

Light pseudoscalar meson and heavy meson scattering in chiral perturbation theory

Bo-Lin Huang with Zi-Yang Lin, Kan Chen, Shi-Lin Zhu

Center of High Energy Physics, Peking University

Chiral EFT, Nanjing, 15.10.2022

Bo-Lin Huang (PKU)

blhuang@pku.edu.cn

Chiral EFT, Nanjing, 15.10.2022 1/35

Introduction

Light meson and heavy meson scattering in SU(3) HMChPT

- Chiral Lagrangian
- Feynman diagrams
- T matrices
- Phase shifts and scattering lengths

Results and discussion

- Scattering lengths to the fourth order
- Scattering lengths in the iterated method
- Mesons and doubly charmed baryons scattering
- Phase shifts to the third order

Introduction

- ChPT has been widely used to study low-energy hadronic processes and achieved many successes (N. Fettes et al., Nucl. Phys. A676 (2000) 311; D. R. Entem et al., Phys. Rev. C91 (2015) 014002). Similar to the HBChPT formalism in the light flavor meson-baryon and baryon-baryon interaction, one can use HMChPT to deal with the charmed mesons.
- Detailed calculations of light pseudoscalar meson-heavy meson scattering lengths up to order p³ in SU(3) HMChPT (Y.-R. Liu *et al.*, Phys. Rev. D79 (2009) 094026). Present calculations concern the fourth order contributions, the non-perturbative results, and the partial-wave phase shifts.
- In this talk: the light pseudoscalar meson and heavy meson scattering based on papers:
 - B.-L. Huang, Z.-Y. Lin and S.-L. Zhu, Phys. Rev. D105 (2022) 036016;
 - O B.-L. Huang, Z.-Y. Lin, K. Chen and S.-L. Zhu, arXiv: 2205.02619

Light meson and heavy meson scattering in SU(3) HMChPT

- Chiral Lagrangian
- Feynman diagrams
- T matrices
- Phase shifts and scattering lengths

Results and discussion

- Scattering lengths to the fourth order
- Scattering lengths in the iterated method
- Mesons and doubly charmed baryons scattering
- Phase shifts to the third order

Chiral Lagrangian meson and heavy meson fields

Eight light meson fields in terms of the traceless hermitian 3×3 matrices Φ :

$$\Phi = \sqrt{2} \begin{pmatrix} \frac{1}{\sqrt{2}} \pi^{0} + \frac{1}{\sqrt{6}} \eta & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0} + \frac{1}{\sqrt{6}} \eta & K^{0} \\ K^{-} & \overline{K}^{0} & -\frac{2}{\sqrt{6}} \eta \end{pmatrix},$$

with the SU(3) matrix $U = \xi^2 = \exp(i\Phi/f)$.

 $P = (D^0, D^+, D^+_s), \quad P^*_\mu = (D^{0*}, D^{+*}, D^{+*}_s)_\mu.$

Chiral Lagrangian

The effective chiral Lagrangian:

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\phi\phi}^{(2)} + \mathcal{L}_{H\phi}^{(1)} + \mathcal{L}_{H\phi}^{(2)} + \mathcal{L}_{H\phi}^{(3)} + \mathcal{L}_{H\phi}^{(4)}.$$

Lowest-order Lagrangians for meson-meson and meson-heavy meson interaction

$$\mathcal{L}_{\phi\phi}^{(2)} = rac{f^2}{4} \mathrm{tr}(u_{\mu}u^{\mu} + \chi_{+}),$$

$$\mathcal{L}_{H\phi}^{(1)} = -\left\langle (im{v}\cdot\partial H)ar{H}
ight
angle + \left\langle Hm{v}\cdot\Gammaar{H}
ight
angle + g\left\langle Hu_{\mu}\gamma^{\mu}\gamma_{5}ar{H}
ight
angle ,$$

higher-order Lagrangians involving low-energy constants, see ref. (B-L.

