Mechanical design progress of Time projection Chamber Detector for CEPC

Huirong Qi Jian Zhang, Zhiyang Yuan, Yue Chang, Liwen Yu Institute of High Energy Physics, CAS 22, October, 2021

Outline

- Physics motivation
- Mechanical design of TPC prototype
- Some consideration of TPC for CEPC
- Summary

Physics Motivation

Baseline concept in CEPC CDR

♦ VERTEX: flavour tag, IP resolution (H → bb, cc $\tau\tau$) ~1/5 r_{beampipe}, 1/30 pixel size, ~1/10 resolution (ILC vs LHC

$$\sigma_{IP} = 5 \oplus \frac{10}{p \sin^{3/2} \theta} (\mu m)$$

★ TRACKING: recoil mass to Higgs (e+e- → ZH → llX) ~1/6 material, ~1/10 resolution (ILC vs LHC); B = 3.5 - 5T

 $\sigma(1/p) = 2 \times 10^{-5} (\text{GeV}^{-1})$

✤ CALORIMETRY: particle flow, di-jet mass resolution 1000x granularity, ~1/2 resolution (ILC vs LHC); detector coverage down to very low angle

$$\sigma_E / E = 0.3 / \sqrt{E(\text{GeV})}$$

CEPC/ ILD/ ALICE/ RHIC-STAR

- Large high-field solenoid and yoke
- Time Projection Chamber as a transparent central tracker
- Highly granular ECAL and HCAL optimized for particle flow
- Silicon envelope and inner tracker + vertex detector
- Forward calorimeter system

TPC concept

Operating principle of TPC

electric field and magnetic field are applied in parallel in the TPC

z component is obtained from drift time \Rightarrow <u>3-dimensional (x, y, z) information</u>

TPC requirements for CEPC

TPC detector concept:

- Under 3 Tesla magnetic field (Momentum resolution: ~10⁻⁴/GeV/c with TPC standalone)
- Large number of 3D space points(~220 along the diameter)
- dE/dx resolution: <5%</p>
- ~100 μm position resolution in rφ
 - ~60µm for zero drift, <100µm overall
 - Systematics precision (<20µm internal)
- **TPC material budget**
 - <1X₀ including outer field cage
- Tracker efficiency: >97% for pT>1GeV
- **α** 2-hit resolution in rφ : ~2mm
- □ Module design: ~200mm×170mm
- Minimizes dead space between the modules: 1-2mm

TPC detector endplate concept

Some references ALICE TPC (operation) LCTPC collaboration R&D:

- **As the key detector reference**
- Phase#0: Small prototype
- Phase#1: Large prototype I
- Phase#2: Large prototype II
- Phase#3: Full size detector
- •••••
- Technology collaboration
 - High voltage
 - Low voltage
 - Support layout
 - Gas system
 - **Cooling system**
 - **D** Electronic system

•••••

Update results-track reconstruction

两种读出结果事例显示(LCTPC)

Update results-dE/dx

- Transformed to dE/dx resolution extrapolated to ILD
- GridPix, beam test at ELSA test beam @Uni Bonn
- 3.5 % by method 1: electron counting per 20-pixel intervals, 90 % truncated sum
- 3.4 % by method 2: cluster counting, by applying a weight w_i to every recorded electron, depending on the distance d_i to its sucessor; w_i extracted from simulation
- 3.26 % combined (numbers revised since publication of proceedings)

https://arxiv.org/abs/1902.01987

Beam test results@5GeV/1T/Pad TPC Jochen@ILD meeting

- dE/dx resolution extrapolated to ILD
- Pad-based systems, beam test @DESY II test beam facility:
 - 4.7 % (GEMs) https://arxiv.org/abs/2006.08562, paper in preparation
 - 4.6 % (GEMs) https://arxiv.org/abs/1801.04499
 - 5.0 % (Micromegas) https://agenda.linearcollider.org/event/7826/contributions/41602/

 $\mu' = \frac{1}{N_{\text{hits}}} \sum_{i=0}^{N_{\text{hits}}} w(d_i) d_i,$

Update R&D at IHEP

- Improved dE/dx by cluster counting
- Improved measurement for the low angle tracks
- Improved double track separation
- Much reduced hodoscope effect
 - Near to the endplate
 - Decreased the spatial resolution
- Lower occupancy in the high rate environments
- Fully digital readout

 Mechanical design of TPC prototype (training)

