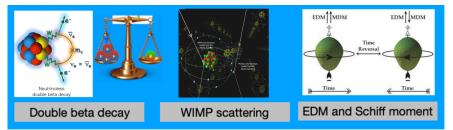
Advances in modeling neutrinoless double beta decay with nuclear forces from chiral effective field theory

Jiangming Yao

School of Physics and Astronomy, Sun Yat-sen University

The 7th Workshop on Chiral Effective Field Theory, Nanjing, Oct. 15, 2022

- 2 Modeling atomic nuclei with nuclear forces from chiral EFT
- 3 Determination of the NMEs for neutrinoless double-beta decay



Low-energy probes of new physics

 Search for beyond standard model physics at three frontiers: the energy frontier (LHC, etc), the cosmic frontier (CMB, LHAASO, etc), and the intensity frontier (0νββ decay, WIMP, EDM, etc)

Atomic nucleus: a playground to test fundamental symmetries.

Jiangming Yao	
---------------	--

What's $\beta\beta$ decay?

Nuclear double- β **decay** is a second-order weak process in which two neutrons (or protons) in a parent nucleus (A, Z) are simultaneously transforming into two protons (or neutrons) in a daughter nucleus (A, $Z \pm 2$). There are typically four types

- double-electron emission (2 β^-)
- double-positron emission (2 β^+)
- single-positron emission with single-electron capture (ϵeta^+)
- double-electron capture (2e)

This talk focuses on the double-beta decay with double-electron emission.

$$(A, Z) \rightarrow (A, Z + 2) + 2e^{-} + (2\bar{\nu}_e)$$

Jiangming Yao 4 / 60

Pioneering studies on $2\nu\beta\beta$ decay

First prediction of $2\nu\beta\beta$ decay

Double Beta-Disintegration

M. GOEPPERT-MAYER, The Johns Hopkins University (Received May 20, 1935)

From the Fermi theory of β -disintegration the probability of simultaneous emission of two electrons (and two neutrinos) has been calculated. The result is that this process occurs sufficiently rarely to allow a half-life of over 10¹⁷ years for a nucleus, even if it is sobar of atomic number different by 2 were more stable by 20 times the electron mass.

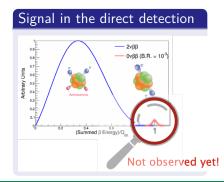
Status of measurements

Isotope	$T_{1/2}(2\nu)$, yr	$ M_{2v}^{eff} $ (G _{2v} from [24])	$ M_{2\nu}^{eff} $ (G _{2ν} from [25])	Recommende Value
2νββ:				
⁴⁸ Ca	$5.3^{+1.2}_{-0.8} \cdot 10^{19}$	$0.0348^{+0.0030}_{-0.0034}$	$0.0348^{+0.0030}_{-0.0034}$	0.035 ± 0.003
⁷⁶ Ge	$(1.88 \pm 0.08) \cdot 10^{21}$	$0.0348_{-0.0034}$ $0.1051_{-0.0023}^{+0.0023}$	$0.0348^{+0.0034}_{-0.0024}$ $0.1074^{+0.0024}_{-0.0022}$	0.106 ± 0.004
⁸² Se	$0.87^{+0.02}_{-0.01} \cdot 10^{20}$		0.0855+0.0005	0.085 ± 0.001
⁹⁶ Zr	$(2.3 \pm 0.2) \cdot 10^{19}$	$0.0849_{-0.0010}^{+0.0010}$ $0.0798_{-0.0032}^{+0.0037}$	$0.0804^{+0.0038}_{-0.0033}$	0.080 ± 0.004
¹⁰⁰ Mo	$7.06^{+0.15}_{-0.13} \cdot 10^{18}$	0.2071 + 0.0019	$0.2096^{+0.0020}_{-0.0022}$	
	-0.13	0.1852_0.0017 (*)	-0.0022	0.185 ± 0.002
¹⁰⁰ Mo-	$6.7^{+0.5}_{-0.4} \cdot 10^{20}$	$0.1571^{+0.0048}$	$0.1619^{+0.0050}_{-0.0058}$	
$100 Ru(0^+_1)$	-0.4	0.1513+0.0047 (*)	-0.0058	0.151 ± 0.005
116Cd	$(2.69 \pm 0.09) \cdot 10^{19}$	$0.1160^{+0.0033}_{-0.0019}$	$0.1176^{+0.0020}_{-0.0019}$	01101 12 01000
	. ,	0.1084+0.0024 (*)	-0.0019	0.108 ± 0.003
¹²⁸ Te	$(2.25 \pm 0.09) \cdot 10^{24}$	$0.0406 \substack{+0.0008\\-0.0008}$	$0.0454^{+0.0009}_{-0.0009}$	0.043 ± 0.003
¹³⁰ Te	$(7.91 \pm 0.21) \cdot 10^{20}$	0.0288 ± 0.0004	$0.0297^{+0.0004}_{-0.0004}$	0.0293 ± 0.000
¹³⁶ Xe	$(2.18 \pm 0.05) \cdot 10^{21}$	0.0177 + 0.0002	$0.0184^{+0.0002}_{-0.0002}$	0.0181 ± 0.000
¹⁵⁰ Nd	$(9.34 \pm 0.65) \cdot 10^{18}$	$0.0543^{+0.0020}_{-0.0018}$	0.0550+0.0020	0.055 ± 0.003
¹⁵⁰ Nd-	$1.2^{+0.3}_{-0.2} \cdot 10^{20}$	$0.0343_{-0.0018}$ $0.0438_{-0.0042}^{+0.0042}$	$0.0350_{-0.0018}^{+0.0018}$ $0.0450_{-0.0048}^{+0.0043}$	0.044 ± 0.005
150Sm(0 ⁺ ₁)	-0.2	-0.0046	-0.0048	
238U	$(2.0 \pm 0.6) \cdot 10^{21}$	$0.1853^{+0.0361}_{-0.0227}$	$0.0713^{+0.0139}_{-0.0088}$	$0.13^{+0.09}_{-0.07}$

