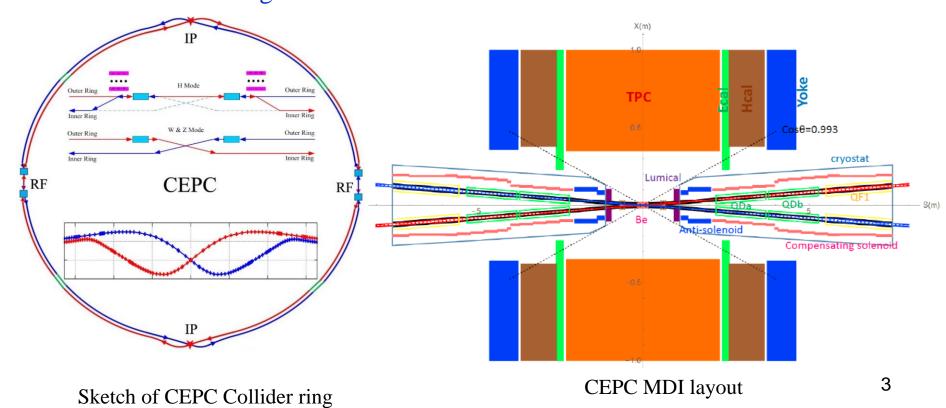


CEPC MDI Superconducting Magnets

Yingshun Zhu, Xiangchen Yang, Ran Liang, Chuang Shen

Institute of High Energy Physics, Chinese Academy of Sciences
Oct. 23, 2021


Workshop on CEPC Detector & MDI Mechanical Design

Outline

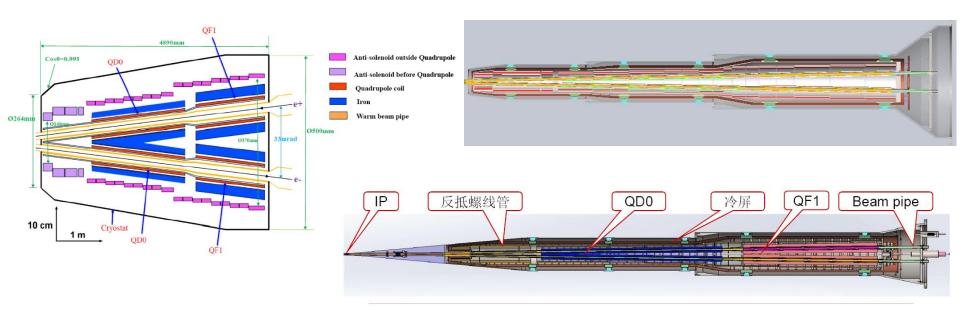
- Introduction
- Status of MDI magnets in CDR scheme
 - QD0 design with iron
 - Design of superconducting quadrupole QF1
 - Design of superconducting anti-solenoid
 - Status of 0.5m single aperture QD0 short model
 - Direct winding technology for corrector coils
- Status of MDI magnets in high luminosity scheme
 - Conceptual design of Q1a
 1) Cos2θ option
 2) CCT option
 - Optimization the weight of Q1a quadrupole magnet
- Summary

Introduction

- ◆ CEPC is a Circular Electron Positron Collider with a circumference about 100 km, beam energy up to 120 GeV proposed by IHEP.
- ◆ Most magnets in CEPC Accelerator are conventional magnets.
- To greatly squeeze the beam for high luminosity, compact high gradient final focus quadrupole magnets are required on both sides of the IP points in CEPC collider ring.

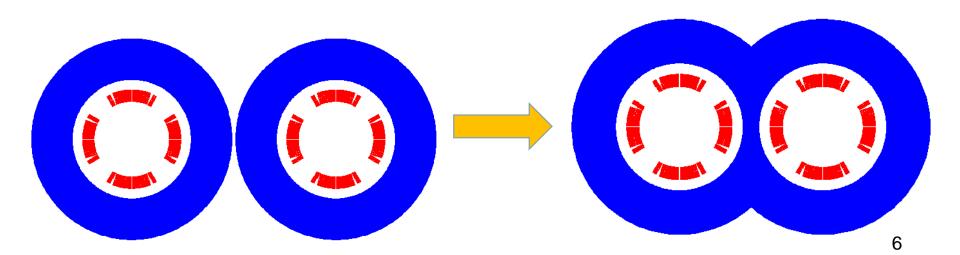
Introduction

◆ The CDR requirements of the Final Focus quadrupoles (QD0 and QF1) are based on L* of 2.2 m, beam crossing angle of 33 mrad.

