulations on DAC of Taichu3

- TC2 includes two current DACs to provide ITHR
 - One 8-bit DAC same as in TC2
 - An optional 6-bit DAC (design LSB of 0.1nA, range of 0-8 nA)
 - Simulation results indicate the parasitic resistance increases the DAC output current, and the understood well.

Name	Input code	Output with Simu-sch.	Output with Parasitic R @extraction rule 1	Output with Parasitic R @extraction rule 2
IBIAS	1011	463.9 nA	551.2 nA	481.8 nA
ITHR_8bit	101100	4.7 nA	9.3 nA	5.5 nA
ITHR_6bit	100011	4.5 nA	7.5 nA	
IDB	11000	1.02 uA	1.12 uA	1.05 uA

parasitic extraction rule effects the value of R and then the simulation result. Have not been

Achievement Presentation and Assessment Methods

	考核指标2			考核指标2			
指标名称	立时 有 指 状态	中期指标值 /状态 ³	完 时 信/	考核方式(方 法)及评价手 段 ⁴			
硅径迹探 测器原型 分辨率	无	研制出小型 传感器芯 片,像素单 元尺寸小于 或等于25 微米 ×25 微米。	3-5 微米	同行专家评 (通、过度、资本 (通、支持)。 (通、支持)。 (通、支持)。 (通、支持)。 (通、支持)。 (通、支持)。 (通、支持)。 (通、支持)。 (1)。 (1)。 (1)。 (1)。 (1)。 (1)。 (1)。 (1			
所设计的 抗辐器能 承受的总 剂量	无	完成传感器 的初步设 计,通过仿 真初步验证 其抗辐照性 能	1 MRad	同行专家评 审(提供传 感器的设计 与测试报告 供专家评审)	Final Final		

Silicon Detector

Assessment index

Spatial resolution

m: produce 25*25 µm pixel size chip 3-5 µm resolution in Beam test

Radiation hardness

erm: verified by TCAD simulation : Total ionization dose >1 Mrad

Overall plan of task2: Vertex detector R & D

• 3rd Year:

- 3rd CMOS sensor fabricated and tested
- \rightarrow skipped , since 2nd MPW chip is working well
- Final support structure engineering design completed
- Fabricated support structure prototype for ladders
- 4th Year (2021.7 –2022.6) :
- Competed R & D full-size TaichuPix sensor
- Manufactured the support structure for whole detected
- Assembling and installing the detector prototype
- Completed DAQ system for whole detector

5th Year:

- Completed detector assembly and commissioning
- Test beam and data analysis
- Finish assembling of prototype

CMOS Sensor chip R & D

- The existing CMOS monolithic pixel sensors can't fully satisfy the requirement
- Major Challenges for the CMOS sensor •
 - Small pixel size -> high resolution (3-5 μm)

 - Radiation tolerance (per year): 1 MRad

	ALPIDE	ATLAS-MAPS (MONOPIX / MALTA)	MIMOSA
Pixel size	\checkmark	Χ	\checkmark
Readout Speed	Χ	\checkmark	Χ
TID	X (?)	\checkmark	\checkmark

• High readout speed (<500ns deadtime @40MHz at Z pole) -> for CEPC Z pole high lumi

Threshold tuning for TaichuPix2

- For TC2, threshold current ITHR can not be set less than 5.4 nA
 - unexpected from design (nominal design value 4.5 nA). •
 - Connected the internal ITHR to an IO-pad through FIB (Focused Ion beam) technology to provide an external ITHR voltage.
- Applying an external voltage @ Pad-A to tune the ITHR current
- ITHR can not as low as expected (min. \sim 7.8 nA). Need more investigation. 0 TC2 chip with a Al connection by FIB

DAC design in the full scale chip TC3

- Original design suffers from the leakage current and the output range is too large
 - LSB: 0.1nA •
 - Aiming at: 2~4nA
- Modified design tuned the output range specifically for small current:
 - Range: 0~8nA •

DAC was also modified by adding a optional 6-bit current DAC for the low current biasing