2022年第七届手征有效场论研讨会, 2022年10月15-17日

Hyperon dynamics and hypernuclear formation in heavy-ion collisions

重离子碰撞中超子产生和超核的形成

程辉淦、张定昌、冯兆庆* 华南理工大学物理与光电学院

Email: fengzhq@scut.edu.cn

年南北ノ大京

报告内容

▶ 奇异性核物理研究现状

▶ 重离子碰撞中奇异粒子产生

▶ 原子核碎裂反应和超核形成

▶ 总结

◆强子的内部结构

Normal meson

- ◆核子和核子共振态:八(十)重态重子
- ◆介子八重态: 矢量介子和赝标量介子
- ◆奇异粒子(含s夸克)主要指介子K(K⁰, K⁺)和
 K̄(K⁰, K⁻),超子Λ、Σ、Ξ和Ω
- ◆含有奇异粒子的原子核─超核

奇异粒子产生:

> 中高能重离子碰撞

- ➤ 强子(质子,反质子,介子)引
 起的核反应
- ▶ 高能电子轰击原子核
- ▶ 光核反应

1. 超核实验观测和进展

1953年波兰物理学家M. Danysz和J. Pniewski 在宇宙线乳胶实验中首次发现Λ超核

利用 (K⁻, K⁺) 产生_EX超核实验观测 Kazuma Nakazawa et al, J. Phys.: Conf. Ser. 569 (2014) 012082

5

Hypernuclide ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H measured by STAR Collaboration (Phys. Rev. Lett. 128, 202301 (2022))

重离子碰撞产生超核的优势

- 1. 极端丰中子或丰质子超核产生和谱学性质
- 2. 奇特超核产生(s=-2) _{AA}X和_EX
- 3. 核物质中Λ-Λ和Ξ-N相互作用

PHYSICAL REVIEW C 102, 044002 (2020)

Observation of a $\overline{K}NN$ bound state in the ³He(K^- , Λp)n reaction

H. Tamura, Prog. Theor. Exp. Phys. (2012) 02B012

2. 中高能重离子碰撞产生超核理论研究一统计理论

A. Andronic, P. Braun-Munzinger, J. Stachel, H. Stöcker, Physics Letters B 697 (2011) 203–207

Pb+Pb

N. Buyukcizmeci, R. Ogul, A. S. Botvina, M. Bleicher, Phys. Scr. 95 075311 (2020)

Statistical multifragmentation model (SMM)

3. 中高能重离子碰撞产生超核理论研究方法 一 输运理论+并合模型

A.S. Botvina, J. Steinheimer, E.Bratkovskaya et al., Physics Letters B 742 (2015)7–14

J. Aichelin, E. Bratkovskaya, A. Le Fèvre et al., Physical Review C 101, 044905 (2020) A. Le Fèvre, J. Aichelin, C. Hartnack and Y. Leifels 100, Physical Review C 034904 (2019)

⁶Li+¹²C@2A GeV

斜浮追款 2018年 第63卷 第8期:735~744

0.9

0.6

ΤU

E_{kin} (GeV)

中高能重离子**碰撞中**奇异粒子产生和**超核形成** 机制

冯兆庆
 中国科学院近代物理研究所,兰州 730000
 E-mail: fengzhq@impcas.ac.cn

10⁻⁴

0.3

4. 致密物质中超子成分的影响

S. Weissenborn, D. Chatterjee, J. Schaffner-Bielich, Nucl. Phys. A 881, 62 (2012) W. Z. Jiang, R. Y. Yang, and D. R. Zhang, Phys. Rev. C 87, 064314 (2013)

核物质对称能

$$E_{\text{sym}}(\rho) = E_{\text{sym}}(\rho_0) + \frac{L}{3} \left(\frac{\rho - \rho_0}{\rho_0} \right) + \frac{K_{\text{sym}}}{18} \left(\frac{\rho - \rho_0}{\rho_0} \right)^2, \quad (\rho \sim \rho_0)$$

