Constructing chiral effective field theory around unnatural leading-order interactions

吕松林 (Songlin LYU)

#### 四川大学 (Sichuan University)

Chiral Symposium I7, Nanjing 2022.10





Introduction

Theoretical framework

Result

Summary

## Chiral effective field theory(ChEFT)



- Nuclear force: residual quark-gluon strong interaction
- QCD is nonperturbative at low-energy region
- Chiral EFT bridge the gap between QCD and nuclear physics
- High precision Chiral nuclear force for many-body calculations

#### **Chiral EFT**

• EFT of low-energy QCD, includes all symmetries of QCD

$$\mathcal{L}_{\mathsf{QCD}} = \sum_{f=u,d} \bar{q}_f (i \not\!\!D - m_f) q_f - \frac{1}{2} \mathsf{Tr} G_{\mu\nu} G^{\mu\nu}$$

- Spontaneously breaking (approximate) chiral symmetry two flavors used in our work:  $SU(2)_R \times SU(2)_L \rightarrow SU(2)_V$
- Nonlinearly realized by hadronic degrees of freedoms (nucleons and pion) Weinberg, CCWZ
- Nucleon-pion couplings  $\rightarrow$  long-range nuclear forces

$$-\frac{g_A}{2f_\pi}N^{\dagger}\tau_a\vec{\sigma}\cdot\vec{\nabla}\pi_aN \qquad -\frac{1}{4f_\pi^2}N^{\dagger}\epsilon_{abc}\tau_a\pi_b\dot{\pi}_cN$$

#### Chiral NN potential: pion exchanges & contact interactions

$$\vec{p}' = \vec{q}$$

- Long-range part
  - one-pion-exchange(OPE)

$$V_{1\pi}(\vec{p}',\vec{p}) = -\frac{g_A^2}{4f_\pi^2} \tau_1 \tau_2 \frac{\vec{\sigma}_1 \cdot \vec{q} \, \vec{\sigma}_1 \cdot \vec{q}}{\vec{q}^2 + m_\pi^2} \qquad \sim \mathcal{O}(Q^0)$$

- two-pion-exchanges · · ·
- Short-range interactions (counterterms)

 $C_0^{(s)}(N^T P_i^{(s)} N)^{\dagger}(N^T P_i^{(s)} N), C_2^{(s)}(N^T P_i^{(s)} N)^{\dagger}(N^T P_i^{(s)} \overleftrightarrow{\nabla}^2 N) \cdots$ 

 Power counting(PC): Renormalization & PWA phase shifts nonperturbative renormalization, not simple cancellation

#### Nucleon-Nucleon(NN) elastic scattering

- LECs  $(C_0^{(s)}, C_2^{(s)}, \cdots)$ : fit to NN scattering data
- Organized by partial-wave quantum numbers:  $s = {}^{1}S_{0}, {}^{3}S_{1}, {}^{3}P_{0} \cdots$
- NN elastic scattering phase shift in each partial-wave



 ${}^3S_1$  and  ${}^1S_0$ 

# $^1S_0\,\mathrm{NN}$ scattering



# ${}^{1}S_{0}$ NN scattering

- OPE is weak in <sup>1</sup>S<sub>0</sub> channel
- $C_0$  is independent of k
- Large scattering length and effective range

#### short-range repulsion and long-range attraction



less attractive with higher k

energy dependent

#### Unnatural dibaryon potential

Potential

- stationary dibaryon: momentum dependent
  - Beane S.R., Farrell R.C., Few-Body Syst 63 45 (2022)

`

- two parameters:  $\lambda$  and  $\sqrt{m_N\Delta} \sim m_\pi$
- tree level: two Dibaryon potentials have same form when nucleons are on-shell
- Not just another model
  - order-by-order convergence (NLO, NNLO)
  - compatible with chiral Lagrangian
  - renormalization-group (RG) invariance at each order

#### Radiative corrections at $N^2 \text{LO}$



- Non-trivial radiative corrections at N<sup>2</sup>LO
  - long range forces
  - contribute to triplet channels
- a: contact vertices: trivial result, polynomials in momenta
- b: <sup>1</sup>S<sub>0</sub> channel, c: triplet channels
- nontrivial radiation-pion: virtual pion as third particle, test the potential

#### Power counting

• Subleading orders calculated perturbatively

$$T^{(0)} = V^{(0)} + V^{(0)}G_0T^{(0)},$$
  

$$T^{(1)} = (1 + T^{(0)}G_0)V^{(1)}(G_0T^{(0)} + 1)$$

•  ${}^1S_0$  channel

$$\begin{split} V^{(0)} &= V^{(0)}_{\rm spr} + V_{1\pi} \\ V^{(1)} &= C^{(0)}_0 + V^{(1)}_{\rm spr} \\ V^{(2)} &= C^{(2)}_0 + \frac{C^{(0)}_2}{2} (p^2 + p'^2) + V^{(2)}_{\rm spr} + V_{\rm TPE0} + \frac{V^{1S0}_{\rm rad}}{2} \end{split}$$

