Theory backgrounds

Analyticity domain of $\pi N RS$ equations

Numerical Results

Discussions

References

The Subthreshold $\frac{1}{2}^-$ Nucleon Resonance from Roy-Steiner Equation Analyses

Xiong-Hui Cao (曹雄辉)

In collaboration with Qu-Zhi Li (李衢智) and Han-Qing Zheng (郑汉青)

[arxiv: 2207.09743]

School of Physics, Peking University

第七届手征有效场论研讨会, Southeast University, Nanjing (Online) - October 16, 2022

Theory	backgrounds

Analyticity domain of $\pi N RS$ equations 00000 Numerical Results

Discussions

References

Outline

2 Analyticity domain of $\pi N \mathbf{RS}$ equations

Theory	backgrounds
0000	000

Analyticity domain of $\pi N \mathbf{RS}$ equations 00000 Numerical Results

Discussions

References

A brief historical review

In 1971, Roy developed an exact integral equation based on axiomatic field theory [Roy, PLB (1971)]. Subsequently, Basdevant et al. and Pennington et al. realized the importance of Roy eq. and applied it to $\pi\pi$ data [Basdevant, et al., Nuovo Cim., PLB (1972), NPB (1973), Pennington and Protopopescu PRD (1973)]

In 1973, Hite and Steiner analyzed previous dispersive approaches and proposed a new Roy-like integral equations (Roy-Steiner eqs.), which can be applied to unequal mass scatterings such as $\pi N \rightarrow \pi N$, etc. [Hite and Steiner, Nuovo Cim. (1973)]

Shasanka Mohan Roy Frank Steiner

★ With the development of Chiral perturbation theory (χ PT), Roy (-Steiner) eqs. have been revived

- Leutwyler et al. reanalyzed $\pi\pi$ Roy eq. using new data with chiral constrains [Colangelo, et al., NPB (2001), Ananthanarayan, et. al., Phys. Rept. (2001)] and demonstrate the existence of $\sigma/f_0(500)$ -the lowest-lying resonance in QCD [Caprini, et al., PRL (2006)]
- Moussallam et al. analyzed πK low energy partial waves (PWs) using RS eq. [Buettiker, et al., EPJC (2004)] and found $\kappa/K_n^*(700)$ [Descotes-Genon, et al., EPJC (2006)]
- ► Hoferichter et al. given a comprehensive RS eq. analyses of πN scattering [Ditsche, et al., JHEP (2012), Hoferichter, et al., Phys. Rept. (2016)], and applied it to extract $\pi N \sigma$ term, $\sigma_{\pi N} = (59.1 \pm 3.5)$ MeV [Hoferichter, et al., PRL 115, 092301 (2015)] and χ PT low energy constants [Hoferichter, et al., PRL 115, 192301 (2015)]

• Other processes: $\gamma \pi \to \pi \pi$ [Hannah, NPB (2001)], $\gamma \gamma \to \pi \pi$ [Hoferichter, et al., EPJC (2011)] and $\gamma^* \gamma^* \to \pi \pi$ [Hoferichter and Stoffer, JHEP (2019)], etc.; Theoretical improvements: (once-sub DR) GKPY eqs.; high energy, $\pi \pi$ [Moussallam, EPJC (2011), Garcia-Martin, et al., PRL (2011), Caprini, et al., EPJC (2011)] and πK [Pelaez and Rodas, PRL (2020)]...

Theory backgrounds	Analyticity domain of $\pi N RS$ equations	Numerical Results	Discussions	References
000000				

Roy equations

Roy eqs. = Analyticity (Causality) + Crossing symmetry + Unitarity + Froissart-Martin bound Fixed-t (twice sub.) DR for $\pi\pi$ scattering:

$$T(s,t,u) = \alpha(t) + s\beta(t) + \frac{s^2}{\pi} \int_{4m_{\pi}^2}^{\infty} \mathrm{d}s' \frac{\mathrm{Im}_s T(s',t,u')}{s'^2(s'-s)} + \frac{s^2}{\pi} \int_{-\infty}^{-t} \mathrm{d}s' \frac{\mathrm{Im}_u T(s',t,u')}{s'^2(s'-s)}$$