液滴模型

 $E_{\rm sym}(\rho_0) \approx 32 \,{\rm MeV}$

斜率和曲率参数

L

$$\equiv 3\rho_0 \frac{\partial E_{\text{sym}}(\rho)}{\partial \rho} \bigg|_{\rho = \rho_0} \qquad \qquad K_{\text{sym}} \equiv 9\rho_0^2 \frac{\partial^2 E_{\text{sym}}(\rho)}{\partial \rho^2} \bigg|_{\rho = \rho_0}$$

Hajime Sotani, Nobuya Nishimura, and Tomoya Naito, Prog. Theor. Exp. Phys. 041D01 (2022)

重离子碰撞中同位旋耗散和介子产生 2.5 ¹⁹⁷Au+¹⁹⁷Au@1.5*A* GeV 2.0 10 dN/dp (fm³) $(n/p)_{p/p_0\geq 2}$ 10 10 1.0 ¹³²Sn+¹²⁴Sn@0.27A GeV and b=3 fm 10 0.5-30 10 20 40 50 200 400 0 t (fm/c) Ekin (MeV) p/p_o 10^{-2} 10 π^+ π 10^{-3} 10^{-3} dM/dP_T $dM/dP_{\rm T}$ 10^{-4} L=139 MeV L=139 MeV L=42 MeV *L*=42 MeV 10^{-5} 10^{-5} • $S\pi RIT$ • $S\pi RIT$ ¹⁰⁸Sn+¹¹²Sn@E/A=270MeV and b=3fm ¹⁰⁸Sn+¹¹²Sn@E/A=270MeV and b=3fm 10^{-6} 10⁻⁶ 100 200 0 300 400 0 100 200 300 400 P_{T} (MeV/c) P_{T} (MeV/c)

反质子轰击原子核中子和质子产额比值 $\gamma_s=0.5$, L=53 MeV

Article

Nature 606 (2022) 276

重离子碰撞与中子星物质

Constraining neutron-star matter with microscopic and macroscopic collisions

Nuclear dynamics from 5 MeV/nucleon – 10 GeV/nucleon for HICs, antiproton (proton, π , K, etc)

- **Lanzhou quantum molecular dynamics** (Skyrme interaction, Walecka model with σ , ω, ρ, δ)
- **Isospin physics at intermediate energies** (constraining nuclear symmetry energy at sub- and suprasaturation densities in HICs and probing isospin splitting of nucleon effective mass from HICs)
- In-medium properties of hadrons in dense nuclear matter from heavy-ion
 collisions (extracting optical potentials, i.e., Δ(1232), N*(1440), N*(1535)), hyperons (Λ,Σ,Ξ,Ω) and mesons (π,K,η,ρ,ω,φ...), hypernucleus dynamics)
- **Hadron (antiproton, proton, π[±], K[±]) induced reactions** (hypernucleus production, e.g., $\Lambda(\Sigma)X$, $\Lambda\Lambda X$, ΞX , $\overline{\Lambda}X(S=1)$, in-medium modifications of hadrons, cold QGP)

1. 基于Skyrme相互作用的量子分子动力学模型 (LQMD-Skyrme)

PHYSICAL REVIEW C 84, 024610 (2011)

$$H_B = \sum_i \sqrt{\mathbf{p}_i^2 + \mathbf{m}_i^2} + U_{\text{int}} + U_{\text{mom}}$$

Momentum dependence of the symmetry potential and its influence on nuclear reactions

Zhao-Qing Feng* Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China (Received 11 July 2011; published 19 August 2011)

$$U_{loc} = \int V_{loc}(\rho(\mathbf{r})) d\mathbf{r} \quad V_{loc}(\rho) = \frac{\alpha}{2} \frac{\rho^2}{\rho_0} + \frac{\beta}{1+\gamma} \frac{\rho^{1+\gamma}}{\rho_0^{\gamma}} + E_{sym}^{loc}(\rho)\rho\delta^2 + \frac{g_{sur}}{2\rho_0}(\nabla\rho)^2 + \frac{g_{sur}^{lso}}{2\rho_0} [\nabla(\rho_n - \rho_p)]^2,$$

