

CEPC MDI Study Status

Haoyu SHI

On behalf of the CEPC MDI Study Group

2021.10.22, Dongguan

- Introduction
 - What is MDI? Why MDI Study so important?
 - What are the inputs of current MDI Study?
- Map of MDI Study
 - What belongs to MDI?
- Current Study Status
 - Summary of baseline design
 - Novel design proposal
- Summary & Outlook

Introduction

- MDI stands for "Machine Detector Interface"
 - Interaction Region and beyond
- The design of IR is challenging
 - The design of the components is challenging
 - Superconducting Magnets
 - Cryostat
 - Etc.
 - The overall design is complex
 - Lots of components in limited space
 - Make them all work, take interactions into account
- For CEPC CDR, the interaction region is $\pm 6 \text{ m}$ from the IP
- High Luminosity, low background and error

Introduction – Accelerator Parameters

	CDR Parameters				High Luminosity Parameters			
	Higgs	W	Z (3T)	Z (2T)	tt	Higgs	W	Z
Number of IPs			2			:	2	
Beam energy (GeV)	120	80	45	.5	180	120	80	45.5
Circumference (km)		1	00			10	00	
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.0	36	8.53	1.73	0.34	0.036
Half Crossing angle at IP (mrad)		16	6.5			16	5.5	
Piwinski angle	2.58	7.0	23	.8	1.16	4.87	7.25	24.9
Number of particles/bunch $N_{\rm e}$ (10 10)	15.0	12.0	8.	0	20.1	16.3	15.0	15.2
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25n	s+10%gap)	37 (4.45µs)	214 (0.7us)	1230 (0.27μs)	3816 (86ns)
Beam current (mA)	17.4	87.9	461	1.0	3.5	16.8	88.6	278.8
SR power /beam (MW)	30	30	16	.5	30	30	30	10
Bending radius (km)		10).7		10.7			
Momentum compact (10-5)		1.	11		0.71	0.71	1.43	1.43
β function at IP $\beta_x{}^*$ / $\beta_y{}^*$ (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001	1.04/2.7	0.33/1	0.21/1	0.13/0.9
Emittance e_x/e_y (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016	1.4/0.0047	0.64/0.0013	0.87/0.0017	0.27/0.0014
Beam size at IP s _x /s _y (μm)	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04	39/0.113	15.0/0.036	13/0.042	6.0/0.035
Beam-beam parameters ξ_x/ξ_y	0.031/0.109	0.013/0.106	0.0041/0.056	0.0041/0.072	0.071/0.1	0.015/0.11	0.012/0.113	0.004/0.127
RF voltage V _{RF} (GV)	2.17	0.47	0.1	10	10	2.2	0.7	0.12
RF frequency f $_{\mbox{\tiny RF}}$ (MHz) (harmonic)		650 (2	16816)			650 (2:	16816)	
Natural bunch length σ_z (mm)	2.72	2.98	2.4	12	2.23	2.25	2.7	2.75
Bunch length σ_z (mm)	3.26	5.9	8.	5	2.66	4.42	5.4	9.6
Natural energy spread (%)	0.1	0.066	0.038		0.17	0.19	0.12	0.12
Energy acceptance requirement (%)	1.35	0.4	0.23		2.3	1.6	1.2	1.3
Energy acceptance by RF (%)	2.06	1.47	1.	7	2.6	2.2	2.5	1.7
Lifetime (hour)	0.67	1.4	4.0	2.1	0.3	0.205	0.917	1.34
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1	0.5	5.0	16.0	115.0

2021 Workshop on CEPC Detector & MDI Mechanics, H. Shi

Introduction – Detector Designs

Map of the MDI Study

IP	Feedback
••	I CCUDUCK

BG Simulation

BG Simulation
LumiCal
HOM absorber
Vacuum Chamber
SR Masks
QD0/QF1
Anti-Solenoid
Cryostats
BPMs
Instability&Impendance
Cooling
Shielding
Assembly&Supporting
Alignment
Connecting System
Vacuum pumps
Last Bending Magnet
Collimators
Control

Central Beam Pipe Vertex Detector LumiCal Silicon Tracker TPC Hcal Ecal Solenoid Yoke **Muon Detector** Hall **BG Simulation&Shielding** Software Geometry Alignment&Assembly Electronics Cryogenic **Radiation Protection**

Booster

Detector

2021 Workshop on CEPC Detector 8

 Dedicated to CDR parameters of the accelerator, and the baseline design of the detector.