• Using crossing symmetry, (a) the contribution of the left-hand cuts are represented by the right-hand cuts; (b) $\alpha(t), \beta(t)$ are expressed by S wave scattering lengths a_0^0, a_0^2

• Partial wave expansion \implies Roy equations,

$$\operatorname{Re} t_{J}^{I}(s) = k_{J}^{I}(s) + \sum_{I'} \sum_{J'} \mathcal{P} \int_{4m_{\pi}^{2}}^{\infty} \mathrm{d}s' \underbrace{K_{JJ'}^{II'}(s',s)}_{\frac{1}{\pi} \frac{\delta_{JJ'}\delta_{II'}}{s'-s-i\epsilon} + \bar{K}_{JJ'}^{II'}(s,s')}_{\mathrm{Im} t_{J'}^{I'}(s,s')} \operatorname{Im} t_{J'}^{I'}(s')$$

• Phase shifts : $t_J^I(s) = \frac{e^{2i\delta_J^I(s)} - 1}{2i\rho_{\pi\pi}(s)}$

Scattering lengths: "free" parameters in $k_{I}^{I}(s)$

[Colangelo, et al., NPB (2001), Ananthanarayan, et. al., Phys. Rept. (2001)]

Theory backgrounds	Analyticity domain of $\pi N RS$ equations	Numerical Results	Discussions	References
000000	00000	0000000	000000	

Roy-Steiner equations

Hite and Steiner proposed a specific, hyperbolic DR, different from traditional fixed-t and fixed-angle DRs.

It is equivalent to a fixed-(s - a)(u - a) DR.

Three advantages:

No further kinematic singularity

 $\sqrt{$ Curve b = (s - a)(u - a) passes through the physical regions of all crossing channel $\sqrt{$ It does not touch the double spectral region

• Roy-like coupled integral equations (RS eqs.) for πN scattering,

$$\begin{split} f_{l+}^{I}(W) = & N_{l+}^{I}(W) + \frac{1}{\pi} \int_{4m_{\pi}^{2}}^{\infty} dt' \sum_{J} \left\{ G_{lJ}(W, t') \operatorname{Im} f_{+}^{J}(t') + H_{lJ}(W, t') \operatorname{Im} f_{-}^{J}(t') \right\} \\ &+ \frac{1}{\pi} \int_{m_{\pi}+m_{N}}^{\infty} dW' \sum_{l'}^{\infty} \left\{ K_{ll}^{I}(W, W') \operatorname{Im} f_{l'+}^{I}(W') + K_{ll'}^{I}(W, -W') \operatorname{Im} f_{(l'+1)-}^{I}(W') \right\} \end{split}$$

• The *t*-channel amplitudes f^{J}_{+} also satisfies a RS equation.

The difference is that the *t*-channel problem ($\pi\pi \rightarrow N\bar{N}$) can recast as a **Muskhelishvili-Omnès** (MO) problem!

RS equations
$$\stackrel{\text{MO solution}}{\Longrightarrow}$$
 Roy-like equations

Theory backgrounds	Analyticity domain of $\pi N RS$ equations	Numerical Results	Discussions	References
000000				

RS analyses for πK and πN scatterings

 πN scattering Hoferichter et al. [2016]:

Theory backgrounds	Analyticity domain of $\pi N RS$ equations	Numerical Results	Discussions	Reference
0000000				

Validity Domain

Lehmann-Martin ellipse + **Mandelstam analyticity (analyticity from axiomatic field theory)** \implies Validity domain of $\pi\pi$ scattering

 πK scattering \implies Extend the validity domain \implies From fixed-t DR to hyperbolic DR!