- The 2νββ decay is a second-order weak process allowed in the Standard Model.
- First discovery of $2\nu\beta\beta$ decay (geochemical method) in ¹³⁰Te Inghram & Reynolds, 1950
- First direct detection of $2\nu\beta\beta$ decay in ⁸²Se Moe & Lowenthal, 1980
- The half-life $T_{1/2}^{2\nu}$ ranges from 10^{18} to 10^{24} years A. Barabash, 2020

Jiangming Yao

Pioneering studies on $0 u\beta\beta$ decay


- The first study of $0\nu\beta\beta$ decay (Furry, 1939), inspired by Majorana and Racah (1937) that the neutrino may coincide with its own antiparticle.
- Occur if neutrinos have mass and are Majorana particles
- Process violating lepton number by 2 units.
- Several mechanisms: light or heavy neutrino exchange, etc.

First prediction of $0\nu\beta\beta$ decay

On Transition Probabilities in Double Beta-Disintegration

W. H. FURRY Physics Research Laboratory, Harvard University, Cambridge, Massachusetts (Received October 16, 1939)

The phenomenon of double delimitegration is one for which there is a marked difference between the results of Majorana's symmetrical theory of the mearino and those of the original Dirac-Fermi theory. In the older theory double *d*-disintegration involves the emission of four particles, we determ for positron) and two antimetriculus for metricolog, and the probparation, and the second sec

Knowledge about neutrinos

Neutrino mixing

$$\ket{
u_lpha} = \sum_{j=1}^N U^*_{lpha j} \ket{
u_j}.$$

•
$$\Delta m_{ij}^2 (\neq 0)$$
, and $\theta_{ij} (\neq 0)$.

What are still unknown?

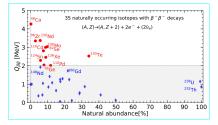
- The nature of neutrinos: Dirac or Majorana
- Neutrino absolute mass m_j (ordering) and its origin.

The observation of $0\nu\beta\beta$ decay may provide answers to some.

Inputs from nuclear physics

- The $Q_{\beta\beta}$ value: determining the energy region of interest and phase-space factor $G_{0\nu}$.
- The nuclear matrix elements (NMEs) $M^{0\nu}$ of $0\nu\beta\beta$ decay: determining neutrino masses

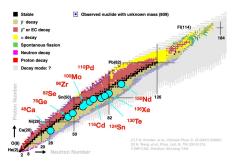
$$|\sum_{j=1}^{3} U_{ej}^{2} m_{j}| = \left[\frac{m_{e}^{2}}{g_{A}^{4}(0)G_{01}T_{1/2}^{0\nu} \left|M^{0\nu}\right|^{2}}\right]^{1/2}$$


What are the major challenges?

- Noise-free, large-scale experimental setups.
- Precise values of the NMEs.

7 / 60

Experimental search of $0\nu\beta\beta$ decay



The isotopes that

- cannot decay via the single-β decay due to energy or spin forbidden
- and with large $Q_{\beta\beta}(>2.0$ MeV) value.

are usually selected to be the candidate nuclei with experimental interest.

These candidate nuclei are located close to the β -decay stability line (classified as stable nuclei).

$$T_{1/2}^{0
u}\simeq 10^{27-28}\left(rac{0.01\mathrm{eV}}{\langle m_{etaeta}
angle}
ight)^2\mathrm{y}$$

Nuclear Chart: decay mode of the ground state nuclide(NUBASE2020)

Current and next-generation of experiments

RECOMMENDATION II

The excess of matter over antimatter in the universe is one of the mast compating mysteries in aid a science. The observation of neutrinoless double beta decay in nuclei would immediately demonstrate that neutrinos are their own antipatrities and would have prodound implications for our understanding of the matterantimatter mystery.

We recommend the timely development and deployment of a U.S.-led ton-scale neutrinoless double beta decay experiment.