2021 Workshop on CEPC Detector & MDI Mechanics, H. Shi

Z (2T)

• 28mm Be beam pipe

CDR Parameters(2T for Z)

W

Higgs

lumber of IPs	2						
eam energy (GeV)	120	80	45.5				
ircumference (km)	100						
ynchrotron radiation loss/turn (GeV)	1.73	0.34	0.036				
lalf Crossing angle at IP (mrad)		16.5					
iwinski angle	2.58	7.0	23.8				
lumber of particles/bunch Ne (1010)	15.0	12.0	8.0				
unch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25ns+10%gap)				
eam current (mA)	17.4	87.9	461.0				
R power /beam (MW)	30	30	16.5				
ending radius (km)	10.7						
fomentum compact (10-5)		1.11					
function at IP $\beta_r * / \beta_r *$ (m)	0.36/0.0015	0.36/0.0015	0.2/0.001				
mittance $\varepsilon_c / \varepsilon_c$ (nm)	1.21/0.0031	0.54/0.0016	0.18/0.0016				
eam size at IP σ_t / σ_t (µm)	20.9/0.068	13.9/0.049	6.0/0.04				
eam-beam parameters ξ_a / ξ_p	0.031/0.109	0.013/0.106	0.0041/0.072				
F voltage V _{RF} (GV)	2.17	0.47	0.10				
F frequency f RF (MHz) (harmonic)		650 (216816)					
latural bunch length σ_r (mm)	2.72	2.98	2.42				
unch length of (mm)	3.26	5.9	8.5				
latural energy spread (%)	0.1	0.066	0.038				
nergy acceptance requirement (%)	1.35	0.4	0.23				
nergy acceptance by RF (%)	2.06	1.47	1.7				
ifetime (hour)	0.67	1.4	2.1				
uminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	32.1				

Baseline Detector

The MDI Table

Updateu	Range	Peak field in Coil	Central Field Gradien t	Bending angle	Length	Beam Stay Clear Region	Minimal distance between two aperture	Inner diameter	Outer diameter	Critical Energy(H orizontal)	Critical Energy(Vertical)	SR power(Ho rizontal)	SR Power(Vertical)
L*	0~2.2m				2.2m								
Crossing angle	33mard												
MDI Length	<u>+</u> 6m												
Opening angle	13.6												
QD0		3.2T	136T/m		2m	19.51mm	72.61mm	40mm	53mm	1.3MeV	527keV	639W	292W
QF1		3.8T	110T/m		1.48m	26.85mm	146.2mm	56mm	68mm	1.6MeV	299keV	1568W	74W
Lumical	0.805 ~ 0.855m												
Anti-solenoid before QD0		7.26T			1.1m			120mm	390mm				
Anti-solenoid QD0		2.8T			2m			120mm	390mm				
Anti-solenoid QF1		1.8T			1.48m			120mm	390mm				
Beryllium pipe					<u>+</u> 12cm			28mm					
Last BM upstream	67.66~161.04m			1.1mrad	93.38m					45keV			
First BM downstream	46.06~107.04m			1.54mrad	60.98m					97keV			
Beampipe within QD0					2m			20mm					
Beampipe within QF1					1.48m								
Beampipe between QD0/QF1					0.23m								

The latest beampipe design

Nearly 20 versions tried in since last summer

The latest design

- Sensitive to beampipe design & Inputs
 - Collimators
 - Masks
 - LumiCal
- Not Sensitive to beampipe design
 - RVC
 - Magnets
 - Cryostat

- Sensitive to beampipe design
 - Collimators
 - Masks
 - Lumical
- Not Sensitive to beampipe design
 - RVC
 - Magnets
 - Cryostat

Physical Design & Mechanical Design

ullet

Collimators & Masks

Collimators & Masks are Refer to Haijing's Talk indispensable for BG H. Wang suppressing. RF • 4 sets of horizontal collimators beam bellows Vacuum cavity per ring till now. Stopper 1cm • Upstream beam loss have been reduced to low level. R=10mm Driven 4mm • We are sure to need more. device -2.2m -1.21m Preliminary design of the movable collimator has been • 20mm Support done. • 4 SR Masks per ring till now. • -4.2m/-1.21 per IP. S. Bai S. Bai Ē Location **From IP** Name × 0.015 APTX1 D1I.1897 2139.06 Bend Collimator 0.01 0.005 **APTX2** D1I.1894 2207.63 **APTX3** 1832.52 D10.10 -0.005 -0.0 **APTX4** D10.14 1901.09 -0.015 -0.02 -2 2 0