$$U_{mom} = \frac{1}{2\rho_0} \sum_{i,j,j\neq i} \sum_{\tau,\tau'} C_{\tau,\tau'} \delta_{\tau,\tau_i} \delta_{\tau',\tau_j} \int \int \int d\mathbf{p} \, d\mathbf{p}' \, d\mathbf{r} \, f_i(\mathbf{r},\mathbf{p},t) \\ \times \left[\ln(\epsilon(\mathbf{p}-\mathbf{p}')^2+1) \right]^2 f_j(\mathbf{r},\mathbf{p}',t).$$

$$E_{sym}(\rho) = \frac{1}{3} \frac{\hbar^2}{2m} \left(\frac{3}{2} \pi^2 \rho\right)^{2/3} + E_{sym}^{loc}(\rho) + E_{sym}^{mom}(\rho).$$

$$E_{sym}^{loc}(\rho) = \frac{1}{2} C_{sym}(\rho/\rho_0)^{\gamma_s} \qquad E_{sym}^{loc}(\rho) = a_{sym}(\rho/\rho_0) + b_{sym}(\rho/\rho_0)^2.$$

Table 1: The parameters and properties of isospin symmetric EoS used in the LQMD model at the density of 0.16 fm^{-3} .

Parameters	$\alpha \ ({\rm MeV})$	β (MeV)	γ	C_{mom} (MeV)	$\epsilon~({\rm c}^2/{\rm MeV^2})$	m_∞^*/m	K_{∞} (MeV)
PAR1	-215.7	142.4	1.322	1.76	5×10^{-4}	0.75	230
PAR2	-226.5	173.7	1.309	0.	0.	1.	230

2. 相对论量子分子动力学(LQMD-RMF)

$$\begin{split} L &= \bar{\psi} [i\gamma_{\mu}\partial^{\mu} - (M_N - g_{\sigma}\varphi - g_{\delta}\vec{\tau}\cdot\vec{\delta}) - g_{\omega}\gamma_{\mu}\omega^{\mu} - g_{\rho}\gamma_{\mu}\vec{\tau}\cdot\vec{b}^{\mu}]\psi \\ &+ \frac{1}{2}(\partial_{\mu}\varphi\partial^{\mu}\varphi - m_{\sigma}^2\varphi^2) - U(\varphi) + \frac{1}{2}(\partial_{\mu}\vec{\delta}\partial^{\mu}\vec{\delta} - m_{\sigma}^2\vec{\delta}^2) \\ &+ \frac{1}{2}m_{\omega}^2\omega_{\mu}\omega^{\mu} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}m_{\rho}^2\vec{b}_{\mu}\vec{b}^{\mu} - \frac{1}{4}\vec{G}_{\mu\nu}\vec{G}^{\mu\nu} \end{split}$$

$$F_{\mu\nu} = \partial_{\mu}\omega_{\nu} - \partial_{\nu}\omega_{\mu},$$

$$G_{\mu\nu} = \partial_{\mu}\vec{b}_{\nu} - \partial_{\nu}\vec{b}_{\mu},$$

$$U(\varphi) = \frac{g_2}{3}\varphi^3 + \frac{g_3}{4}\varphi^4$$

能量密度:

$$\varepsilon = \sum_{i=n,p} 2 \int \frac{d^3k}{(2\pi)^3} \sqrt{k^2 + M_i^{*2}} + \frac{1}{2}m_\sigma^2 \varphi^2 + U(\varphi) + \frac{1}{2}m_\omega^2 \omega_0^2 + \frac{1}{2}m_\rho^2 b_0^2 + \frac{1}{2}m_\delta^2 \delta_3^2$$