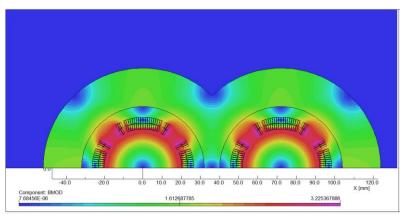

Table 1: CDR requirements of Interaction Region quadrupole magnets for Higgs

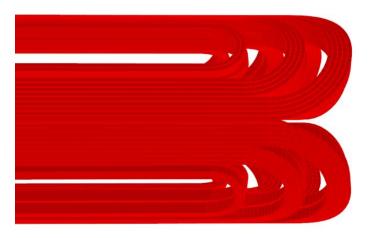
Magnet	Central field gradient (T/m)	Magnetic length (m)	Width of GFR (mm)	Minimal distance between two aperture beam lines (mm)
QD0	136	2.0	19.6	72.6
QF1	110	1.48	27.0	146.20

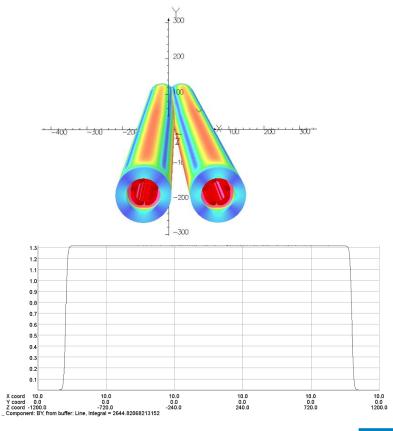
- ◆ QD0 and QF1 magnets are operated inside the field of Detector solenoid magnet with a central field of 3.0 T.
- To cancel the effect of the longitudinal detector solenoid field on the accelerator beam, anti-solenoids before QD0, outside QD0 and QF1 are needed.
- The total integral longitudinal field generated by the detector solenoid and accelerator anti-solenoid is zero; Local net solenoid field in the region of quadrupole is close to zero.


Introduction

- ◆ CEPC MDI SC Magnets start at z=1.12m, including: superconducting QD0, QF1, anti-solenoid on each side of the IP point.
- ◆ Inner radius of beam pipe is 10 mm in CDR; Checked by HOM heating load calculation.
- QD0, QF1, and anti-solenoid coils are in the same cryostat.

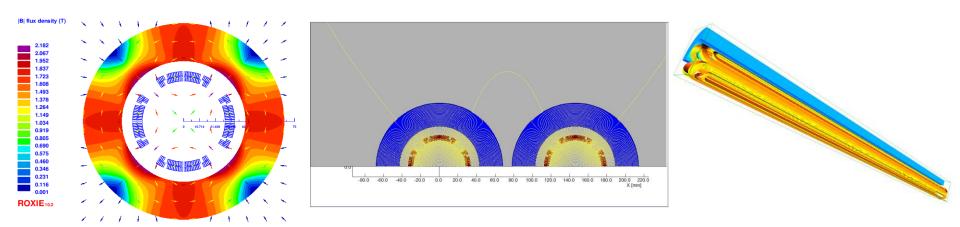

Status of MDI magnets in CDR scheme


- QD0 CDR: 136T/m, **inner diameter 40mm**, length 2m.
 - Baseline design: **QD0 design of iron option**
- Iron yoke is added outside the collar to enhance the field gradient, reduce the coil excitation current, and shield the field crosstalk.
- Not enough space to place two single apertures side by side, so a compact design is adopted.
- cos2θ quadrupole coil using NbTi Rutherford: highest magnetic efficiency and cooling capacity, good stability, elimination of field crosstalk.
- **✓** Iron core in the middle part is shared by the two apertures.

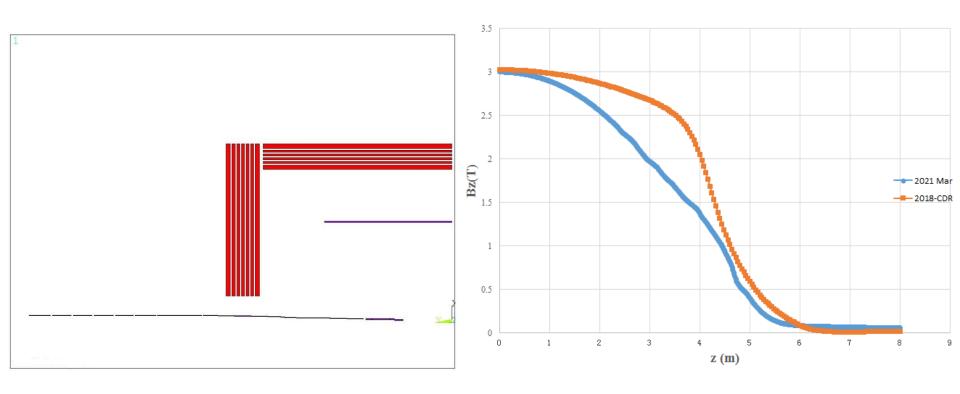


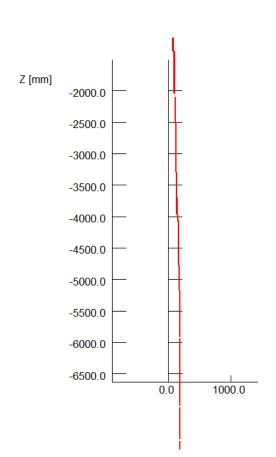
QD0 design with iron

- The excitation current is 2080A @4.2K.
- The field harmonics as a result of field crosstalk is smaller than 0.5×10^{-4} . Compared with the iron-free design, the excitation current can be reduced.
- Novel design: Double aperture quadrupole magnet using $\cos 2\theta$ coil with iron yoke shared by two apertures, with crossing angle between two apertures.

