

第七届手征有效场论研讨会 2022 年 09 月 15 日 --- 17 日, 南京(线上)

Strangeness S = -2 BB interactions and

femtoscopic correlation functions in relativistic ChEFT

Zhi-Wei Liu (刘志伟)

School of Physics, Beihang University, China Oct. 15th, 2022

Reference: Z. W. Liu, K. W. Li, L. S. Geng*, arXiv:2201.04997 (accepted for publication in CPC)

Contents

1 Background

- 2 Constructing the chiral S=-2 BB interactions based on lattice QCD simulations
- 3 Testing the obtained chiral interactions with experimental correlation functions
- 4 Predictions for other BB interactions and CFs
- 5 Summary

YN and YY interactions

Fundamental inputs to hypernuclear physics and nuclear astrophysics

Important open questions

A bound H-dibaryon (uuddss) ?R. L. Jaffe, Phys. Rev. Lett. 38 (1977) 195Spin-Dependent ΛΝ CSB ?T. Inoue et al., Phys. Rev. Lett. 106 (2011) 162002Hyperon puzzle in neutron star ?D. Lonardoni et al., Phys. Rev. Lett. 114 (2015) 092301

Research status

北京航空航天大學

ud

Scattering Experiment

- S= 0 (NN) : an amount of high-quality scattering data
- > S=-1 (Λ N, Σ N) : small quantity

 Engelmann, et al., Phys. Lett. 21 (1966) 587
 G. Alexander, et al., Phys. Rev. 173 (1968) 1452

 B. Sechi-Zorn, et al., Phys. Rev. 175 (1968) 1735
 F. Eisele, et al., Phys. Lett. 37B (1971) 204

 V. Hepp and H. Schleich, Z. Phys. 214 (1968) 71
 CLAS Collaboration, Phys. Rev. Lett. 127 (2021) 272303

 J-PARC E40 Collaboration, Phys. Rev. Lett. 128 (2022) 072501
 Γ

S=-2 (ΛΛ, ΞΝ, ΛΣ, ΣΣ) : scarcity

J. K. Ahn et al., Phys. Lett. B 633 (2006) 214

- > S=-3 ($\Xi\Lambda$, $\Xi\Sigma$) : complete lack of scattering data
- S=-4 (ΞΞ) : complete lack of scattering data

Theoretical Description

One-boson-exchange model

V. G. J. Stoks and T. A. Rijken, Phys. Rev. C 59 (1999) 3009

SU(6) quark cluster model

Y. Fujiwara, Y. Suzuki, and C. Nakamoto, Prog. Part. Nucl. Phys. 58 (2007) 439

Non-relativistic Chiral effective field theory

H. Polinder, J. Haidenbauer and U.-G. Meißner, Nucl. Phys. A **779** (2006) 244 J. Haidenbauer, U.-G. Meißner and S. Petschauer, Nucl. Phys. A **954** (2016) 273 J. Haidenbauer and U.-G. Meißner, Phys. Lett. B **684** (2010) 275

New progress in experiment: CFs

Experimental correlation function

- Relativistic heavy-ion collisions can produce hadrons with strange quarks in abundance.
- Correlation function can be used to probe the short-range nature of the strong interaction.
- The capabilities of new detector are excellent enough in identifying particle and measuring their momenta.

Zhi-Wei Liu (Beihang U.)

S=-2 BB interactions and correlation functions in Rel. ChEFT

5/18

New progress for S=-2 sector

Experimental Correlation Functions

\succ $\Lambda\Lambda$ correlation functions

STAR Collaboration, Phys. Rev. Lett. **114** (2015) 022301 *ALICE Collaboration, Phys. Rev. C* **99** (2019) 024001 *ALICE Collaboration, Phys. Lett. B* **797** (2019) 134822

EN correlation functions

ALICE Collaboration, Phys. Rev. Lett. **123** (2019) 112002 ALICE Collaboration, Nature **588** (2020) 232

- Lattice QCD Simulation
 - ΛΛ interaction
 - EN interaction

K. Sasaki et al. (HAL QCD Collaboration), Nucl. Phys. A 998 (2020) 121737

Emission source $S_{12}(r^*)$

Two-particle wavefunction $\psi(k^*, r^*)$

Figure from D. B. Leinweber.