核子的相空间演化:

$$\begin{split} \dot{\mathbf{x}} &= \frac{\mathbf{p}_{\mathbf{i}}^{*}}{p_{0}^{*}} + \sum_{i \neq j}^{N} \{ \frac{g_{v}^{2}}{2m_{v}^{2}} z_{j}^{*\mu} u_{i,\mu} B_{i} B_{j} \frac{\partial \rho_{ij}}{\partial \mathbf{p}_{\mathbf{i}}} + \frac{g_{v}^{2}}{2m_{v}^{2}} z_{i}^{*\mu} u_{j,\mu} B_{i} B_{j} \frac{\partial \rho_{ji}}{\partial \mathbf{p}_{\mathbf{i}}} + \frac{g_{v}^{2}}{2m_{v}^{2}} z_{j}^{*\mu} \rho_{ji} B_{i} B_{j} \frac{\partial u_{i,\mu}}{\partial \mathbf{p}_{\mathbf{i}}} \\ &+ z_{j}^{*\mu} \frac{B_{i} B_{j} \bar{g}_{v}^{2}}{2m_{v}^{2}} [\frac{\rho_{ij}}{1 - p_{T,ij}^{2} / \Lambda_{v}^{2}} \frac{\partial u_{i,\mu}}{\partial \mathbf{p}_{\mathbf{i}}} + \frac{u_{i,\mu}}{1 - p_{T,ij}^{2} / \Lambda_{v}^{2}} \frac{\partial \rho_{ij}}{\partial \mathbf{p}_{\mathbf{i}}} + u_{i,\mu} \rho_{ij} \frac{\partial [1 / (1 - p_{T,ij}^{2} / \Lambda_{v}^{2})]}{\partial \mathbf{p}_{\mathbf{i}}}] \\ &+ z_{i}^{*\mu} \frac{B_{i} B_{j} \bar{g}_{v}^{2}}{2m_{v}^{2}} [\frac{u_{j,\mu}}{1 - p_{T,ji}^{2} / \Lambda_{v}^{2}} \frac{\partial \rho_{ji}}{\partial \mathbf{p}_{\mathbf{i}}} + u_{j,\mu} \rho_{ji} \frac{\partial [1 / (1 - p_{T,ji}^{2} / \Lambda_{v}^{2})]}{\partial \mathbf{p}_{\mathbf{i}}}] \\ &+ z_{i}^{*\mu} \frac{B_{i} B_{j} \bar{g}_{v}^{2}}{2m_{v}^{2}} [\frac{u_{j,\mu}}{1 - p_{T,ji}^{2} / \Lambda_{v}^{2}} \frac{\partial \rho_{ji}}{\partial \mathbf{p}_{\mathbf{i}}} + u_{j,\mu} \rho_{ji} \frac{\partial [1 / (1 - p_{T,ji}^{2} / \Lambda_{v}^{2})]}{\partial \mathbf{p}_{\mathbf{i}}}] \\ &- \frac{m_{j}^{*}}{p_{j}^{*0}} \frac{\partial S_{j}}{\partial \mathbf{p}_{\mathbf{i}}} - \frac{m_{i}^{*}}{p_{i}^{*0}} \frac{\partial S_{i}}{\partial \mathbf{p}_{\mathbf{i}}} \}, \end{split}$$

TABLE I: Parameters for the relativistic mean-field theory with non-linear scalar interaction for a binding energy of $E_B = \epsilon/\rho - M_N = -16$ MeV and for normal nuclear matter density of $\rho_0 = 0.16 fm^{-3}$. The σ meson mass m_{σ} , the ω meson mass m_{ω} , the ρ meson mass m_{ρ} and the δ meson mass m_{δ} are set to be 550, 783, 763 and 500 MeV, respectively.

Model	g_{σ}	g_{ω}	$g_2(fm^{-1})$	g_3	$g_{ ho}$	g_δ	M^*/M_N	$E_B(MeV)$	$K({ m MeV})$	$E_{sym}(MeV)$	L(MeV)
set1	8.145	7.570	31.900	21.800	-	-	0.813	-16.0	230	14.3	33.3
${\rm set} 1\rho$	8.145	7.570	31.900	21.800	4.049	-	0.813	-16.0	230	31.6	85.3
${\rm set} 1\rho\delta$	8.145	7.570	31.900	21.800	8.673	5.347	0.813	-16.0	230	31.6	109.3
set2	8.830	9.500	11.310	13.750	-	-	0.738	-16.0	300	15.6	40.4
${\rm set} 2\rho$	8.830	9.500	11.310	13.750	3.897	-	0.738	-16.0	300	31.6	88.5
${\rm set} 2\rho\delta$	8.830	9.500	11.310	13.750	7.219	4.280	0.738	-16.0	300	31.6	109.4