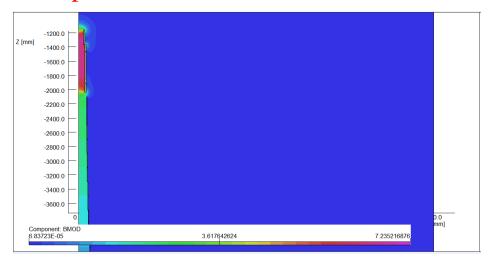


Design of superconducting quadrupole QF1


- Since the distance between the two apertures is much larger, the field cross talk between the two apertures of QF1 is not a problem using iron yoke.
- After optimization, the QF1 coil consists of four coil blocks in two layers separated by wedges, and there are 28 turns in each pole.
- Current: 2280A. The field gradient, magnetic length meet the design requirement.
- Each systematic field harmonics is smaller than 1 unit (1×10^{-4}) .
- Non-systematic field harmonics as a result of field cross talk can be neglected.


Field simulation of QF1

Design of superconducting anti-solenoid


- ◆ Recently, the design of Detector solenoid is modified (2021.3).
- ◆ The design of Accelerator anti-solenoid is updated.

- ◆ In order to reduce the magnet size, energy and cost, the anti-solenoid is divided into a total of 29 sections with different inner coil diameters.
- Rectangular NbTi-Cu conductor
- ◆ These sections are connected in series, but the current of some sections of the anti-solenoid can be adjusted using auxiliary power supplies if needed.
- The anti-solenoid along longitudinal direction:
 - 1) 4 sections, from IP point to QD0;
 - 2) 12 sections, QD0 region;
 - 3) 6 sections, QF1 region;
 - 4) 7 section, after QF1 region.
- ❖ To reduce the length of the cryostat, the sections of anti-solenoid after QF1 region with low field will be operated at room-temperature.

- Magnetic field calculation and optimization is performed using axi-symmetric model in OPERA-2D.
- ◆ The central field of the first section of the anti-solenoid is the strongest, with a peak value of 6.8T.

Dector +Acc solenoid field

Detector solenoid field

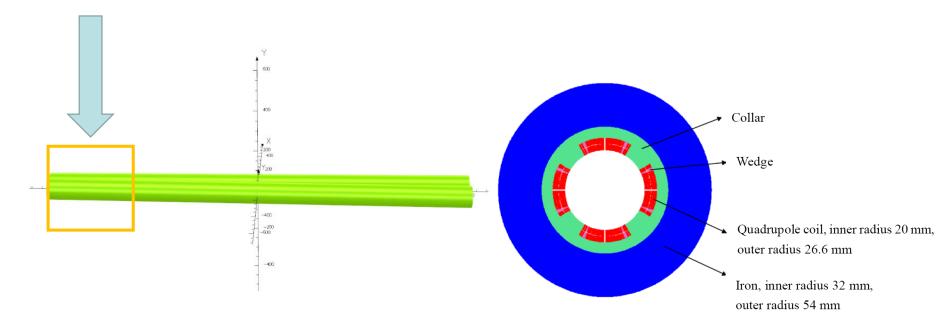
Acc anti-solenoid field

Acc anti-solenoid field

Z (m)

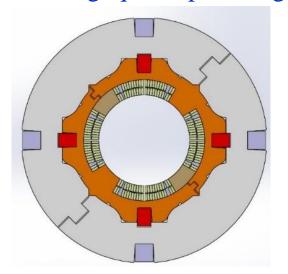
2D flux lines

Magnetic flux density distribution

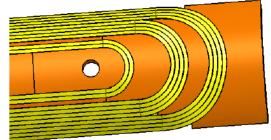

- The net solenoid field inside QD0 and QF1 at each longitudinal position is smaller than 300 Gs.
- The total integral solenoid field generated by the detector solenoid and antisolenoid coils is zero.