Theory backgrounds ○○○○○●○	Analyticity domain of $\pi N \mathbf{RS}$ equations 00000	Numerical Results	Discussions	References
πN scattering	Ţ,			
Theoretical dis	scussions: el $(L_{2I_{2J}}$ convention) N^* (1535): ve the P wave first resonance N^* (1440) el N^* (1440) (Roper resonance): ss, large decay width, coupling to σN cha	√ large couple channel nnel √ two-pole structu	effects with πN and re	ηN
• Reaction: π^a ($q) + N(p) \to \pi^b (q') + N(p')$			
 Isospin structu 	re: $T^{ba}(s,t) = \delta^{ba} T^+(s,t) + \frac{1}{2} \left[\tau \right]$	$\left[\tau^{b}, \tau^{a}\right] T^{-}(s, t)$		
 Lorentz structu T^I(s, t) s-channel isos 	ure $(I = \pm)$: (where $D^{I}(s, t) = A^{I}(s, t)$ = $\bar{u}(p')\left\{A^{I}(s, t) + \frac{p' + p}{2}B^{I}(s, t)\right\}$	$+ \frac{s-u}{4m_N} B^I(s, t) $ $u(p) = \bar{u} \left(p' \right) \left\{ D^I(s, t) \right\}$	$)-rac{\left[{\not\!\!\!\!\!/}^\prime,{\not\!\!\!\!\!\!\!/} ight]}{4m_N}B^I(s,t) \Bigg\}$	$\cdot u(p)$
$X^{1/2} = X^+$	$+2X^{-}$, $X^{3/2} = X^{+} - X^{-}$,	$X \in \{T, A, B, D, f_{i+1}\}$	$N_{l+}, K_{lll} \cdots \}$	

▶ PW projection (±=J = |l±1/2|): (where $X_l^I(s) = \int_{-1}^1 dz_s P_l(z_s) X^I(s,t) \Big|_{t=-2q^2(1-z_s)}, X \in \{A, B\}$)

$$f_{l\pm}^{I}(W) = \frac{1}{16\pi W} \left\{ (E+m_{N}) \left[A_{l}^{I}(s) + (W-m_{N}) B_{l}^{I}(s) \right] + (E-m_{N}) \left[-A_{l\pm1}^{I}(s) + (W+m_{N}) B_{l\pm1}^{I}(s) \right] \right\}$$

 \hookrightarrow MacDowell symmetry relation: $f_{l+}^{I}(W) = -f_{(l+1)-}^{I}(-W)$

Theory backgrounds	Analyticity domain of $\pi N RS$ equations	Numerical Results	Discussions	References
000000				

The subthreshold resonance

- A "crazy" resonance is essential to compensate the diacrepancy [Y.-F. Wang, et al. EPJC (2018), CPC (2019)]
- Hidden pole below πN threshold:

 $\sqrt{s} = (895 \pm 81) - i(164 \pm 23) \text{ MeV}$

► The long-distance resonance can be confirmed by the rigorous RS equation method (like $\sigma/f_0(500)$ and $\kappa/K_0^*(700)$)

- ▶ bound states → negative phase shift
- ▶ virtual states (usually hidden) → positive phase shift
- ▶ resonances → positive phase shift
- ▶ left hand cuts → (empirically) negative phase shift (proved in quantum mechanical potenial scatterings) [T. Regge, Nuovo Cim. (1958)]

Theory backgrounds	Analyticity domain of $\pi N RS$ equations	Numerical Results	Discussions	References
	•0000			

Lehmann-Martin ellipse

Jost-Lehmann-Dyson representation

A causal Green function satisfies a necessary and sufficient representation:

$$F(q) = \int d^4 u \int_0^\infty d\kappa^2 \epsilon \left(q_0 - u_0\right) \delta \left[(q - u)^2 - \kappa^2\right] \Phi \left(u, \kappa^2\right)$$

 $\Phi(u,\kappa^2)$ is arbitrary but differs from 0 only in some domains Jost and Lehmann [1957] Dyson [1958].

$$F_{R}(q) = \frac{i}{2\pi} \int dq'_{0} \frac{1}{q_{0} - q'_{0} + i\epsilon} F(q') \Big|_{q' = (q'_{0}, q)} \stackrel{\text{"retarded" LSZ}}{\Longrightarrow} - iT = \frac{1}{2\pi} \int d^{4}u \, d\kappa^{2} \frac{\Phi(u, \kappa^{2}, p, k)}{((k' - p')/2 - u)^{2} - \kappa^{2}}$$

$$FW \text{ unitarity (Im } T_{\ell} = \frac{2q}{\sqrt{s}} |T_{\ell}|^{2}) + \text{ Analyticity of Legendre function } ((T_{\ell})^{1/\ell} < \frac{1}{z_{0} + \sqrt{z_{0}^{2} - 1}})$$

Lehmann-Martin ellipse

Any DR (or Im T_{ℓ}) can be shown to be valid in a finite region of t. The range of validity is rely on Lehmann-Martin ellipse Lehmann [1958].