3. 粒子产生反应道

π and resonances (Δ (1232), N*(1440), N*(1535), ...) production:

 $NN \leftrightarrow N\Delta, NN \leftrightarrow NN^*, NN \leftrightarrow \Delta\Delta, \Delta \leftrightarrow N\pi,$ $N^* \leftrightarrow N\pi, NN \leftrightarrow NN\pi(s - state), N^*(1535) \leftrightarrow N\eta$

Collisions between resonances, NN* \leftrightarrow N Δ , NN* \leftrightarrow NN*

Strangeness channels:

$$\begin{array}{l} BB \to BYK, BB \to BBK\overline{K}, B\pi(\eta) \to YK, YK \to B\pi, \\ B\pi \to NK\overline{K}, Y\pi \to B\overline{K}, \quad B\overline{K} \to Y\pi, \quad YN \to \overline{K}NN, \\ BB \to B\Xi KK, \overline{K}B \Leftrightarrow K\Xi, YY \Leftrightarrow N\Xi, \overline{K}Y \Leftrightarrow \pi\Xi. \end{array}$$

Reaction channels with antiproton:

$$\overline{p}N \to \overline{N}N, \ \overline{N}N \to \overline{N}N, \overline{N}N \to \overline{B}B, \overline{N}N \to \overline{Y}Y$$

 $\overline{N}N \to \text{annihilation}(\pi, \eta, \rho, \omega, K, \overline{K}, K^*, \overline{K}^*, \phi)$

Statistical model with SU(3) symmetry for annihilation (E.S. Golubeva et al., Nucl. Phys. A 537, 393 (1992))

The **PYTHIA** and **FRITIOF** code are used for baryon(meson)-baryon and antibaryon-baryon collisions at high invariant energies

4. 超子(反超子)平均场

A factor ξ is introduced in evaluating self-energies of the antinucleon, e.g., $\xi = 0.25$ for $V_{\bar{N}N} = -160$ MeV at $\rho = \rho_0$

$$H_M = \sum_{i=1}^{N_M} \left(V_i^{\text{Coul}} + \omega(\mathbf{p}_i, \rho_i) \right) \quad \omega(\mathbf{p}_i, \rho_i) = \sqrt{\left(m_H + \Sigma_S^H \right)^2 + \mathbf{p}_i^2} + \Sigma_V^H \quad V_{opt}(\mathbf{p}, \rho) = \omega(\mathbf{p}, \rho) - \sqrt{\mathbf{p}^2 + m^2}$$

Ding-Chang Zhang, Hui-Gan Cheng and Zhao-Qing Feng. *Chinese Physics Letters* 38 (2021) 092501. (arXiv: 2107.00277, editor's suggestion)

$$V_{\text{opt}}^{\Sigma}(p_i,\rho_i) = V_0(\rho_i/\rho_0)^{\gamma_{\text{s}}} + V_1(\rho_n - \rho_p)t_{\Sigma}\rho_i^{\gamma_{\text{s}}-1}/\rho_0^{\gamma_{\text{s}}} + C_{\text{mom}}\rho_i\ln(\epsilon p_i^2 + 1)$$

5. 重离子碰撞中K介子和超子产生

Phys. Rev. C 82 (2010) 057901; Phys. Rev. C 87, 064605 (2013); Nuclear Physics A 919 (2013) 32-45

The *K* /*K* ratio in collisions of ${}^{12}C + {}^{12}C$ at 1.8*A* GeV and protons on ${}^{12}C$ and ${}^{197}Au$ with 2.5 GeV

重离子碰撞中Σ超子分布 (Ding-Chang Zhang, Hui-Gan Cheng and Zhao-Qing Feng, Chinese Physics Letters 38 (2021) 092501)

出射粒子的角分布可按傅里叶展开表示为: $\frac{dN}{d\phi}(y, p_t) = N_0[1 + 2v_1(y, p_t)\cos\phi + 2v_2(y, p_t)\cos 2\phi]$