Huang, Z.-Y. Lin and S.-L. Zhu, Phys. Rev. D105 (2022) 036016;)

Bo-Lin Huang (PKU)

Light meson and heavy meson scattering in SU(3) HMChPT

- Chiral Lagrangian
- Feynman diagrams
- T matrices
- Phase shifts and scattering lengths

Results and discussion

- Scattering lengths to the fourth order
- Scattering lengths in the iterated method
- Mesons and doubly charmed baryons scattering
- Phase shifts to the third order

Feynman diagrams

Bo-Lin Huang (PKU)

Introduction

Light meson and heavy meson scattering in SU(3) HMChPT

- Chiral Lagrangian
- Feynman diagrams

T matrices

Phase shifts and scattering lengths

Results and discussion

- Scattering lengths to the fourth order
- Scattering lengths in the iterated method
- Mesons and doubly charmed baryons scattering
- Phase shifts to the third order

Threshold *T* matrices

The threshold T matrix with the four orders read

$$\begin{split} T_{DK}^{(1)} = & \left\{ 0 \right\}_{\text{LO}} + \left\{ \frac{2(4c_0 + c_2 + c_4)m_K^2}{f_K^2} \right\}_{\text{NLO}} + \left\{ \frac{m_K^2}{8\pi^2 f_K^4} L_i(m_K, m_\pi) \right\}_{\text{N2LO}} \\ & + \left\{ -\frac{2\bar{e}_1 m_K^4}{f_K^2} + \frac{1}{6912\pi^2 f_K^4} \{ 192c_0 M(40, -5, 7) - 96c_1 [M(48, 5, -5) + 36m_K (m_\pi^2 + m_K^2) L_i(m_K, m_\pi)] - 6c_2 M(1, -8, 7) - c_3 [M(1753, -8, 19) + 1728m_K^3 L_i(m_K, m_\pi)] + 48c_4 M(40, -5, 7) + 8c_5 [M(-170, 7, 19) - 216m_K^3 L_i(m_K, m_\pi)] \} \right\}_{\text{N3LO}}, \end{split}$$

.....omitting many more equations.....

Bo-Lin Huang (PKU)

T matrices with q

The T matrix with the three orders read

$$T_{\pi D}^{(1/2)} = \frac{2w_{\pi}}{f_{\pi}^2} + \frac{1}{f_{\pi}^2} [8c_0m_{\pi}^2 + 4c_1m_{\pi}^2 + 2c_2w_{\pi}^2 + c_3w_{\pi}^2 + 2c_4(w_{\pi}^2 - q^2z) + c_5(w_{\pi}^2 - q^2z)] + \frac{1}{f_{\pi}^2} [16\bar{\kappa}_1m_{\pi}^2w_{\pi} + 4\bar{\kappa}_2w_{\pi}^3 + 4\bar{\kappa}_3w_{\pi}(w_{\pi}^2 - q^2z)] - \frac{w_{\pi}}{12f_{\pi}^4} \{3w_{\pi}[3J_0(-w_{\pi}, m_K) + 4J_0(-w_{\pi}, m_{\pi}) - 9J_0(w_{\pi}, m_K) - 17J_0(w_{\pi}, m_{\pi})] + 12I_2(t, m_K) + 16I_2(t, m_{\pi})\},$$

.....omitting many more equations.....

Introduction

Light meson and heavy meson scattering in SU(3) HMChPT

- Chiral Lagrangian
- Feynman diagrams
- T matrices

Phase shifts and scattering lengths

Results and discussion

- Scattering lengths to the fourth order
- Scattering lengths in the iterated method
- Mesons and doubly charmed baryons scattering
- Phase shifts to the third order

Phase shifts

The partial-wave amplitudes $f_l^{(l)}(q)$ are obtained by a projection:

$$f_l^{(l)}(q) = rac{M_H}{16\pi\sqrt{s}} \int_{-1}^{+1} dz \, [T_{\phi H}^{(l)} P_l(z)],$$