•  ${}^3S_1 - {}^3D_1$  channel

$$V^{(0)} = C_0^{(0)} + V_{1\pi}$$

$$V^{(2)} = C_0^{(2)} + \frac{D^{(0)}}{2}(p^2 + p'^2) + E^{(0)}p^2(p'^2) + V_{\text{TPE0}} + \frac{V_{\text{rad}}^{3S1}}{V_{\text{rad}}^{3S1}}$$

#### Phase shifts

•  ${}^{1}S_{0}$  channel fit to PWA empirical phase shifts

 $\Lambda = 600 - 2400 \text{ MeV}$ 



- Rapid order-by-order convergence: comparable to energy-dependent dibaryon potential
- Radiative correction has no 'bad' effects
- Mild sensitivity to the cutoff  $\Lambda$ : UV suppression from  $(p^2 + m_N \Delta)^{-\frac{1}{2}}$



- Radiative corrections didn't ruin MMW results
- Insensitive to the cutoff when the cutoff is sufficiently large
- ${}^{3}P_{0}, {}^{3}P_{1}, {}^{3}D_{2}$ : negligible within numerical precision

#### Triton binding energy

 $B_{\rm 3H}^{\rm exp}=-8.48{
m MeV}$ 

|                 | SE    | SEP   |        | MMW   |  |
|-----------------|-------|-------|--------|-------|--|
| $\Lambda$ (MeV) | LO    | NLO   | LO     | NLO   |  |
| 400             | -8.67 | -8.50 | -11.02 | -7.68 |  |
| 600             | -6.10 | -6.10 | -6.46  | -6.90 |  |
| 800             | -5.57 | -5.58 | -5.30  | -6.64 |  |
| 1600            | -5.37 | -5.51 | -4.89  | -6.49 |  |

- Solving Faddeev equations
- Power counting: partially-perturbative pions
- B. Long, PRC 99 024003 (2019)

• Separable NLO correction is much smaller

triton is relatively shallow:  $\sqrt{2m_NB_{
m 3H}/3}\sim 73{
m MeV}$ 

- Light nuclei results:
- M. Sanchez Sanchez et al., PRC 102 024324 (2020)
  C. J. Yang et al., PRC 103 054304 (2021)

#### Chiral symmetry

• Lagrangian  $\frac{g_{2n}}{g} = {-\frac{1}{2} \choose n}, \ \lambda \equiv \sigma m_N g^2/4$ 

$$\mathcal{L} = \sigma \Delta \phi_a^{\dagger} \phi_a - \sqrt{\frac{4\pi}{m_N}} \sum_{n=0}^{\infty} \frac{g_{2n}}{2} \left[ \phi_a^{\dagger} N^T P_a \left( \frac{-\overleftarrow{\nabla}^2}{4m_N \Delta} \right)^n N + h.c. \right] + \cdots$$

• Chiral-covariant derivative

$$\mathscr{D}_i N \equiv \left( \nabla_i + \frac{\boldsymbol{\tau}}{2} \cdot \boldsymbol{E}_i \right) N, \quad \boldsymbol{E}_i \equiv i \frac{\boldsymbol{\pi}}{f_{\pi}} \times \boldsymbol{D}_i, \quad \boldsymbol{D}_i \equiv (1 + \frac{\boldsymbol{\pi}^2}{4f_{\pi}^2})^{-1} \frac{\nabla_i \boldsymbol{\pi}}{2f_{\pi}}$$

• Non-trivial chiral connections:  $NN\pi\pi \rightarrow \phi$  vertex

### Chiral symmetry

- Contribution to NN potential at  $N^2 LO$ 



• Contributions to 3- and 4-body forces



• The unnatural LO potential doesn't affects the existing convergence

#### Shallow P-wave resonance



- neutron- $\alpha$  scattering phase shift
- More P-wave interacted neutrons: <sup>6</sup>He ····

- A new formulation of chiral EFT to improve the slow convergence of the  $^1S_0$  NN phase shifts and facilitate many-body calculation
- Chiral symmetry is checked: pionic radiative corrections and chiral connection terms
- Extension to P-wave Halo nuclei
- Other approaches

Covariant ChPT: Jun-Xu Lu, et al., PRL 128 142002(2022)

TPE as LO: Mishra, et al., PRC 106 024004(2022)

# Thanks ...

... to my collaborators: Rui Peng, Sebastian König(NC State), Bingwei Long

... and for your attention!