A ton-scale instrument designed to search for this a-y-et unsenn nuclear decay will provide the most powerful test of the particle-antiparticle nature of neutrinos ever performed. With recent experimental breakthroughs ponemerd by US, physichsta and the availability of deep underground laboratories, we are poised to make a major discovery.

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

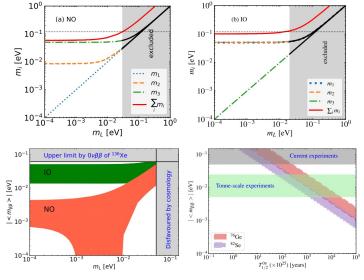
in Nuclear Physics

c.f. Hao Qiu's talk.

Current and next-generation of experiments

٢	4	Ц	大	學
9	SUN Y	AT-SE	N UNIVE	RSITY

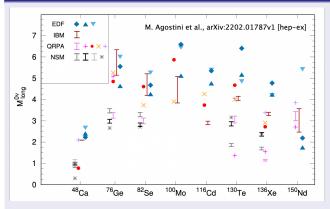
Isotopes	Experiment	Half-life sensitivity	NME	Effective mass (meV)	Reference
⁷⁶ Ge	GERDA	$1.8 imes 10^{26}$	2.66-6.34	79-180	PRL125,252502 (2020)
	MJD	4.8×10^{25}		200-433	PRC100,025501 (2019)
de	LEGEND-1T	$1.3 imes 10^{28}$		9-21	arXiv:2107.11462v1 (2021)
	CDEX	$6.4 imes10^{22}$		5000	Sci. China 60, 071011 (2017)
¹⁰⁰ Mo	CUPID-Mo	$1.5 imes 10^{24}$	3.84-6.59	310-540	PRL126, 181802(2021)
	CUPID	$9.1 imes 10^{27}$		4.1-6.8	arXiv:2203.08386v1 (2022)
¹³⁰ Te	CUORE	2.2×10^{25}	1.37-6.41	90-305	Nature, 604 (2022)
	EXO-200	$3.5 imes 10^{25}$	1.11-4.77	93-286	PRL123,161802(2019)
¹³⁶ Xe	nEXO	$1.35 imes 10^{28}$		<15	JPG49, 015104 (2022)
	KamLAND-Zen	2.3×10^{26}		36-156	arXiv:2203.02139v1 (2022)
	PandaX-III	$5 imes 10^{25}$		90-230	Sci. China 60, 061011 (2017)

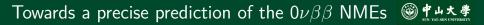

Tonne-scale detectors with sensitivity $T_{1/2}^{0
u} \sim 10^{28}$ y

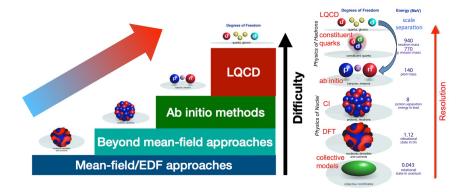
In order to have one event during one year (naive estimation),

$$N(t) = rac{\Delta N}{\Delta t} rac{1}{\ln 2} T_{1/2}^{0
u}
ightarrow 1.6 imes 10^4 \mathrm{moles}
ightarrow 800 - 2,500 \mathrm{kg}$$

Current and next-generation of experiments

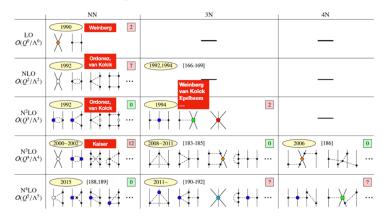



 $\langle m_{\beta\beta} \rangle = m_1 c_{12}^2 c_{13}^2 + m_2 c_{13}^2 s_{12}^2 e^{i\alpha_{21}} + m_3 s_{13}^2 e^{i(\alpha_{31} - 2\delta)} \simeq 0.680 m_1 + 0.297 m_2 e^{i\alpha_{21}} + 0.022 m_3 e^{i(\alpha_{31} - 2\delta)}.$


Jiangming Yao 11 / 60

Status of studies on the NMEs

- Variety of nuclear models based on diff. nuclear forces/EDFs
- Discrepancy by a factor of THREE or even more.
- Difficult to reduce the discrepancy.



From phenomenological to ab initio studies

- Nuclear interactions derived from chiral EFT/LQCD
- Systematically improvable many-body methods

Nuclear potentials from the chiral EFT

• Non-relativistic chiral 2N+3N interactions (Weinberg power counting and others) check with B.W. Long

K. Hebeler, Phys. Rep. 890, 1 (2020)

• Relativistic chiral 2N interaction (N2LO)

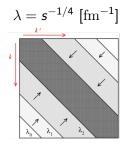
J.-X. Lu, C.-X. Wang, Y. Xiao, L.-S. Geng, J. Meng, P. Ring, PRL128, 142002 (2022)