Constraints on S = -2 BB ($\Lambda\Lambda$, ΞN , $\Lambda\Sigma$, $\Sigma\Sigma$) interactions from experiment and first-principle

Zhi-Wei Liu (Beihang U.)

Relativistic ChEFT

- improve calculations systematically
- estimate theoretical uncertainties
- consistent treatment of three- and four-baryon interactions

 \checkmark

Development of relativistic many-body methods

北京航空航天大

S. Weinberg, Phys. Lett. B **251** (1990) 288 S. Weinberg, Nucl. Phys. B **363** (1991) 3

Why relativistic ? (kinematical effect + dynamical effect)

- large spin-orbit splitting
- pseudo-spin symmetry
- consistent time-odd fields
- connection to QCD
- relativistic saturation mechanism
- covariance restricts parameters

- octet baryon mass
- magnetic moments

...

vector and axial couplings

Using lattice QCD simulation and experimental CFs to construct and test the chiral S = -2 BB interactions in relativistic ChEFT

Zhi-Wei Liu (Beihang U.)

 \checkmark

S=-2 BB interactions and correlation functions in Rel. ChEFT

nucleus

~ 10^{-12} cm

YN and YY interactions

SU(3) Rel. ChEFT

Contact-Terms potentials

Dirac spinor

$$\begin{array}{c}
 B_{3} \\
 B_{4} \\
 B_{4} \\
 B_{4} \\
 B_{2} \\
 B_{1} \\
 B_{2} \\
 B_{2} \\
 B_{2} \\
 B_{1} \\
 B_{2} \\
 B_{2} \\
 B_{1} \\
 B_{2} \\
 B_{2} \\
 B_{1} \\
 B_{2} \\
 B_{2} \\
 B_{2} \\
 B_{2} \\
 B_{2} \\
 B_{1} \\
 B_{2} \\$$

One-Pseudoscalar-Meson-Exchange potentials

$$\begin{array}{c} B_{3} \\ \hline \\ B_{4} \\ \hline \\ B_{2} \end{array} \end{array} \begin{array}{c} \mathcal{L}_{MB}^{(1)} = \operatorname{tr} \left(\bar{B} (i\gamma_{\mu} D^{\mu} - M_{B}) B - \frac{D}{2} \bar{B} \gamma^{\mu} \gamma_{5} \{u_{\mu}, B\} - \frac{F}{2} \bar{B} \gamma^{\mu} \gamma_{5} [u_{\mu}, B] \right) \\ B = \left(\begin{array}{c} \frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n \\ \Xi^{-} & \Xi^{0} & -\frac{2\Lambda}{\sqrt{6}} \end{array} \right) \qquad \phi = \left(\begin{array}{c} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2\eta}{\sqrt{6}} \end{array} \right)$$

Partial wave analysis

momentum space

—>

- helicity basis \longrightarrow $|JM\rangle$ basis \longrightarrow
 - —> |*LSJ*> basis

Coupled-channel Kadyshevsky Equation

$$+ \underbrace{V \ G \ (T)}_{f_{\Lambda_{F}}(p,p') = \exp\left[-\left(\frac{p}{\Lambda_{F}}\right)^{4} - \left(\frac{p'}{\Lambda_{F}}\right)^{4}\right]}_{f_{\Lambda_{F}}(p,p') = \exp\left[-\left(\frac{p}{\Lambda_{F}}\right)^{4} - \left(\frac{p'}{\Lambda_{F}}\right)^{4}\right]}_{\Lambda_{F} = 550-700 \text{ MeV}} \underbrace{JXL, QQB @ 17^{\text{th}} \text{ pm}}_{JXL, QQB @ 17^{\text{th}} \text{ pm}}$$

Zhi-Wei Liu (Beihang U.)