Z (m)

-0.805m

60

50

40

30

20

10

CEPC

Refer to Suen's Talk

40 -> 20 on Y axis

- LumiCal is necessary to achieve precision luminosity measurement as required for precision Higgs/EW measurement
- The new position of LumiCal has been chosen.
- Detector design and integration into IR

Remote Vacuum Connector(RVC)

Refer to Haijing's Talk

Magnets

Refer to Yingshun's Talk

- QD0s locate at 2.2~4.2m from the IP, while QF1s locate at 4.35~6m from the IP.
- Study and research on key technologies of 0.5m single aperture QD0 short model (NbTi, 136T/m) is in collaboration with KEYE Company.
- Progress:
 - Fabrication of quadrupole coil winding machine, coil heating and curing system has been finished.
 - Fabrication of NbTi Rutherford cable is finished (12 strands).
 - Fabrication of QD0 short model magnet is in progress

Refer to Miaofu & Haijing's Talk

- Cryostat Chambers locates at 1.2~6.0m from the IP. The length is ~4.8m.
- Nontrivial to install and support the magnets and its auxiliary components with sufficient accuracy and stability.

- Thermal Analysis(including impendence)
 - Source
 - HOM Heating
 - Synchrotron Radiation
 - Other Backgrounds(Negligible)
- Detailed Mechanical Design
- Backgrounds Estimation
 - Hotspot Shielding
 - Full Detector Simulation

Refer to Yudong's Talk

- The Power Distribution on Higgs & Z mode has been simulated.
 - The new SR masks has been considered.

距 IP 距离(m m)	形状	内径(mm)	材料	内表面积 (mm ²)	备注	总功率& Higgs (W)	功率密度& Higgs (W/cn ²)	功率分布& Higgs (W)	总功率& Z (W)	功率密度& 2 (W/cn ²)	功率分布& Z (W)	10 10 0 0		, , , , , , , , , , , , , , , , , , ,	Z
0 - 120	圆直管	直径28	Be	10556		6.6	0.06	6.60	47.92	0.45	47.92			MMMm.	
120-205	圆直管	直径28	AI	7477	·			2.71			39.44	2 (fiter			
205-655	圆锥管	直径28过 渡到直径 40	AI	48071	taper:1.7 5	22.2	0.04	17. 44	322.8	0.53	253. 54	2			
655-700	圆直管	直径40	AI	5655				2.05			29.83	0 2	4 6 8 10 Frequency / G	12 14 16 18 20 Az	22
700-780	國直管	直径40	Cu	10052	远程连接 装置预留			2.60			39.05				
780-805	圆面过 渡到跑 道型	水平方向 直径40- 40, 垂直 方向直径 40-30.7	Cu	3124		13.2	0. 03	0. 81	198.2	0. 39	12. 14)	
805-855	跑道型 过渡到 两个圆 面	上游直径 12 下游直径 20	Cu	6932				1. 79			26.93	Loss	Power	Power	Powe
	上游圆	上游直径										factor(V/pc)	@Higgs	@W	@Z
855-1110	τ 部 国 直管	12过渡到 20,下游 直径20	Cu	30906				8.00			120.08	8.69*10-4	0.36 w	1.47 w	5.13w

 Synchrotron radiation should be dealt with high priority at circular machines when designing the interaction region

Revised beam pipe design to achieve

No direct SR photons hitting the central beam pipe except the extreme beam conditions (e.g. beam off orbit due to magnet errors)

 Synchrotron radiation should be dealt with high priority at circular machines when designing the interaction region

Revised beam pipe design to achieve No direct SR photons hitting the central beam pipe except the extreme beam conditions (e.g. beam off orbit due to magnet errors)

Thermal Analysis

Refer to several talks tomorrow

- Pressure drop:
 - Be pipe : 19.8 kPa
 - Al pipe : 19.3 kPa
- TEMP rise:
 - Be pipe : 3.2 °C (between the inlet and the outlet)
 - Transition: 13.3 °C
 - Al pipe : 6.3 °C
- Temperature rise and pressure drop are in a safe range

Mechanical Design

Refer to Haijing's talk

Refer to Songwen's talk

Detailed Beampipe Design

Streamline comparison chart

Background Estimation

- Whole-Ring generation for some BGs
- Multi-turn tracking
 - Using built-in LOSSMAP with one step ahead
 - SR emitting on
 - RF on
- Doing
 - 2 IR per ring
 - Magnet errors
 - No misalignment
 - High-order
 - Integrating to CEPCSW

Detector Impact

• SR Hit Number on Be beam pipe per bunch crossing.