Jiangming Yao	14 /
---------------	------

Dialing the resolution of nuclear potentials

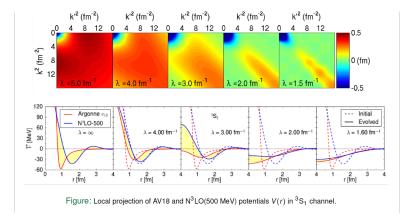
Similarity renormalization group (SRG) for nuclear forces

- Hard core imposes a challenge to nuclear many-body solvers.
- Soften nuclear forces with a set of continuous unitary transformations. S. K. Bogner et al., PRC75, 061001(R) (2007)


$$H_s = U_s H U_s^{\dagger} \equiv T_{
m rel} + V_s$$

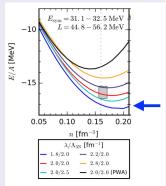
• Flow equation

$$\frac{dH_s}{ds} = [\eta_s, H_s]$$


• The generator η_s is chosen to diagonalize H(s) in the eigenbasis of $T_{\rm rel}$,

$$\eta_{s} = [T_{\rm rel}, H_{s}]$$

Dialing the resolution of nuclear potentials


- The repulsive core disappears in the low- λ nuclear potentials.
- The SRG reformulates the original 2N force in terms of a softened 2N force + induced many-body forces.
- S. K. Bogner et al. (2010); Wendt et al. (2012)

Nuclear potentials from the Chiral EFT

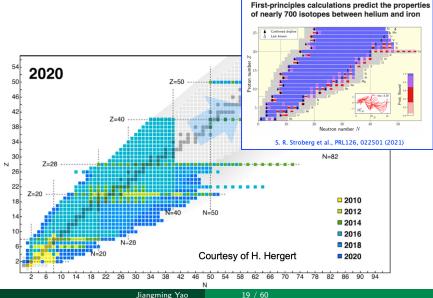
- Nuclear potentials on lattice (check with B.N. Lu)
- Nuclear potentials in HO basis

The magic interaction "EM1.8/2.0"

- The N3LO two-body *NN* interaction : D.R. Entem, R. Machleidt (2003)
- The N2LO local 3N interactions: K. Hebeler et al. (2011).
- Overestimates somewhat the binging energy and saturation density → underestimates nuclear radius.

C. Drischler et al., PRL122, 042501 (2019)

17 / 60

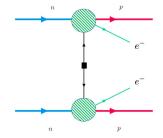

Nuclear potentials from the Chiral EFT

Other chiral interactions (NR)

- The NNLO_{sat} interaction: both the NN and 3N are truncated up to N2LO with the 16 LECs fitted simultaneously to NN data (< 35 MeV), binding energies and charge radii of A = 3,4 systems, carbon and oxygen isotopes. A. Ekström et al., PRC91, 051301(R) (2015)
- The NN+3N(InI) interaction, an improved version of the NN+3N(400) interaction, adjusted solely on A = 2, 3, 4 systems. V. Somà et al., PRC101, 014318 (2020)
- A consistent EMN family of NN+3N interaction: construct 3N interactions using the same chiral order (N3LO), the same non-local regulator scheme, and the same regulator scale as in the NN interaction. Constrained by energies of A = 3, 16 systems. T. Hüther et al., PLB808, 135651 (2020)
- The Delta-full NNLO_{go} interaction: similar to NNLO_{sat}, but with Δ degree of freedom explicitly. W. G. Jiang et al., PRC102, 054301 (2020)

Progress in the ab initio studies of atomic nuclei States

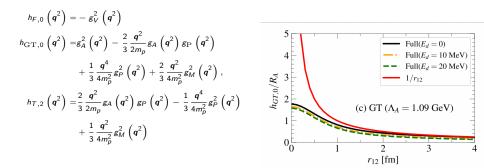
The $0\nu\beta\beta$ decay in the standard mechanism


学中山大學 SUN YAT-SEN UNIVERSITY

• The total NME of $0\nu\beta\beta$ decay for the ground-state to ground-state transition

$$M^{0\nu\beta\beta} = \sum_{\alpha = \mathrm{F}, \mathrm{GT}, \mathrm{Tensor}} \left\langle 0_f^+ \left| \sum_{1,2} h_{\alpha,K}(r_{12}) C_{\alpha}^K \cdot S_{\alpha}^K \tau_1^+ \tau_2^+ \right| 0_i^+ \right\rangle.$$

where the spin-spatial part


$$\begin{split} & \mathcal{C}_{\rm F}^0 = 1, \quad \mathcal{S}_{\rm F}^0 = 1, . \\ & \mathcal{C}_{\rm GT}^0 = 1, \quad \mathcal{S}_{\rm GT}^0 = \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2, . \\ & \mathcal{C}_{\rm T}^2 = \sqrt{\frac{24\pi}{5}} \, Y_2(\hat{\boldsymbol{r}}_{12}), \quad \mathcal{S}_{\rm T}^2 = [\boldsymbol{\sigma}_1 \otimes \boldsymbol{\sigma}_2]^2 \end{split}$$