=

V

YN and YY interactions

Fits to the S = -2 YN/YY LQCD data

YN and YY lattice QCD phase shifts (data in the gray region is used)

K. Sasaki et al. (HAL QCD Collaboration), Nucl. Phys. A 998 (2020) 121737

Low-energy constants (LECs) for S=-2 system

Λ_F	$C_{1S0}^{\Lambda\Lambda}$	$C_{1S0}^{\Sigma\Sigma}$	$C^{\Lambda\Lambda}_{3S1}$	$C_{3S1}^{\Sigma\Sigma}$	$C^{\Lambda\Sigma}_{3S1}$	$C^{4\Lambda}_{1S0}$	$\hat{C}_{1S0}^{\Lambda\Lambda}$	$\hat{C}_{1S0}^{\Sigma\Sigma}$	$\hat{C}_{3S1}^{\Lambda\Lambda}$	$\hat{C}_{3S1}^{\Sigma\Sigma}$	$\hat{C}_{3S1}^{\Lambda\Sigma}$	$\hat{C}^{4\Lambda}_{1S0}$	$\chi^2/{ m d.o.f.}$
550	-0.0274	-0.0412	-0.0078	0.0255	0.0024	-0.0242	2.3493	2.5353	1.3695	1.0552	-0.0423	1.9485	<u>0.366</u>
600	-0.0175	-0.0300	-0.0076	0.0472	0.0026	-0.0176	2.0832	2.2246	1.0521	1.1759	0.0793	1.8207	<u>0.333</u>
650	-0.0049	-0.0169	-0.0070	0.0720	0.0026	-0.0075	1.9847	2.0755	0.8493	1.1768	0.0793	1.8207	<u>0.324</u>
700	0.0089	-0.0053	-0.0064	0.1049	0.0026	0.0066	1.8566	1.8869	0.7072	1.1768	0.0793	1.8206	<u>0.333</u>

YN and YY interactions

Fits to the S = -2 YN/YY LQCD data

北京航空航天大學

✓ Based on the full coupled-channel framework, relativistic ChEFT can describe LQCD S-wave phase shifts rather well.

Zhi-Wei Liu (Beihang U.)

S=-2 BB interactions and correlation functions in Rel. ChEFT

10/18

Correlation functions

北京航空航天大学 BEIHANGUNIVERSITY

Zhi-Wei Liu (Beihang U.)

Correlation functions

final-state interactions

quantum statistics effects

coupled-channel effects

- =1 if there is no interaction
- <1 if the interaction is repulsive

北京航空航天大

- the same and mixed event distributions
- the corrections for experimental effects

Zhi-Wei Liu (Beihang U.)

spacial structure

Theoretical details

北京航空航天大学

• Koonin–Pratt (KP) formula

$$C(k) = \int S_{12}(r) |\Psi(\boldsymbol{r}, \boldsymbol{k})|^2 \mathrm{d}\boldsymbol{r}$$

S. E. Koonin, Phys. Lett. B **70** (1) (1977) 43 A. Ohnishi, Nucl. Phys. A **954** (2016) 294

Relative wave function in the two-body outgoing state (consider only correlations in S-waves)

$$\Psi(\boldsymbol{r},\boldsymbol{k}) = e^{i\boldsymbol{k}\cdot\boldsymbol{r}} - j_0(kr) + \psi_0(\boldsymbol{r},\boldsymbol{k}), \qquad \qquad \psi_0(r,k) \stackrel{r \to \infty}{\longmapsto} \frac{1}{2ikr} \left[e^{ikr} - e^{-2i\delta} e^{-ikr} \right]$$

Correlation function for <u>non-identical particles without Coulomb interaction</u> $C(k) \simeq 1 + \int_0^\infty 4\pi r^2 \mathrm{d}r \ S_{12}(r) \ \left[|\psi_0(r,k)|^2 - |j_0(kr)|^2 \right]$

Scattering wave function

J. Haidenbauer, Nucl. Phys. A **981** (2019) 1

> Exploiting the relation $|\psi\rangle = |\phi\rangle + G_0 V |\psi\rangle$, $V |\psi\rangle = T |\phi\rangle$, T-matrix from the Kadyshevsky Eq.