The phase shifts $\delta_l^{(I)}(q)$ are calculated as (N. Fettes *et al.*, Nucl. Phys. A640 (1998) 199)

$$\delta_l^{(l)}(q) = \arctan[q \operatorname{Re} f_l^{(l)}(q)].$$

The scattering lengths for the S waves and the scattering volumes for P waves are obtained by

$$a_{l}^{(l)} = \lim_{q \to 0} q^{-2l} f_{l}^{(l)}(q).$$

Scattering lengths

The S-wave scattering length is defined through:

$$a=rac{M}{8\pi(M+m)}T_{
m th},$$

For a single channel separable potential, the scattering lengths is given by (N. Kaiser *et al.*, Nucl. Phys. A594 (1995) 325)

$$a = a_{\mathsf{Born}}(1 - \frac{1}{2}\mu \, a_{\mathsf{Born}})^{-1}.$$

Here a_{Born} includes the contributions from all the diagrams except for the iterated diagrams.

Introduction

2 Light meson and heavy meson scattering in SU(3) HMChPT

- Chiral Lagrangian
- Feynman diagrams
- T matrices
- Phase shifts and scattering lengths

Results and discussion

- Scattering lengths to the fourth order
- Scattering lengths in the iterated method
- Mesons and doubly charmed baryons scattering
- Phase shifts to the third order

Fits through the perturbative formula

	Fit p1	<i>C</i> ₂	<i>C</i> ₃	<i>C</i> 4	C 5	$\bar{\kappa}$	ē ₁	ē ₂
<i>c</i> ₂ (GeV ⁻¹)	$\textbf{0.53} \pm \textbf{3.12}$	1.00	-0.83	-0.99	0.83	0.90	-0.25	-0.73
<i>c</i> ₃ (GeV ⁻¹)	-2.82 ± 3.59		1.00	0.90	-0.99	-0.86	0.67	0.49
<i>c</i> ₄ (GeV ⁻¹)	-0.26 ± 2.71			1.00	-0.90	-0.91	0.38	0.69
<i>c</i> ₅ (GeV ⁻¹)	$\textbf{3.22} \pm \textbf{4.44}$				1.00	0.86	-0.67	-0.49
$\bar{\kappa}$ (GeV ⁻²)	$\textbf{0.87} \pm \textbf{0.51}$					1.00	-0.33	-0.85
ē ₁ (GeV ⁻³)	-0.44 ± 1.30						1.00	-0.18
ē ₂ (GeV ⁻³)	-6.15 ± 4.54							1.00
$\chi^2/d.o.f.$	$\frac{3.41}{10-7} = 1.14$							

.....omitting the other two fits.....

Scattering lengths through the perturbative formula

Bo-Lin Huang (PKU)

Scattering lengths through the perturbative formula

Fit p1	$\mathcal{O}(p)$	$\mathcal{O}(p^2)$	$\mathcal{O}(p^3)$	$\mathcal{O}(p^4)$	Total
$a_{DK}^{(1)}$	0.00	0.07	-0.12 + 0.19 <i>i</i>	0.09 – 0.13 <i>i</i>	0.04(3) + 0.07(16) <i>i</i>
$a_{DK}^{(0)}$	0.51	0.29	0.77	0.41	1.98(93)
$a_{D\bar{K}}^{(1)}$	-0.25	0.18	-0.49	0.33	-0.23(3)
$a_{D\bar{K}}^{(0)}$	0.25	-0.04	0.73	-0.16	0.80(6)
a _{DsK}	-0.26	0.18	-0.38	0.24	-0.21(7)
a _{D₅K}	0.26	0.18	0.21 + 0.29 <i>i</i>	0.33 + 0.19 <i>i</i>	0.97(47) + 0.49(22) <i>i</i>
$a_{D\pi}^{(3/2)}$	-0.12	0.02	-0.04	0.04	-0.09(3)
$a_{D\pi}^{(1/2)}$	0.24	0.02	0.02	-0.01	0.27(2)
$a_{D_s\pi}$	0.00	0.01	-0.04	0.05	0.02(2)
				∢ [