	Higgs	W	Z
Hit Number	~320	~28	<1

• Preliminary results on 1st layer of vertex. Safety factor of 10 applied.

Background	Hit Density($cm^{-2} \cdot BX^{-1}$)			TID(M $rad \cdot yr^{-1}$)			1 MeV equivalent neutron fluence $(n_{eq}{ imes}10^{12}\cdot cm^{-2}\cdot yr^{-1})$		
	Higgs	W	Z	Higgs	W	Z	Higgs	W	Z
Pair production	1.8	1.2	0.4	0.50	2.1	5.6	1.0	3.8	10.6
Beam Gas	0.4	0.4	0.2	0.36	1.3	4.1	1.0	3.6	11.1
Total	2.17	1.6	0.6	0.86	3.4	9.7	2.0	7.4	21.7
Total_oCDR	2.4	2.3	0.25	0.93	2.9	3.4	2.1	5.5	6.2

• Take Mask into Account(Higgs):

Background	Hit Density($cm^{-2}\cdot BX^{-1}$)	$TID(M rad \cdot yr^{-1})$	1 MeV equivalent neutron fluence $(n_{eq}{ imes}10^{12}\cdot cm^{-2}\cdot yr^{-1})$	
Beam Gas	0.4	0.39	1.0	24

Full Detector Simulation(Higgs)

Full Detector Simulation(Higgs)

Pairs	higher than	BGB	at the sam	e level	BTH
Name	Position	Hit/cm ² /BX		Hit/cm ² /s	
VTX	15 mm	~2.3		~3.33e7	
SIT	15 cm	~0.01		~14507	
ТРС	50 cm	~0.005		~7253	
Ecal	200 cm	~1e-4		~145	
Hcal	220 cm	~2e-6		~2.9	

2021 Workshop on CEPC Detector & MDI Mechanics, H. Shi

Accelerator

What MDI Study covers now

	IP Feedback	Not Covered		
	BG Simulation	Doing		
	LumiCal	Doing		
	HOM absorber	No Need		
	Vacuum Chamber	Done		
	SR Masks	Done		
	QD0/QF1	Doing		
	Anti-Solenoid	Doing		
	Cryostats	Doing		
erator	BPMs	Doing		
	Instability&Impendance	Done		
	Cooling	Done		
	Shielding	Doing		
	Assembly&Supporting	Doing		
	Alignment	Doing		
	Connecting System	?		
	Vacuum pumps	Doing		
	Last Bending Magnet	Done		
2024 /40 /22	Collimators	Doing		
2021/10/23	Control	Not Covered		

Red means a part of "specific" MDI Blue means its parameter is relative to MDI

Central Beam Pipe	Done
Vertex Detector	Doing
LumiCal	Doing
Silicon Tracker	Doing
ТРС	Doing
Hcal	Doing
Ecal	Doing
Solenoid	Doing, strength Fixed
Yoke	Doing
Muon Detector	Doing
Hall	?
BG Simulation&Shielding	Doing
Software Geometry	Done, check needed
Alignment&Assembly	Doing
Electronics	?
Cryogenic	?
Radiation Protection	Not Covered
Booster	Not Covered

Detector

27

- Smaller Be inner diameter would benefit vertex
- Preliminary Design has been performed

X direction: 20-35-(2-20)mm; Y direction: 20-20-20mm;

Novel Design - Shrinking to 20mm

- SR would hit Be beam pipe directly in error case
 - SR hitting Be pipe directly in (- 85mm ~ 11.4mm) range, but since instantaneously, heat load is not a problem.
 - SR photons hitting the bellows under the extreme beam conditions, temperature rise ~10C