Status of 0.5m single aperture QD0 short model

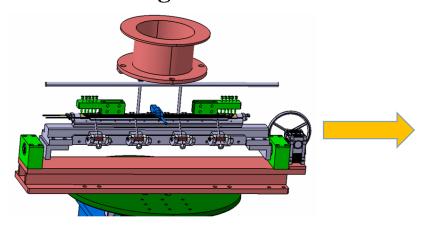
Design of QD0 iron option:

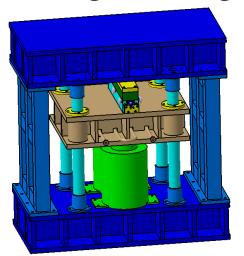

Collared $\cos 2\theta$ quadrupole magnet with shared iron yoke and crossing angle between two aperture centerlines. In practice, can it be fabricated and really meet the requirement?

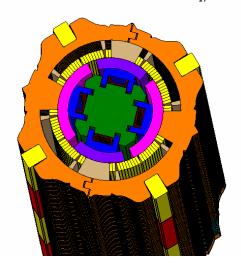
- So far, there is no $\cos 2\theta$ superconducting quadrupole magnet in China.
- In the R&D, the first step is to **study and master main key technologies of** superconducting quadrupole magnet by developing a short QD0 model magnet with 0.5m length (near IP side).


Status of 0.5m single aperture QD0 short model

- Research on some key technologies of 0.5m single aperture QD0 short model has started (NbTi, 136T/m), in collaboration with HeFei KEYE Company.
- ◆ Including: quadrupole mechanical design, coil winding technology, fabrication procedure of quadrupole coil with small diameter, stress applying and monitoring, quadrupole magnet assembly and measurement technology, etc.




Fabrication of Rutherford cable

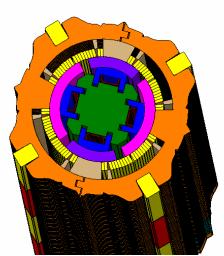

Winding machine

Coil heating and curing system

Coils assembly

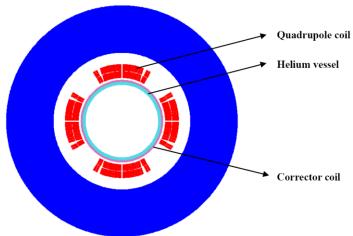
• Progress: fabrication of quadrupole coil winding machine, coil heating and curing system has been finished.

Rutherford cable

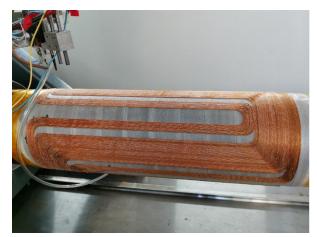


Winding machine

Coils assembly



Direct winding technology for corrector coils


- Corrector magnets for CEPC final focus magnet are required.
- One or two layers corrector coils is added inside bore of QD0 quadrupole coil.
- Corrector coil will be wound using Direct winding technology.
- ◆ A model direct winding machine has been developed for BEPCII-U SC magnet.

Can be modified and used for CEPC corrector coil winding.

Status of MDI magnets in high luminosity scheme

◆ The requirement of the CEPC Final Focus quadrupoles is updated for high luminosity with L*=1.9m in 2020.10.

Table 2: Updated Requirements of final focus quadrupole magnets for Higgs

Magnet	Central field gradient (T/m)	Magnetic length (m)	Width of GFR (mm)	Minimal distance between two aperture beam lines (mm)
Q1a	141	1.21	15.21	62.71
Q1b	84.7	1.21	17.92	105.28
Q2	94.8	1.5	24.14	155.11

Design considerations

- The field gradient of quadrupoles is stronger compared to that in CDR, and the available bore space for the coil is smaller.
- The development of Q1a is the most challenging.
- Design of quadrupoles and anti-solenoid is similar to that in CDR.
- Corrector coils will be inside the bore of quadrupole coil.
- Iron yoke is used to eliminate the field crosstalk between the two apertures.

Conceptual design of HTS final focus quadrupole coils

- NbTi technology similar to that in CDR can be use for Q1a in high luminosity scheme.
- In addition, feasibility of HTS superconducting magnet technology is being considered for CEPC IR superconducting magnets.

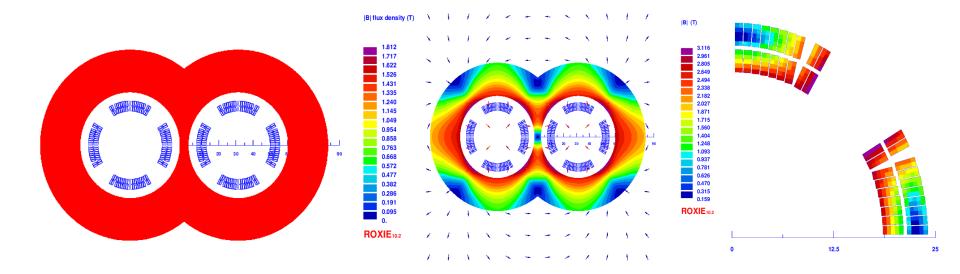
Advantage: Large critical current (expected), light weight of magnet

heat load resistant

High operating temperature.