18/35 Chiral EFT, Nanjing, 15.10.2022

Introduction

- 2 Light meson and heavy meson scattering in SU(3) HMChPT
 - Chiral Lagrangian
 - Feynman diagrams
 - T matrices
 - Phase shifts and scattering lengths

Results and discussion

- Scattering lengths to the fourth order
- Scattering lengths in the iterated method
- Mesons and doubly charmed baryons scattering
- Phase shifts to the third order

Fits through the iterated method

	Fit u1	<i>C</i> ₂	<i>C</i> ₃	<i>C</i> ₄	C 5	$\bar{\kappa}$	ē1	ē ₂	μ
<i>c</i> ₂ (GeV ⁻¹)	-4.60 ± 4.58	1.00	-0.92	-0.99	0.89	0.92	0.70	0.75	0.19
<i>c</i> ₃ (GeV ⁻¹)	$\textbf{3.32} \pm \textbf{3.42}$		1.00	0.94	-0.98	-0.87	-0.57	-0.71	-0.10
<i>c</i> ₄ (GeV ⁻¹)	$\textbf{4.10} \pm \textbf{3.47}$			1.00	-0.91	-0.92	-0.68	-0.75	-0.17
<i>c</i> ₅ (GeV ⁻¹)	-5.11 ± 3.73				1.00	0.92	0.44	0.78	-0.07
$\bar{\kappa}$ (GeV ⁻²)	-0.06 ± 0.17					1.00	0.41	0.77	-0.19
\bar{e}_1 (GeV ⁻³)	$\textbf{2.38} \pm \textbf{1.65}$						1.00	0.39	0.80
\bar{e}_2 (GeV ⁻³)	-5.78 ± 1.83							1.00	-0.11
μ (GeV)	1.03 ± 0.36								1.00
$\chi^2/d.o.f.$	$\frac{3.90}{11-8} = 1.30$								

.....omitting the other two fits.....

Bo-Lin Huang (PKU

Scattering lengths through the iterated formula

Bo-Lin Huang (PKU)

Scattering lengths through the iterated formula

	Fit u1	Fit u2	Fit u3	Liu2013	Guo2019
$a_{DK}^{(1)}$	-0.03(4)	-0.01(3)	-0.06(1)	$0.07^{+0.03}_{-0.03} + \textit{i}0.17^{+0.02}_{-0.01}$	$-0.01^{+0.05}_{-0.03}+\textit{i}0.39^{+0.04}_{-0.04}$
$a_{DK}^{(0)}$	-1.55(39)	-1.42(28)	-1.67(45)	$-0.84\substack{+0.17\\-0.22}$	$-1.51\substack{+0.72\\-2.35}$
$a_{D\bar{K}}^{(1)}$	-0.23(2)	-0.24(2)	-0.21(1)	-0.20(1)	$-0.20\substack{+0.01\\-0.01}$
$a_{D\bar{K}}^{(0)}$	8.76*	1.81(48)	8.95*	0.84(15)	21.9*
a _{D₅K}	-0.14(3)	-0.17(3)	-0.14(1)	-0.18(1)	$-0.20\substack{+0.01\\-0.01}$
$a_{D_s\bar{K}}$	0.14(36)	371.58*	0.05(18)	$-0.09^{+0.06}_{-0.05}+\textit{i}0.44^{+0.05}_{-0.05}$	$-0.57^{+0.06}_{-0.04}+\textit{i}0.35^{+0.08}_{-0.07}$
$a_{D\pi}^{(3/2)}$	-0.07(4)	-0.06(2)	-0.05(1)	-0.100(2)	$-0.103\substack{+0.003\\-0.003}$
$a_{D\pi}^{(1/2)}$	1.45(169)	0.61(11)	6.00*	$0.37^{+0.03}_{-0.02}$	$0.40\substack{+0.03\\-0.02}$
$a_{D_{s}\pi}$	0.02(3)	0.03(2)	0.05(2)	-0.002(1)	$0.012\substack{+0.003\\-0.003}$
$a_{D\eta}$	-0.04(14)	0.03(8)	-0.09(2)		$0.29^{+0.15}_{-0.22} + i 0.61^{+0.30}_{-0.26}$
$a_{D_s\eta}$	-0.18(8)	0.03(16)	-0.19(2)		$-0.39^{+0.05}_{-0.03}+\textit{i}0.06^{+0.02}_{-0.02}$