TPC detector prototype

- Main parameters
 - □ Drift length: ~500mm, Active area: 200mm²
 - □ Integrated 266nm laser beam with MPGD as the readout

激光光路设计

TPC Prototype sketch

- Main parameters
 - □ **Same** test parameters in CEPC
 - Drift field=200V/cm
 - Relative gain: ≥2000
 - Readout pad(anode) is designed to 0V (Ground)
 - TPC detector system: Fieldcage+ Pads readout
 - Working mixture gas:
 - \Box Ar/CF₄/iC₄H₁₀=95/3/2
 - □ Same purity
 - Specific prototype parameters
 - Drift length: ~500mm
 - Active area: 200mm²
 - Integrated 266nm laser beam
 - MPGD detector as the readout
 - TPC cathode: -10kV
 - Readout Pads: 1280 channels

TPC prototype

- 12 -

Laser map in X-Y direction

Laser map along drift length

Fieldcage

- GEM detector as the endplate with 200mm²
- Cylindrical flexible circuit board with 0.15mm thickness
- □ 500mm drift length with 20000V high voltage
- □ Integration of the 266nm UV laser tracks in the chamber

Status of TPC prototype

- Detector
 prototype was
 done and
 successfully
 operated
- **Commissionin**

g: Huirong Qi, Zhiyang Yuan, Yiming Cai, Yue Chang, Jiang Zhang, Yulan Li, Zhi Deng

 Data taking and more analysis on going

TPC prototype in the lab

Laser tracks in chamber@T2K gas

- □ Same of working gas@T2K, same of high voltage, same of test conditions
- □ Different of GEMs@ 320V
- **Triple GEMs to double GEMs**
- No discharge

Some consideration of TPC technology for CEPC (planning)

Two readout endplate options

Pad TPC and Pixel TPC

Pad TPC for collider

- Active area: 2×10m²
- One option for endplate readout
 - GEM or Micromegas
 - $-1 \times 6 \text{ mm}^2 \text{ pads}$
 - 106 Pads
 - 84 modules
 - Module size: 200×170mm²
 - Readout: Super ALTRO
 - CO₂ cooling

Fo Bu Gr 244

Pixel TPC for collider

track of high energetic particle

For Collider @cost: But to readout the TPC with GridPixes:

→100-120 chips/module 240 modules/endcap (10 m²) →50k-60k GridPixes

 $\rightarrow 10^9$ pixel pads

Benefits of Pixel readout:

Lower occupancy

- $\rightarrow 300~k$ Hits/s at small radii.
- \rightarrow This gives < 12 single pixels hit/s.
- \rightarrow With a read out speed of 0.1 msec (that

matches a 10 kHz Z rate)

- \rightarrow the occupancy is less than 0.0012
- Improved dE/dx

 \rightarrow primary e- counting

- Smaller pads/pixels could result in better resolution!
- □ Gain <2000
- Low IBF*Gain<2</p>
- CO_2 cooling

Number of modules mounted on the 2 endplates (2 x 84 PCB) :

- PCB1 : 2 x 12
- PCB2 : 2 x 18
- PCB3 : 2 x 24
- PCB4 : 2 x 30
- → Size of the modules
- ≈ 300 x 330 mm

1 module = 1 MicroMegas or 4 GEM

Cross sections of the endplate components : 85 x 50 mm (outer ring) 82 x 50 mm (inner ring) 32 x 50 mm (intermediate rings and spokes)

Optimization structure

- The best structure found so far has this characteristics :
 - Support in the median plane
 - Aligned spokes for an easier production and for lower deformation
 - Horizontal spokes reinforced for a gain of deformation, especially in the endplate planes

TPC mechanical detector design

- The time projection chamber(TPC) is inserted into the electromagnetic barrel calorimeter.
- The chamber is fixed to the inner wall of the magnet cryostat at both ends with spokes located in the gap between barrel and end cap calorimeter.
- For installation and removal the TPC can be connected to a temporary support mechanism and decoupled from the spokes. The removal is necessary to allow access to the inner sub detectors.
- The TPC support frame move on rollers running on the girders

TPC mechanical detector design

No conclusion and open questions:

- What are the update physics requirements or technical performance?(对于不断更新的物理性能需求?)
- On the X-Y plan precision and stability, somewhat less than 50/20/10um? Displacement absolute or relative?
 Each direction or in total? (对于技术上性能需求?)
- Commissioning of the interaction and machine studies should be completely independent (对于设计安装和维护 的技术需求?)

Thanks!