Disadvantage: HTS conductor not mature now, expensive

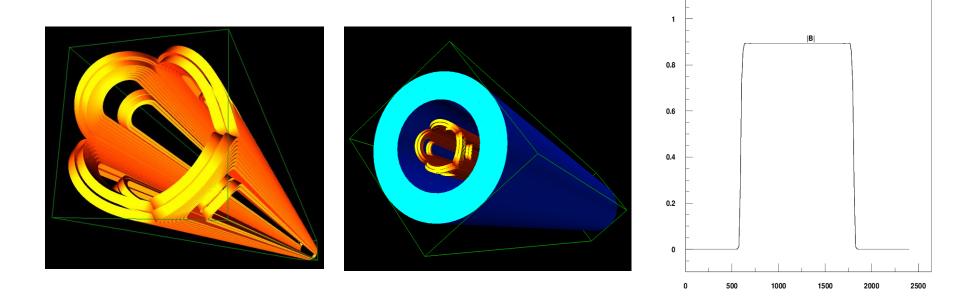
Poor mechanical properties


HTS coil manufacture needs heat treatment

Large diameter of superconductor filament or layer.

Conceptual design of Q1a for high luminosity

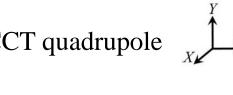
1) Cos2θ option of Q1a


- HTS Bi-2212 round 0.5mm wire or other conductor.
- The design of Q1a is based on two layers cos2θ quadrupole coil using Rutherford cable with iron yoke. The inner diameter of the coil is 37mm.
- Single aperture cross section is optimized with four coil blocks in two layers.
- Wwidth of the cable is 2.5mm, and there are 19 turns in each pole.
- The excitation current of Q1a is 1970A, and each multipole field in single aperture is smaller than 1×10^{-4} .
- Magnetic field cross talk between two apertures is negligible.

Cos2θ option of Q1a

3D design of Q1a

- 3D magnetic field is modeled and analysed using ROXIE.
- Coil end detailed shaped is optimized and determined.
- Field gradient 142T/m, each integrated field harmonics is smaller than 1×10^{-4} .
- ◆ The 3D magnetic field performance meets requirement.

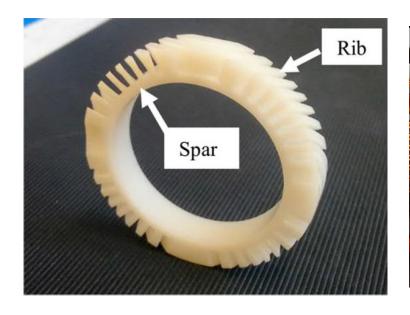


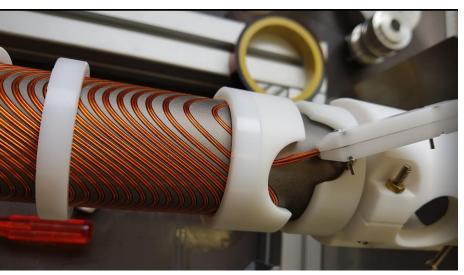
Single aperture model in 3D

Conceptual design of Q1a for high luminosity with L*=1.9m

2) CCT option of Q1a

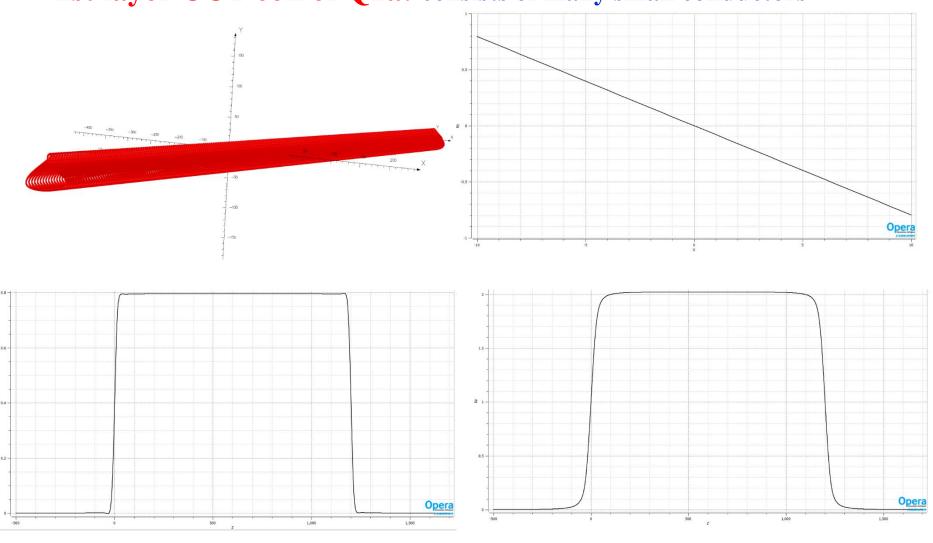
- CCT: Canted cosine theta
- The CCT design is based on a pair of conductors wound and powered such that their transverse field components sum up and their solenoid fields cancel.
- In practice, the conductor is wound on a pre-cut groove in a supporting hollow cylinder or mandrel.