其中 ϕ 为出射粒子的方位角 (tan $\phi = p_y/p_x$)

E895 data, Physical Review Letters, 2001, 86(12): 2533-2536

 p_y

 p_x

反应平面

直接流

直接流

碰撞参数b

三、原子核碎裂反应和超核形成

Physics Reports 510 (2012) 119-200

Physics Reports 512 (2012) 1-124

Strangeness production close to the threshold in proton-nucleus and heavy-ion collisions

Christoph Hartnack^a, Helmut Oeschler^{b,*}, Yvonne Leifels^c, Elena L. Bratkovskaya^{d,e}, Jörg Aichelin^a

Available online at www.sciencedirect.com

Progress in Particle and Nuclear Physics

Progress in Particle and Nuclear Physics 56 (2006) $1{-}103$

www.elsevier.com/locate/ppnp

ELSEVIER

T. Leitner, J. Weil, U. Mosel*

Institut für Theoretische Physik, Universität Giessen, Germany

Transport-theoretical description of nuclear reactions

Progress in Particle and Nuclear Physics

Progress in Particle and Nuclear Physics 53 (2004) 225-237

www.elsevier.com/locate/ppnp

Review

O. Buss, T. Gaitanos, K. Gallmeister, H. van Hees, M. Kaskulov, O. Lalakulich, A.B. Larionov¹,

Strangeness dynamics in relativistic nucleus-nucleus collisions

E.L. Bratkovskaya^a, M. Bleicher^a, W. Cassing^{b,*}, M. van Leeuwen^{c,d}, M. Reiter^a, S. Soff^a, H. Stöcker^a, H. Weber^a

Review

Kaon production in heavy ion reactions at intermediate energies

Christian Fuchs*

Institut für Theoretische Physik der Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany

1. 费米能区(10A-100A MeV)重离子碰撞中的同位旋效应

P. Russotto et al., PRC 91, 014610 (2015)

Experiments: INDRA (GANIL), CHIMERA (LNS), NSCL (MSU) SSC (HIRFL) ...

密度演化等高图

¹⁹⁷Au+¹⁹⁷Au 碰撞中碎裂分布 (Phys. Rev. C 82, 044615 (2010); 94, 014609 (2016), Chin. Phys. C 41 (2017) 104104)

2. 趨核碎片构造和动力学分析

1) Classical coalescence approach in phase space for nuclides of Z>2 combined with the **GEMINI** decay code (minimum spanning tree (MST) procedure) $|r_i-r_i| \le 3 \text{ fm}, |r_i-r_{\gamma}| \le 4.5 \text{ fm}, |p_i-p_i| \le 0.3 \text{ GeV/c}$

C. Samanta et al, J. Phys. G: Nucl. Part. Phys. 32 (2006) 363

Excitation energy $E^*(Z_v, N_v, nY)$ $= E_{R}(Z_{\nu}, N_{\nu}, nY) - E_{LD}(Z_{\nu}, N_{\nu}, nY)$

described by the GEMINI code!

Binding energy: $E_B(Z_i, N_i) = \sum_i \sqrt{p_j^2 + m_j^2 - m_j}$ $+\frac{1}{2}\sum_{i,k,k\neq i}\int f_j(\mathbf{r},\mathbf{p},t)f_k(\mathbf{r}',\mathbf{p}',t)$ $\times v(\mathbf{r}, \mathbf{r}', \mathbf{p}, \mathbf{p}') d\mathbf{r} d\mathbf{r}' d\mathbf{p} d\mathbf{p}'$ **The decay of excited hypernucleus is** $+\frac{1}{6}\sum_{j,k,l}\sum_{k\neq j,k\neq l,j\neq l}\int f_j(\mathbf{r},\mathbf{p},t)f_k(\mathbf{r}',\mathbf{p}',t)$ $\times f_l(\mathbf{r}'', \mathbf{p}'', t)v(\mathbf{r}, \mathbf{r}', \mathbf{r}'', \mathbf{p}, \mathbf{p}', \mathbf{p}'')$ $\times d\mathbf{r} d\mathbf{r}' d\mathbf{r}'' d\mathbf{p} d\mathbf{p}' d\mathbf{p}''$

fission

200

150

Influence of the statistical decay and hyperon-nucleon potential on the hyperfragment production induced by proton, K- and antiproton (Physical Review C 101, 064601 (2020); 101, 014605 (2020); 101, 064601 (2020))