◆□▶ ◆□▶ ★三▶ ★三▶ ★□▶

Introduction

2 Light meson and heavy meson scattering in SU(3) HMChPT

- Chiral Lagrangian
- Feynman diagrams
- T matrices
- Phase shifts and scattering lengths

Results and discussion

- Scattering lengths to the fourth order
- Scattering lengths in the iterated method
- Mesons and doubly charmed baryons scattering
- Phase shifts to the third order

Mesons and doubly charmed baryons scattering

Meson and doubly charmed baryon (\equiv_{cc} and Ω_{cc}) scattering lengths were estimated based on heavy diquark-antiquark (HDA) symmetry.

Scattering lengths in the perturbative formula

Fit p1	$\mathcal{O}(p)$	$\mathcal{O}(p^2)$	$\mathcal{O}(p^3)$	$\mathcal{O}(p^4)$	Total
$a^{(1)}_{K \equiv_{cc}}$	-0.28	0.20	-0.55	0.37	-0.26(3)
$a^{(0)}_{K \equiv_{cc}}$	0.28	-0.04	0.82	-0.17	0.89(7)
$a^{(1)}_{ar{K} \equiv_{cc}}$	0.00	0.08	-0.13 + 0.22 <i>i</i>	0.10 – 0.14 <i>i</i>	0.05(3) + 0.08(18)i
$a^{(0)}_{\bar{K} \equiv_{cc}}$	0.56	0.32	0.86	0.46	2.20(103)
$a_{K\Omega_{cc}}$	0.28	0.20	0.23 + 0.33 <i>i</i>	0.36 + 0.21 <i>i</i>	1.07(53) + 0.54(24) <i>i</i>
$a_{ar{K}\Omega_{cc}}$	-0.28	0.20	-0.42	0.27	-0.23(8)
$a^{(3/2)}_{\pi \equiv_{cc}}$	-0.12	0.03	-0.04	0.04	-0.10(4)
$a^{(1/2)}_{\pi \equiv_{cc}}$	0.25	0.03	0.02	-0.01	0.28(2)

Bo-Lin Huang (PKU)

blhuang@pku.edu.cr

Chiral EFT, Nanjing, 15.10.2022 25/35

Scattering lengths in the iterated formula

	Fit u1	Fit u2	Fit u3	Guo2017	
$a_{K \equiv_{cc}}^{(1)}$	-0.24(3)	-0.25(2)	-0.22(2)	$-0.19\substack{+0.02\\-0.02}$	
$a^{(0)}_{K \equiv_{cc}}$	-6.15*	2.81*	-5.04*	5.2, -3.6, -1.4	
$a^{(1)}_{ar{K} \equiv_{cc}}$	-0.04(4)	-0.01(3)	-0.06(2)	$-0.22\substack{+0.14\\-0.14}+\textit{i}0.45\substack{+0.00\\-0.09}$	
$a^{(0)}_{ar{K} \equiv_{cc}}$	-1.19(21)	-1.29(24)	-1.20(19)	$-0.49\substack{+0.10\\-0.19}$	
$a_{K\Omega_{cc}}$	0.16(43)	-7.80*	0.06(20)	$-0.55^{+0.11}_{-0.16}+\textit{i}0.13^{+0.19}_{-0.07}$	
$a_{ar{K}\Omega_{cc}}$	-0.15(3)	-0.18(3)	-0.15(1)	$-0.19\substack{+0.02\\-0.02}$	
$a^{(3/2)}_{\pi \equiv_{cc}}$	-0.07(3)	-0.07(2)	-0.05(1)	$-0.095\substack{+0.003\\-0.004}$	
$a^{(1/2)}_{\pi \equiv_{cc}}$	1.73*	0.65(12)	16.26*	$0.55\substack{+0.16 \\ -0.10}$	
				<□>→●→ ◆□> ◆□> ◆□> ●目	୬ବ
Bo-Lin Huang (PKU)		blhu	uang@pku.edu.cn	Chiral EFT, Nanjing, 15.10.2022	26/3