• The coordinate-space neutrino potential (K = 0, 2)

$$h_{\alpha,K}(\mathbf{r}_{12}) = \frac{2R_A}{\pi g_A^2} \int_0^\infty \mathrm{d}q \, q^2 \frac{h_{\alpha,K}(\mathbf{q}^2)}{q(q+E_d)} j_K(q\mathbf{r}_{12}).$$

The 0 uetaeta decay in the standard mechanism

Ab initio methods for 0 uetaeta decay starting with chiral potentials

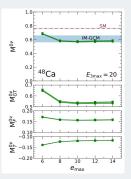
For light nuclei: benchmark studies

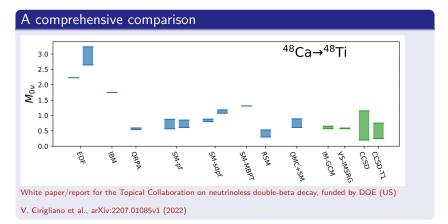
- Quantum Monte-Carlo (QMC) A. Baroni et al., PRC98, 044003 (2018)
- No-core shell model (NCSM) R. A. M. Basili et al., PRC102, 014302 (2020); S.

Novario et al., PRL126, 182502 (2021); JMY et al., PRC103, 014315 (2021)

For candidate nuclei (EM1.8/2.0)

 Multi-reference in-medium similarity renormalization group (IMSRG)+GCM (IM-GCM)

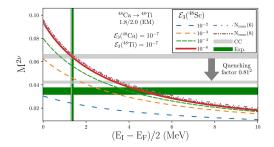

JMY et al., PRL124, 232501 (2020)


IMSRG+Shell Model (VS-IMSRG)

A. Belley et al., PRL126, 042502 (2021)

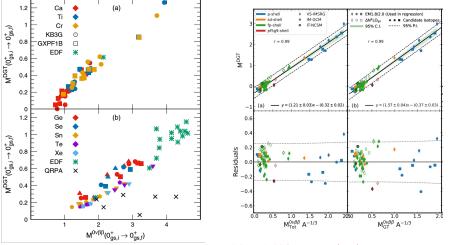
• Coupled-cluster with singlets, doublets, and partial triplets (CCSDT1) .

S. Novario et al., PRL126, 182502 (2021)



• All NMEs are calculated based on the same long-range transition operator in the standard mechanism.

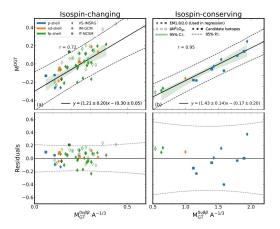
The NME of $2\nu\beta\beta$ decay in ⁴⁸Ca


$$M^{2\nu} = \sum_{\mu} \frac{\left\langle 0_F^+ \left| \boldsymbol{\sigma} \tau^- \right| 1_{\mu}^+ \right\rangle \left\langle 1_{\mu}^+ \left| \boldsymbol{\sigma} \tau^- \right| 0_I^+ \right\rangle}{E_{\mu} - E_I + \left(E_I - E_F \right)/2}$$

- CCSDT1: $M^{2\nu} = 0.042$ with the quenching factor $q^2 = 0.81^2$ deduced from two-body currents, somewhat larger than the data $M^{2\nu} = 0.035$. S. Novario et al., PRL126, 182502 (2021)
- VS-IMSRG: $M^{2\nu} = 0.030$ without the quenching factor.

Charlie G. Payne, B.S. thesis of the University of Waterloo, 2015

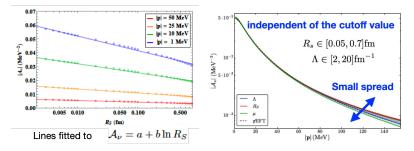
Determining the NME with correlation relation? Structure



N. Shimizu et al., PRL120, 142502 (2018)

Determining the NME with correlation relation?

 (\odot)



- Might not be able to calibrate the $M^{0\nu}$ for the candidate $0\nu\beta\beta$ decay with the data of DGT.
- Other observables: $2\nu\beta\beta$ decay?

JMY et al., PRC106, 014315 (2022)

The contact transition operator for $0\nu\beta\beta$ decay $\textcircled{\text{ op}}$

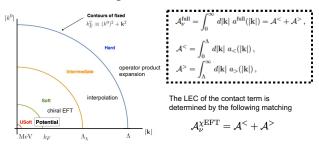
The $nn \rightarrow ppe^-e^-$ transition amplitude A_{ν} by the long-range transition operator at the LO

- The transition amplitude is regulator-dependent (left panel)!
- With the following contact term at LO, the A_{ν} becomes regulator independent (right panel)

$$V_{\nu,S} = -2g_{\nu}^{NN}\tau^{(1)+}\tau^{(2)+}$$

V. Cirigliano et al., PRL120, 202001 (2018); PRC97,065501 (2019)

Determination of the LEC for the contact operator


The LO contribution to $nn
ightarrow ppe^-e^-$ transition amplitude $\mathcal{A}_{
u}$

• represents the \mathcal{A}_{ν} as the momentum integral of a known kernel (proportional to the neutrino propagator) times the generalized forward Compton scattering amplitude $n(p_1)n(p_2)W^+(k) \rightarrow p(p'_1)p(p'_2)W^-(k)$, in analogy to the Cottingham formula [w.N. Cottingham, Ann. Phys. 25, 424 (1963)] for the electromagnetic contribution to hadron masses.