$$\vec{P}(\theta) = \begin{cases} r\cos\theta \\ r\sin\theta \\ A_n\sin(2\theta) + \frac{w\theta}{2\pi} \end{cases} - \pi N \le \theta \le \pi N$$

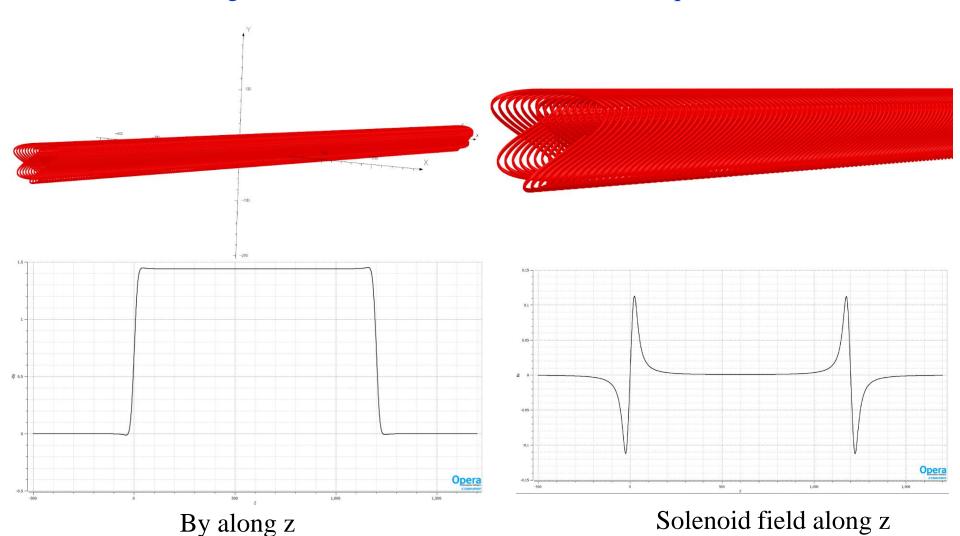
CCT option of Q1a

CCT option of Q1a, conceptual design


- HTS Bi-2212 0.8mm round wire or other conductor.
- Two layers CCT quadrupole coil. The inner radius of the spar is 18.5mm.
- Outer radius of single aperture coil: 29mm.
- Groove on the spar: 2×3 mm; 6 wires in a groove.
- Conductor canted angle: 30 deg
- Excitation current: 1342A,
- ✓ Each integrated multipole field in single aperture is smaller than 1×10^{-4} .

CCT option of Q1a

1st layer CCT coil of Q1a: consists of many small conductors



By along z

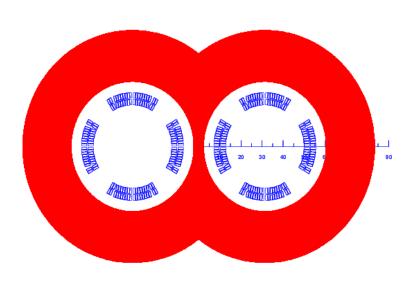
Solenoid field along z

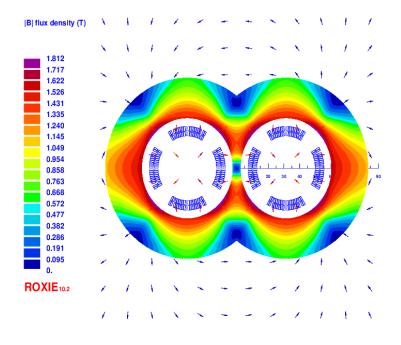
CCT option of Q1a

Double layer CCT coil of Q1a: Most of the solenoid fields of two layers cancel out. Field gradient and field harmonics meets the requirement.

Conceptual design of Q1a for high luminosity with L*=1.9m

Comparison of two HTS design options of Q1a (141T/m)

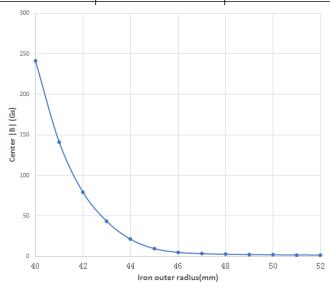

Option	Excitation current (A)	Needed Engineering current density J _E on wire (A/mm2)	Bmax on coil (T)	Possible Conductor
Cos2θ (with iron)	1970	1004	3.2	Bi-2212
CCT	1342 (940 with iron)	2670 (1870 with iron)	3.8	Bi-2212

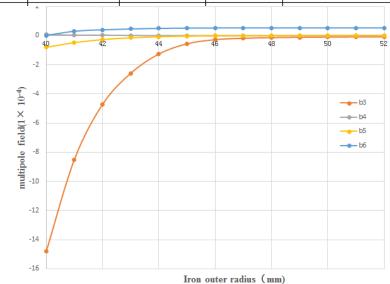

- From the comparison, Cos2θ coil has the higher magnetic efficiency, lower needed Engineering current density;
- The current carrying capacity of Bi-2212 conductor is close to the requirement.
- \blacksquare Cos2 θ coil as baseline design, CCT coil as alternative design.