Introduction

2 Light meson and heavy meson scattering in SU(3) HMChPT

- Chiral Lagrangian
- Feynman diagrams
- T matrices
- Phase shifts and scattering lengths

Results and discussion

- Scattering lengths to the fourth order
- Scattering lengths in the iterated method
- Mesons and doubly charmed baryons scattering
- Phase shifts to the third order

Filase shifts to the third order

Fit to the phase shifts and scattering lengths.

	Values	<i>c</i> ₀	<i>C</i> 1	<i>C</i> ₂	<i>C</i> 3	<i>C</i> 4	C 5	$\bar{\kappa}_1$	$\bar{\kappa}_2$	$\bar{\kappa}_3$
<i>c</i> ₀ (GeV ⁻¹)	-0.77 ± 0.39	1.00	0.99	-0.86	-0.88	0.00	0.00	0.02	-0.92	0.00
c ₁ (GeV ⁻¹)	-0.64 ± 0.35		1.00	-0.86	-0.89	0.00	0.00	0.01	-0.93	0.00
<i>c</i> ₂ (GeV ⁻¹)	-5.04 ± 1.83			1.00	0.95	-0.51	-0.41	-0.01	0.61	0.50
<i>c</i> ₃ (GeV ⁻¹)	5.47 ± 1.57				1.00	-0.36	-0.45	0.10	0.67	0.40
<i>c</i> ₄ (GeV ⁻¹)	$\textbf{8.99} \pm \textbf{0.93}$					1.00	0.80	0.00	0.37	-0.98
<i>c</i> ₅ (GeV ⁻¹)	-3.08 ± 0.70						1.00	0.00	0.34	-0.90
$\bar{\kappa}_1$ (GeV ⁻²)	0.21 ± 0.04							1.00	0.01	0.00
$\bar{\kappa}_2$ (GeV ⁻²)	$\textbf{7.81} \pm \textbf{3.88}$								1.00	-0.38
$\bar{\kappa}_3 ~({\rm GeV}^{-2})$	-1.87 ± 1.47									1.00
$\chi^2/{\rm d.o.f.}$	$\frac{34.85}{195-9} = 0.19$									

Bo-Lin Huang (PKU

blhuang@pku.edu.c

Chiral EFT, Nanjing, 15.10.2022 29/35

Bo-Lin Huang (PKU)

blhuang@pku.edu.ci

Chiral EFT, Nanjing, 15.10.2022 30/35

Bo-Lin Huang (PKU)

blhuang@pku.edu.ci

Chiral EFT, Nanjing, 15.10.2022 31/35

Bo-Lin Huang (PKU)

- Threshold T-matrices to the fourth order for light meson and heavy meson scattering in SU(3) HMChPT.
- Scattering lengths for light meson and heavy meson scattering using perturbative and nonperturbative methods.
- Mesons and doubly charmed baryons scattering based on the HDA symmetry.
- Phase shifts to the third order for light meson and heavy meson scattering in SU(3) HMChPT.
- Outlook
 - Higher-order calculations.
 - Including the $D_{s0}^*(2317)$ resonance.
 - Nonperturbative calculations.
 - Combining with more Lattice QCD data.

Thank you for your attention!

Bo-Lin Huang (PKU)

blhuang@pku.edu.cn

Chiral EFT, Nanjing, 15.10.2022 35/35