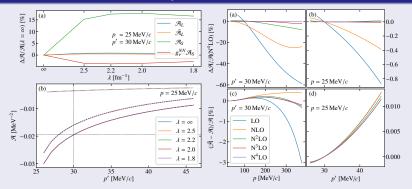
V. Cirigliano et al., PRL126, 172002 (2021); JHEP05, 289 (2021)

The contact transition operator for $0\nu\beta\beta$ decay $\textcircled{\text{ op}}$

- model-independent representations of the integrand in the low- and high-momentum regions, through chiral EFT and the operator product expansion, respectively.
- Construct a model for the full amplitude by interpolating between the two regions.

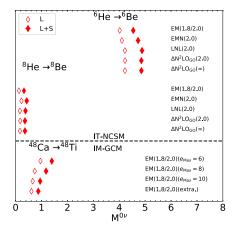
• The final (scheme-independent) amplitude

 $\mathcal{A}_{\nu}(|\bm{p}|=25{\rm MeV},|\bm{p}'|=30{\rm MeV})=-0.0195(5){\rm MeV}^{-2}$


V. Cirigliano et al., PRL126, 172002 (2021); JHEP05, 289 (2021)

Jiangming Yao	29 / 60
---------------	---------

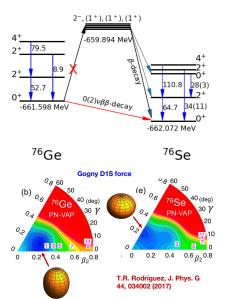
The contact transition operator for $0\nu\beta\beta$ decay


Determination of the LEC g_{ν}^{NN} for diff. chiral potentials

- Dependence of the short- and long-range parts of the transition amplitude on the SRG scale λ for the NN potential.
- Converges w.r.t. the power of chiral NN expansion.

R. Wirth, JMY, H. Hergert, PRL127, 242502 (2021)

The contact transition operator for $0\nu\beta\beta$ decay



- The contact term (S) enhances the NME for ⁴⁸Ca by 43(7)%, the uncertainty is propagated only from the synthetic datum.
- More accurate predictions require the LEC from lattice QCD.

R. Wirth, JMY, H. Hergert, PRL127, 242502 (2021)

First-principle calculations of $0\nu\beta\beta$ decay in ⁷⁶Ge @ ++, +

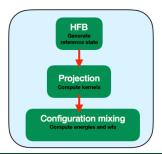
⁷⁶As

Challenges

- Both ⁷⁶Ge and ⁷⁶Se are medium-mass deformed nuclei with a shape-coexistence phenomenon.
- Triaxial deformation turns out to be essential in their low-lying states.

Imposing a computational challenge for nuclear ab initio methods. The IM-GCM is well suited for the low-lying states of shape-coexistence nuclei.

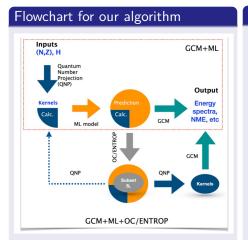
Generator coordinate method in a nutshell


• The trial wave function of a GCM state

$$|\Psi^{JNZ\cdots}\rangle = \sum_{Q} F_{Q}^{JNZ} \hat{P}^{J} \hat{P}^{N} \hat{P}^{Z} \cdots |\Phi_{Q}\rangle$$

 $|\Phi_Q\rangle$ are a set of HFB wave functions from constraint calculations, Q is the so-called generator coordinate.

• The Hill-Wheeler-Griffin equation:


$$\sum_{Q'} \left[\mathcal{H}^{JNZ}(Q,Q') - E^J \mathcal{N}^{JNZ}(Q,Q') \right] F_{Q'}^{JNZ} = 0$$

- The Hilbert space is controlled by the Q.
- The Q is usually chosen as deformation parameters.
- The computation complexity is generally smaller than full CI calculations, but also grows with the number of Q. more details? c.f. Changfeng Jiao's talk

Machine-learning models for $0\nu\beta\beta$ decay

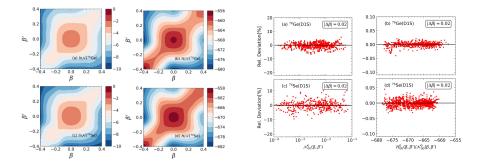
The noises by ML models may impact the results, but this impact can be avoided by our algorithm.