Region	Material	SR heat load	SR average power density
-85mm ~ 11.4mm	Ве	13.74W	41W/cm ²
-130mm ~ -85mm	Al	6.66W	41.1W/cm ²
-780mm ~ -655m	Al	18.3W	40.7W/cm ²

Novel Design - Shrinking to 20mm

- SR would hit Be beam pipe directly in error case
 - SR hitting Be pipe directly in (- 85mm ~ 11.4mm) range, but since instantaneously, heat load is not a problem.
 - SR photons hitting the bellows under the extreme beam conditions, temperature rise ~10C
 - Several assumptions were taken here:
 - Extreme condition, eg, if a magnet power is lost, a large distortion will appear immediately for the whole ring orbit. The beam will be lost when exceeded.
 - In extreme cases ~ at least 10 times per day. The beam will be stopped within 0.5ms when abnormal.
 - The background of the detector should not be considered under abnormal conditions.
 - The beam orbit deviation will not affect detector operation, since the high background part will be removed when data analysis is carried out.

Novel Design - Shrinking to 20mm

- SR would hit Be beam pipe directly in error case
 - SR hitting Be pipe directly in (- 85mm ~ 11.4mm) range, but since instantaneously, heat load is not a problem.
 - SR photons hitting the bellows under the extreme beam conditions, temperature rise ~10C
 - Several assumptions were taken here:
 - Extreme condition, eg, if a magnet power is lost, a large distortion will appear immediately for the whole ring orbit. The beam will be lost when exceeded.
 - In extreme cases ~ at least 10 times per day. The beam will be stopped within 0.5ms when abnormal.
 - The background of the detector should not be considered under abnormal conditions.
 - The beam orbit deviation will not affect detector operation, since the high background part will be removed when data analysis is carried out.

Does these acceptable?

Summary

- MDI covers Interaction Region and Beyond. With the MDI map, lots of works are waiting ahead.
- The baseline design of CEPC MDI consist with baseline detector and CDR accelerator parameters is finishing, especially for those "sensitive to beampipe design".
- The optimization and validation of current design is always needed.
 - The BESIII backgrounds experiment was done. We are still analyzing the results.
- Next steps are to be determined.

- Continue finishing current design
 - More detailed & feasible mechanical design
 - More detailed simulation and understanding of the results
 - More realistic model in simulation(fewer lacking sources, better geometry, etc.)
 - More efficiency simulation
- Merging to new design
 - High Luminosity for accelerator?
 - New Detector design?
 - The diameter of central beampipe?

Backup

MDIAccelerator	Person	
IP Feedback	J.H. Yue/C.H. Yu/Y.W. Wang	
BG Simulation	H.Y. Shi/S. Bai	
LumiCal	Suen Hou/Ivanka/Phillipe	
HOM absorber	Y.D. Liu/J.Y. Zhai	
Vacuum Chamber	H.J. Wang	
SR Masks	H.Y. Shi	
QD0/QF1	Y.S. Zhu	
Anti-Solenoid	Y.S. Zhu	
Cryostats	M.F. Xu/T.X. Zhao	
BPMs	Y.F. Sui	
Instability&Impendance	Y.D. Liu/N. Wang	
Cooling	Q. Ji/H.J. Wang	
Shielding	H.Y. Shi/Z.J. Ma/S. Bai	
Assembly&Supporting	H.J. Wang/Q. Ji	
Alignment	X.L. Wang/Q. Ji/H.J. Wang	
Connecting System	H.J. Wang	
Vacuum pumps	Y.S. Ma	
Last Bending Magnet	Y.W. Wang	
Collimators	S. Bai/H.J. Wang	
Control	G. Li	

MDIDetector	Person
Central Beam Pipe	Q. Ji
Vertex Detector	Z.J. Liang
LumiCal	Suen Hou/Ivanka/Phillipe
Silicon Tracker	H. Fox
ТРС	H.R. Qi
Hcal	Y. Liu
Ecal	Y. Liu
Solenoid	F.P. Ning
Yoke	F.P. Ning
Muon Detector	X.L. Wang
Hall	Z.A. Zhu
BG Simulation&Shielding	H.Y. Shi
Software Geometry	C.D. Fu
Alignment&Assembly	Q. Ji/H.J. Wang/X.L. Wang
Electronics	W. Wei
Cryogenic	T.X. Zhao
Radiation Protection	Z.J. Ma
Booster	D. Wang

Physics Gains for 20mm Be