Optimization the weight of Q1a quadrupole magnet

Option 1: Iron DT4, reduce weight.

- Field gradient: 141T/m.
- Field cross talk between two apertures can be negligible with more iron.
- 19 turns in each pole, excitation current 1970A.
- Relax the dipole field requirement of crosstalk to <30Gs.

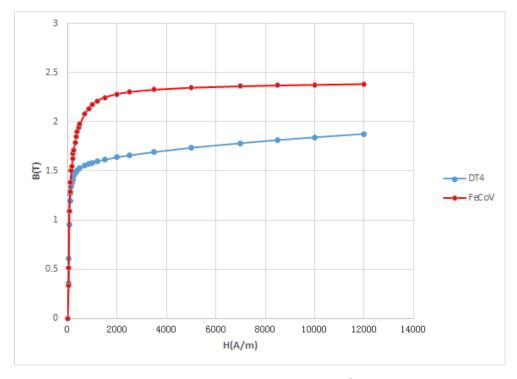




Iron yoke: DT4

• Dipole <30Gs, radius of the iron: 44mm, weight 96.9kg. (67% of r=52mm)

Iron outer radius (mm)	Center B (Gs)	b3 (1×10-4)	b4	b 5	b 6	G(T/m)	Weight (Kg)
52	1.8438	-0. 08527	0.00972	-0.00335	0. 5276	141. 816	143. 6445464
51	1. 9515	-0.09122	0.00889	-0.00384	0. 52755	141.8153	137. 3799594
50	2. 1287	-0. 10197	0.00686	-0.00471	0. 52732	141.8143	131. 2370149
49	2. 3868	-0. 11812	0.00466	-0.00587	0. 52691	141.8128	125. 2157129
48	2. 8034	-0. 14152	0.00153	-0.00745	0. 52636	141.8102	119. 3160533
47	3. 5291	-0. 18396	-0.00175	-0.01061	0. 52533	141.8057	113. 5380362
46	5. 1291	-0. 27838	-0.00509	-0.01675	0. 52264	141. 7955	107. 8816616
45	9. 7778	-0. 56342	-0.00729	-0.03476	0.51403	141. 764	102. 3469294
44	21. 353	-1. 26063	-0.00321	-0.07698	0. 49336	141. 6857	96. 93383967
43	43. 486	-2. 58818	0.01029	-0. 15299	0. 45574	141. 5367	91. 64239242
42	79. 359	-4. 72187	0. 03165	-0. 27285	0. 3979	141. 2955	86. 47258764
41	141. 17	-8. 50816	0.03082	-0. 48061	0. 29868	140.8779	81. 42442533
40	241. 56	-14.81075	0. 07725	-0.80437	0.013404	140. 1936	76. 49790547



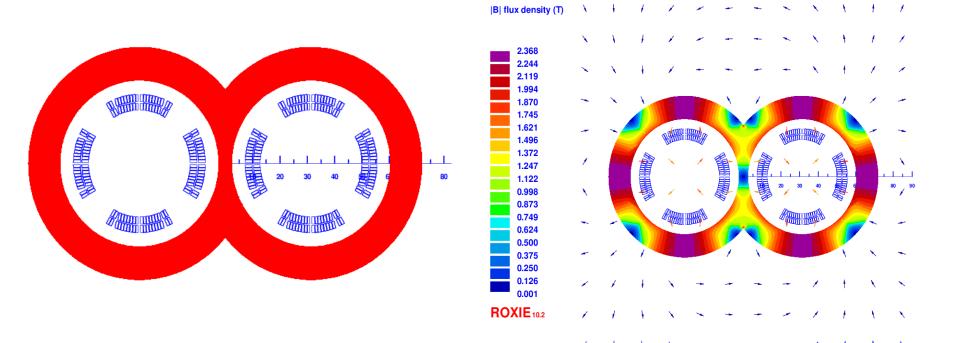
Option 2: Iron yoke FeCoV

Option 2: Iron FeCoV

- The saturation magnetic induction of FeCoV is about 2.35T (highest in all materials), and the magnetic shielding effect is better.
- Compared with DT4, the thickness of the iron core can be reduced.