A space-reduction algorithm

- Computing partial of the kernels (\mathcal{N}, \mathcal{H}) exactly
- Training ML models for the kernels and predicting the rest of kernels
- Selection of a subspace based on orthogonality condition (OC)
- Computing all the elements of the kernels $(\mathcal{N}, \mathcal{H})$ within the subspace
- Determination of observables (energy spectra, $M^{0\nu}$)

X. Zhang et al. in preparation (2022)

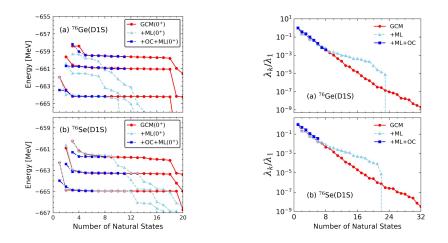
Jiangming Yao


34 / 60

Machine-learning models for $0\nu\beta\beta$ decay

Learning $\ln \mathcal{N}$ and \mathcal{H}/\mathcal{N} with polynomial regression

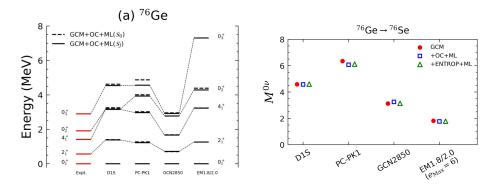
$$\hat{y}^{(i)}(\boldsymbol{\theta}; N) = \sum_{n=0}^{N} \boldsymbol{\theta}_n \cdot \left(\boldsymbol{x}^{(i)} \right)^n$$



The norm kernels ${\cal N}$ are highly non-local and vary by several orders of magnitude. Thus, the performance of the ML model for ${\cal N}$ is much worse than that for ${\cal H}/{\cal N}.$

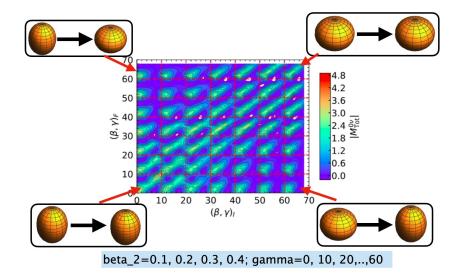
Jiangming Yao

Machine-learning models for $0\nu\beta\beta$ decay

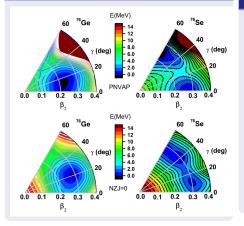


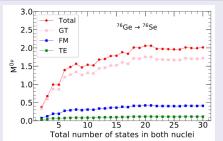
The noises introduced by the ML models spoil the energy plateau condition in the GCM+ML, but this effect is avoided in the GCM+ML+OC calculation.

Machine-learning models for $0 u\beta\beta$ decay

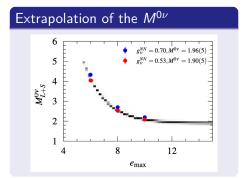


- Both the energy spectra and $M^{0\nu}$ of GCM reproduced by GCM+OC/ENTRO+ML.
- The ML algorithm speeds up the GCM calculation by a factor of 3-9 (axial case) for the energy spectra and NME.
- Expected to be more efficient with multi-coordinates.

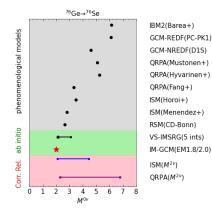

$0 u\beta\beta$ decay in ⁷⁶Ge with a chiral nuclear force



Energy surfaces by the chiral interaction EM1.8/2.0



Convergence of the $M_L^{0\nu}$ ($e_{\text{Max}} = 08, \hbar\omega = 12 \text{ MeV}$)



• The contribution of only the long-range operators is shown.

• Uncertainty quantifications (chiral interactions, many-body approximation)

- $0\nu\beta\beta$ decay provides a complementary way (oscillation exp, direct measurements, cosmological observations) to determine the absolute mass scale of neutrinos. Experimental searches of $0\nu\beta\beta$ decay are pushing up to tonne-scale detectors with a half-life sensitivity of up to 10^{28} years.
- The precision of the extracted neutrino mass depends on the NMEs which have the model uncertainty of a factor of up to three. A lot of efforts are devoted to reducing the discrepancy.
- Remarkable progress achieved in ab initio calculation of the NMEs of candidate nuclei. The contribution of the short-range operators turns out to be significant.
- The first-principle calculations of the NMEs for heavier candidate nuclei (⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe) starting from nuclear chiral potentials are in progress. Stay tuned!

Uncertainty quantification

- Uncertainty from chiral interactions (statistic and systematic errors, many-body currents, relativistic effect) and many-body truncations.
- Emulate the complicated nuclear model for the NMEs of $0\nu\beta\beta$ decay.