$$\psi_{\beta\alpha;l}(r) = \delta_{\beta\alpha} j_l(k_\alpha r) + \frac{1}{\pi} \int \mathrm{d}q q^2 \frac{1}{\sqrt{s} - E_{\beta,1}(q) - E_{\beta,2}(q) + i\varepsilon} \cdot T_{\beta\alpha;l}(q, k_\alpha; \sqrt{s}) \cdot j_l(qr)$$

Coupled-channel effect (sum over the outgoing channels)

$$|\psi_0(r,k)|^2 \to \sum_{\beta} \omega_{\beta} |\psi_{\beta\alpha;0}(r)|^2$$

ΛΛ correlation function

北京航空航天大

 \checkmark There is an enhancement of the $C_{\Lambda\Lambda}$ due to the attractive strong interaction in the low-momentum region.

- ✓ The openings of the inelastic $\Xi^0 n$ and $\Xi^- p$ channels are remarkable as two cusp-like structures occurring at corresponding thresholds.
- ✓ The agreement of the orange (shaded) band with experimental data indicates a weak attraction in the ∧∧ channel, which rules out a deep bound state.

$\Xi^- p$ correlation function

C. M. Vincent, S. C. Phatak, Phys. Rev. C 10 (1974) 391

• CF for <u>non-identical particles with Coulomb interaction</u>

Vincent-Phatak method

- ✓ The significant enhancement of the full C_{Ξ^-p} below 150 MeV/c is consistent with the strong interaction contribution in the low-momentum region.
- ✓ There is an appreciable cusp-like structure around k ≈ 230 MeV/c.
- ✓ The reliability of $\Xi^{-}p$ interaction is demonstrated by the agreement between theoretical description and experimental measurement.

Predictions

北京航空航天大學

Zhi-Wei Liu (Beihang U.)

Predictions

SU(3) symmetry breaking vs CFs

北京航空航天大學

strangeness number

- ✓ We predict the $\Sigma^+\Lambda$, $\Sigma^+\Sigma^-$, and $\Sigma^+\Sigma^+$ correlation functions for the first time.
- SU(3) flavor symmetry and its breaking can be tested quantitatively by measuring the correlation functions.

Summary

Summary

北京航空航天大学 BEIHANGUNIVERSITY

- We studied the strangeness S = -2 BB interactions and the corresponding correlation functions in the relativistic ChEFT at leading order.
 - The full S = -2 BB S-wave interactions are obtained by fitting the 12 LECs to the latest lattice QCD simulation data.
 - ✓ The reliability of obtained interactions is demonstrated by the agreement between theoretical and experimental $\Lambda\Lambda$ and Ξ^-p correlation functions.
 - ✓ We predict the $\Sigma^+\Sigma^+$, $\Sigma^+\Lambda$, and $\Sigma^+\Sigma^-$ interactions and corresponding CFs for the first time, and suggest measuring CFs to test the SU(3) flavor symmetry and its breaking quantitatively.

Collaborators

Prof. Li-Sheng Geng

Dr. Kai-Wen Li

Thank you for your attention !

Zhi-Wei Liu (Beihang U.)

• Breakdown of the strong interaction part of Ξ^-p correlation function

- ✓ Corresponding to the larger negative scattering length in the Ξ^-p 1S0 channel, the correlation from the spin-singlet state is also stronger.
- ✓ It is clearly confirmed that the cusp-like structure comes from the contribution of $\Xi^- p \Sigma^0 \Lambda$ coupledchannel, especially in the spin-triplet state.

北京航空航天大学

Zhi-Wei Liu (Beihang U.)

300

200

250

300

150

400

500

北京航空航天大學

Zhi-Wei Liu (Beihang U.)

北京航空航天大學

$$S_{12}^{\text{Cauchy}}(r,\theta,\varphi) = \left(\frac{R}{\pi}\right)^3 \frac{r^2 \sin\theta}{(r\sin\theta\cos\varphi)^2 + R^2} \frac{1}{(r\sin\theta\sin\varphi)^2 + R^2} \frac{1}{(r\cos\theta)^2 + R^2} \frac{1}{(r\cos\theta)^2$$

Zhi-Wei Liu (Beihang U.)