BH curve of DT4 and FeCoV

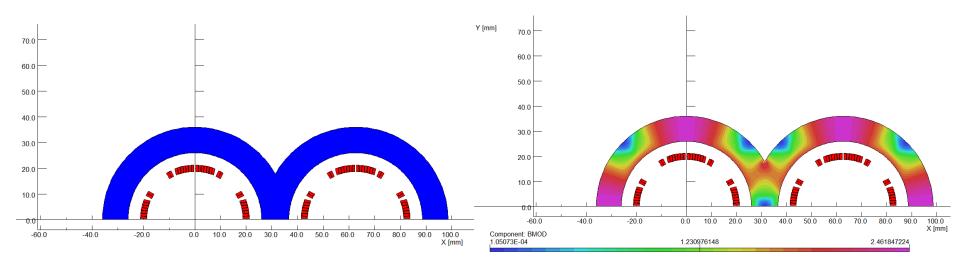
Iron yoke: FeCoV


• Iron yoke material: FeCoV

Iron outer radius (mm)	Center B (Gs)	b3 (1×10-4)	b4	b 5	b6	G(T/m)	Weight (Kg)
52	0. 54021	-0. 01825	0.00648	-0.0001	0. 51924	141.8438	143. 6445489
51	0. 56295	-0. 01863	0.00605	-0.00021	0. 51931	141.8436	137. 3799618
50	0. 59658	-0. 02238	0.00469	-0.0006	0. 51925	141.8434	131. 2370172
49	0. 63944	-0. 02528	0.00392	-0.00094	0. 51916	141.8432	125. 215715
48	0. 72571	-0. 02831	0.00291	-0.00122	0.51908	141.8426	119. 3160554
47	0.85912	-0. 03484	0.00256	-0.00206	0.51896	141.8418	113. 5380381
46	1. 0381	-0.04224	0.00245	-0.00251	0. 51878	141.8409	107. 8816634
45	1. 2551	-0. 05411	0.00147	-0.00337	0. 51847	141.8395	102. 3469311
44	1. 5597	-0. 06948	0.00182	-0.00415	0. 5182	141.8375	96. 93384133
43	2. 1464	-0. 11137	-0. 00036	-0.00576	0. 51746	141.834	91. 64239399
42	3. 0074	-0. 16056	0.00056	-0.00961	0. 51597	141.8285	86. 47258912
41	6. 392	-0. 37045	-0.00758	-0.02326	0. 51	141.8053	81. 42442671
40. 5	17. 316	-1. 04345	-0.00957	-0.06684	0.48809	141.731	78. 94596144
40	55. 258	-3. 43489	-0.00163	-0. 2194	0. 4096	141. 4705	76. 49790678

- Dipole field <30Gs, radius of the iron: 40.5mm.
- Weight: 78.9Kg (55% of r=52mm)

Iron yoke: FeCoV


• Iron yoke material: FeCoV; radius of the iron: 40.5mm

Option 3: one layer coil

Option 3: one layer coil

- Iron yoke material: FeCoV; one layer coil, HTS round 0.5mm Bi-2212.
- <30Gs Dipole field, radius of the iron: 36.5mm.</p>
- Weight: 60.2Kg (42% of r=52mm)
- 9 turns in each pole, excitation current 3585A.
- Large current carrying capacity of conductor is required; working current doubled, the cryogenic system and power supply will be affected.
- After five years, the current carrying performance of Bi-2212 may meet the requirement.

Design options comparisons and recommendation

■ HTS Bi-2212 0.5mm wire or other conductor; Field gradient 141T/m.

	Main features	Performance	Weight (kg)	Remark
Option 1	2 layers coil, DT4 iron	Meet all requirements (Dipole <30Gs)	96.9	Largest weight
Option 2	2 layers coil, FeCoV iron	Meet all requirements (Dipole <30Gs)	78.9	Manufacture cost increases slightly
Option 3	1 layer coil, FeCoV iron	Meet all requirements (Dipole <30Gs)	60.2	Double current carrying capacity, 5 years later

Recommendation

■ Option 3 as baseline design, Option 2 as alternative design.

Summary

- MDI superconducting magnets are key devices for CEPC. The design of superconducting magnets meets the requirement.
- Despite of limited space, field crosstalk effect between two apertures in QD0 is negligible using iron yoke.
- Study and research on key technologies of 0.5m single aperture QD0 short model (LTS NbTi) is in progress in collaboration with KEYE Company.
- Two HTS options have been studied for the Q1a magnet using high luminosity parameters with L*=1.9m: Cos2θ coil, CCT coil. **Both options** are feasible. Cos2θ coil has higher magnetic efficiency.
- With relaxed dipole field and use FeCoV yoke, the weight of Q1a magnet can be significantly reduced.

Thanks for your attention!

Workshop on CEPC Detector & MDI Mechanical Design