Silicon Tracker for CEPC

Yiming Li 李一鸣 Institute of High Energy Physics On behalf of the CEPC Silicon Tracker WG

CEPC Detector & MDI Mechanical Design 22 Oct 2021

Si Tracker for CEPC

- CEPC requires a high-resolution and lowmaterial tracking system
- Large area of silicon!
 - > 70 m² for baseline design: Silicon + TPC
 - ~ 140 m² for Full Silicon Tracker

CMOS is the promising technology for cost effectiveness and performance

CMOS Si tracker collaborators

Australia

• University of Adelaide

China

- Harbin Institute of Technology
- Institute of High Energy Physics, CAS
- Northwestern Polytechnical University
- Shandong University
- T. D. Lee Institute Shanghai Jiao Tong University
- University of Science and Technology of China
- University of South China
- Zhejiang University

Germany

• Karlsruhe Institute für Technologie

Italy

- INFN Sezione di Milano, Università degli Studi di Milano e Università degli Studi dell'Insubria
- INFN Sezione die Pisa e Università di Pisa
- INFN Sezione di Torino e Università degli Studi di Torino
- UK UK
 - Lancaster University
 - Queen Mary University of London
 - STFC Daresbury Laboratory
 - STFC Rutherford Appleton Laboratory
 - University of Bristol
 - University of Edinburg
 - University of Liverpool
 - University of Oxford
 - University of Sheffield
 - University of Warwick

HV-CMOS sensors

- CMOS
 - Low material budget, low power
- Depleted sensor
 - Fast charge collection
- Readout fully integrated
- High voltage monolithic active pixel sensors: deep n-well isolates electronics, allowing bias >= 50V
 - Depletion depth of 30~170 um

HV-MAPS NMOS PMOS ΗV n-well p-well Deep n-well d zone P-type substrate

Sensor candidate: ATLASPix3

ATLASPix3 features

- TSI 180nm HV process on 200 Ωcm substrate
- Pixel size $50 \times 150 \ \mu m^2$
- 132 columns × 372 rows (20.2 × 21 mm² chip)
- Triggerless/triggered readout possible
- Binary with ToT information
- Designed at KIT

Time-over-Threshold (ToT) as proxy of signal amplitude

ATLASPix3 tests

Wire-bonded test boards distributed to multiple institutes

Tests performed at various locations, with support from KIT

ATLASPix3 tests

IV scan confirms sensor electrical characteristics: breakdown up to 60V

ATLASPix3 tests

Trimming: tuning threshold for each pixel to gain homogenous response across sensor array

 ToT: a measure of deposited energy; calibration needed due to non-linearity

ATLASPix3 tests with radioactive sources

ATLASPix3 responses to cosmic ray or various radioactive sources are observed at different sites

Column

Edinburgh/Bristol/Lancaster

Further sensor development

- ATLASPix3.1
 - 12 wafers delivered in 02/2021
 - Reduced capacitance (250 fF \rightarrow 130 fF)
 - Modified guard ring design

- Smaller pixel size in $r\phi$: 50 µm \rightarrow 25 µm
- Low-power amplifiers and comparators
- Daisy chain of readout reduces number of data links in case of low occupancy

New sensor design

- ARCADIA
 - 110 nm CMOS CIS technology at Lfoundry with high resistivity bulk
 - Main Demonstrator Chip (MD1): Pixel size 25 μ m × 25 μ m, reticle size 2.6 × 1.3 cm²
 - First SPW by 11/2020, MD1 chip under characterization, 2nd run mid-2021
 - Triggerless binary readout
 - Design and fabrication towards CEPC since end 2019
- Other possible foundry
 - HLMC: 55nm HV-CMOS from Chinese foundry, aiming at MPW early 2022

Readout system

- GEneric Configuration and COntrol System
 - Versatile system for different applications designed at KIT
 - LFP-FMC connection to Nexys FPGA, PCIe x16 to DUT, allows extensive tests
 - Carrier board for ATLASPix3 single-chip
- YARR (a self-contained DAQ) is possible for ATLASPix3 with adaptation

Module concept

- Readout unit based on 4 chips \rightarrow "Quad module"
- Flex designed by INFN Milan
 - Shared service by common power connections and configuration lines
 - Avoid complication with stitching

U2

PCB under verification

Quad Module

- First module assembled
- Adapter card for connection to GECCO system + commercial data pigtail + custom power pigtail
- Test on the quad ongoing

Stave demonstrator

- A stavelet demonstrator with 12 quad modules under development
 - Aggregation of data + optical conversion at end-of-stave; serial powering
 - Foreseen to be populated with ATLASPIX3

Thermal simulation

- ATLASPix3 power consumption 150 mW/cm² \rightarrow 2.4 W/module
- This means ~0.5kW for half stave in layer 1, total FE ~100kW
- CO₂ cooling (or water cooling)

Mechanical design

- CDR baseline design: 2 SIT layers
 - Stave concept: truss structure with cold plate

Similar to staves of ALICE Outer Barrel (0.8% X₀)

SET

TPC

SIT

VTY

/cosθ|=0.923

os01=0.969

|cosθ|=0.993

OT:

Mechanics R&D

- R&D ongoing for the system design
 - Long barrels vs. Endcaps?
 - Novel materials like SiC?
 - Assuming ATLASPix3 power consumption, air cooling might suffice but should consider liquid cooling as an option

• ...

Summary

- Development ongoing for CMOS based CEPC silicon tracker
 - Tests and prototyping with ATLASPix3 sensors, optimization for CEPC ongoing
 - Readout system for single-chip enables tests at various institutes
 - Quad module assembly and test progressing
 - System design and preparation of stavelet under way