Contributions from other mechanisms

• The "master formula" for the 0uetaeta decay in EFT

$$\begin{split} [T_{1/2}^{0\nu}]^{-1} &= g_A^4 \left\{ G_{01} \left(\left| \mathcal{A}_{\nu} \right|^2 + \left| \mathcal{A}_R \right|^2 \right) \right. \\ &+ 2 G_{04} \left| \mathcal{A}_{m_e} \right|^2 + 4 G_{02} \left| \mathcal{A}_E \right|^2 + G_{09} \left| \mathcal{A}_M \right|^2 \\ &- 2 \left(G_{01} - G_{04} \right) \operatorname{Re} \left[\mathcal{A}_{\nu}^* \mathcal{A}_R \right] + 2 G_{04} \operatorname{Re} \left[\mathcal{A}_{m_e}^* \left(\mathcal{A}_{\nu} + \mathcal{A}_R \right) \right] \\ &- G_{03} \operatorname{Re} \left[\left(\mathcal{A}_{\nu} + \mathcal{A}_R \right) \mathcal{A}_E^* + 2 \mathcal{A}_{m_e} \mathcal{A}_E^* \right] \\ &+ G_{06} \operatorname{Re} \left[\left(\mathcal{A}_{\nu} - \mathcal{A}_R \right) \mathcal{A}_M^* \right] \rbrace \end{split}$$

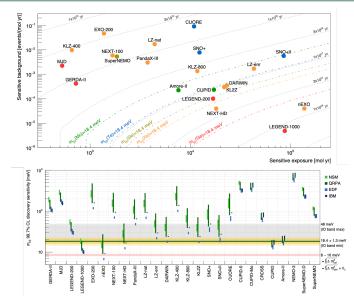
Acknowledgements

Collaborators

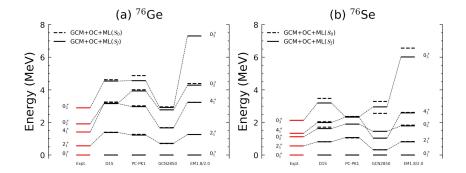
- SYSU: Chenrong Ding, Changfeng Jiao, Gang Li, Wei Lin, Xin Zhang
- PKU: Lingshuang Song, Jie Meng, Peter Ring
- LZU: Yifei Niu

- MSU: Scott Bogner, Heiko Hergert, Roland Wirth
- UNC: Jonathan Engel
- TRIUMF: Antonie Belly, Jason Holt
- TUD: Takayuki Miyagi
- NDU: Ragnar Stroberg
- UAM: Benjamin Bally, Tomas Rodriguez

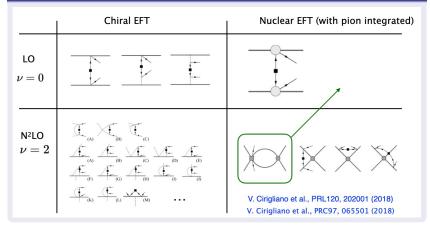
This work is partially supported by the National Natural Science Foundation of China and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University.


Thank you for your attention!

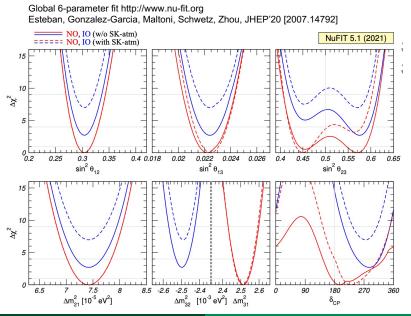
Backup slides


Current and next-generation experiments

M. Agostini et al., arXiv:2202.01787v1


Energy spectra of nuclear low-lying states

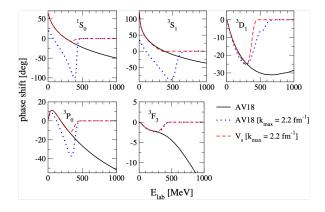
X. Zhang et al., in preparation (2022).



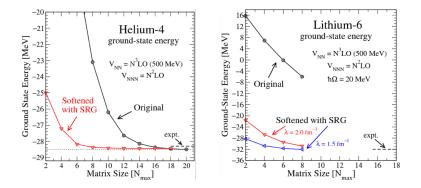
Standard mechanism for the $0\nu\beta\beta$ decay in (chiral) EFT

• Strategy: promoting the contact transition operator to the LO term.

Neutrino parameters from oscillation experiments September 2015

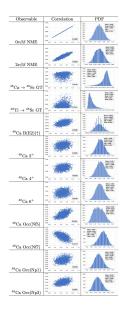


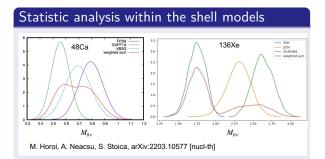
Jiangming Yao


48 / 60

Dialing the resolution of nuclear potentials

- The phase shifts from different treated AV18 interactions.
- The phase shifts are preserved in the SRG (on top of the black curves).
- S. K. Bogner et al. (2007); D. Jurgenson et al. (2008)




 The convergence of many-body (NCSM) calculations becomes faster using the SRG-softened nuclear force with a lower resolution parameter λ.

```
D. Jurgenson et al. (2009)
```

Uncertainty quantification

- Starting from three different shell-model Hamiltonians.
- Each of the two-body interaction matrix elements of the original shell-model Hamiltonian varies by 10%.
- Correlation between $M^{0\nu}$ and $M^{2\nu}$.

The End