2) Wigner density approach for Z \leq 2

R. Mattiello et al., Phys. Rev. C 55, 1443 (1997) $\frac{dN_M}{d^3P} = G_M \binom{A}{M} \binom{M}{Z} \frac{1}{A^M} \int \prod_{i=1}^Z f_p(\mathbf{r}_i, \mathbf{p}_i) \prod_{i=Z+1}^M f_n(\mathbf{r}_i, \mathbf{p}_i)$ $\times \rho^W(\mathbf{r}_{k_1}, \mathbf{p}_{k_1}, ..., \mathbf{r}_{k_{M-1}}, \mathbf{p}_{k_{M-1}})$ $\delta(\mathbf{P} - (\mathbf{p}_1 + ... + \mathbf{p}_M)) d\mathbf{r}_1 d\mathbf{p}_1 ... d\mathbf{r}_M d\mathbf{p}_M$

Cal: Eur. Phys. J. A, 57 (2021) 18; FOPI data, Nucl. Phys. A 876, 1 (2012)

3. 重离子碰撞中趨核的形成

¹²⁴Sn+¹²⁴Sn@2A GeV

33

Multi-strangeness hypernuclide production

H.G. Cheng, Z. Q. Feng, Phys. Lett. B 824 (2022) 136849

TABLE I. Comparison between cross sections of double lamda hypernuclei calculated with r_0 = 3.5 fm for Λ in $^{197}{\rm Au}$ + $^{197}{\rm Au}$ and $^{40}{\rm Ca}$ + $^{40}{\rm Ca}$ collisions at 3A GeV

Hypernuclei	Cross sections (mb)					
	$^{197}Au + ^{197}Au$	40 Ca + 40 Ca				
$^{4}_{\Lambda\Lambda}\mathrm{H}$	$2.6 imes10^{-2}$	$1.0 imes10^{-4}$				
$^4_{\Lambda\Lambda}$ He	$1.0 imes 10^{-2}$	$\sim 10^{-5}$				
$^{5}_{\Lambda\Lambda}H$	$5.9 imes 10^{-3}$	$\sim 10^{-5}$				
$^{5}_{\Lambda\Lambda}$ He	$5.1 imes 10^{-3}$	$\sim 10^{-5}$				
$^{5}_{\Lambda\Lambda}$ Li	$1.4 imes 10^{-3}$	$\sim 10^{-6}$				
$^{6}_{\Lambda\Lambda}$ He	$2.2 imes10^{-3}$	$\sim 10^{-6}$				
$^{7}_{\Lambda\Lambda}\mathrm{He}$	$6.8 imes 10^{-4}$	$\lesssim 10^{-6}$				

4.反质子引起的核反应中超子的产生和超核形成

Z. Q. Feng, Phys. Rev. C 89, 044617 (2014); Phys. Rev. C 93, 041601(R) (2016); Phys. Rev. C 101, 064601 (2020)

四、总结

▶ 碰撞区域产生的超子被"旁观者"(旁观核子)俘	10 ¹ 20Ne+ ¹² C&
获后形成超核, 轻质量超核可以在类弹、类靶和中心	$10^{10^{-1}}$
快度区域产生,重质量超核只能在类弹(靶)区域产生	10^{3}
▶ 重离子碰撞可以产生极端丰中子/丰质子超核、	ν λρ ΝΓ 10 ⁶ 10 ¹
多奇异性超核。入射能量4.25GeV/核子 ²⁰ Ne+12C反应	
可以在HIAF上做超核研究测试实验。	10^{3} 10^{4} 10^{4}
▶ 问题: 核子-核子碰撞中涉及超子的三体和四体	10 ⁻⁶
碰撞直接产生的超核(轻质量、高动量、奇异性,如	
nnA, nnAA, ⁵ H, ⁶ H)还没有考虑!	