★ Foci:
$$z = \pm 1$$
; Semi-major axis: $z_{\text{max}} = 1 + \frac{2s}{\lambda_s} \mathcal{T}(s)$

Theory backgrounds	Analyticity domain of $\pi N RS$ equations	Numerical Results	Discussions	References
	0000			

Mandelstam Analyticity

Mandelstam Analyticity

The scattering amplitudes satisfy Mandelstam double spectral representation Mandelstam [1958, 1959].

▶ Mandelstam double spectral representation:

$$\begin{split} T(s,t) = & \frac{1}{\pi^2} \iint ds' du' \frac{\rho_{su}(s',u')}{(s'-s)(u'-u)} \\ & + \frac{1}{\pi^2} \iint dt' du' \frac{\rho_{tu}(t',u')}{(t'-t)(u'-u)} \\ & + \frac{1}{\pi^2} \iint ds' dt' \frac{\rho_{st}(s',t')}{(s'-s)(t'-t)} \end{split}$$

- This concept can be justified in perturbation theory
- A rigorous proof from axiomatic field theory is absent.

Theory backgrounds	Analyticity domain of $\pi N RS$ equations 00000	Numerical Results	Discussions 000000	References
Fixed-t repres	sentation			
The foci of Let	nmann-Martin ellipse is located at z	$=\cos\theta_s=\pm 1$		
$\blacktriangleright T_{st}(s) = \min$	$\{T_{\rm I}(s), T_{\rm II}(s)\}, T_{su}(s) = \max \{$	$\{T_{\mathrm{III}}(t), T_{\mathrm{IV}}(t)\}$		
Focus on T_{st} :	$T(\theta) = \min_{s' \ge s_+} T(s', \theta)$			
	$T\left(s',\theta\right) = rac{T_{st}\left(s',\theta ight)}{\lambda_{s'}c}$	$\frac{(\lambda_{s'} + s' T_{st}(s'))}{\cos^2 \frac{\theta}{2} + s' T_{st}(s')}$		
PW projection	$\int_{-\lambda_s/s}^0 \cdots \mathrm{d}t \Longrightarrow \text{ solving } \lambda_s + sT(t)$	$(\theta) \exp(i\theta) = 0$		
		60 80 100 Re[s]/ m_{π}^2	120	
			< 留 > < 置 > < 置 >	ह १९५०

Theory backgrounds	Analyticity domain of $\pi N RS$ equations	Numerical Results	
	00000		

Fixed-(s - a)(u - a) representation

▶ The hyperbolic DR is restricted in a hyperbola (s - a)(u - a) = (s' - a)(u' - a) = b, e.g.,

$$A^{+}(s,t) = \frac{1}{\pi} \int_{s_{+}}^{\infty} \mathrm{d}s' \left(\frac{1}{s'-s} + \frac{1}{s'-u} - \frac{1}{s'-a} \right) \mathrm{Im}_{s} A^{+} \left(s',t' \right) + \frac{1}{\pi} \int_{t_{\pi}}^{\infty} \mathrm{d}t' \frac{\mathrm{Im}_{t} A^{+} \left(s',t' \right)}{t'-t}$$

► Two ellipses: one is the ellipse of $z_{s'}$, and the other is $z_{t'}$. From $s', t' \implies b \equiv B \exp(i\theta)$

$$\frac{\left(1 + \frac{2s'}{\lambda_{s'}} \left(\Sigma - s' - a - \frac{B_s(s',\theta)\cos\theta}{s'-a}\right)\right)^2}{A_{s'}^2} + \frac{\left(\frac{2s'}{\lambda_{s'}} \left(\frac{B_s(s',\theta)\sin\theta}{s'-a}\right)\right)^2}{A_{s'}^2 - 1} = 1$$
$$\frac{\left(\frac{(t'-\Sigma+2a)^2 - 4B_t(t',\theta)\cos\theta}{(t'-t_\pi)(t'-t_N)} - \frac{1}{2}\right)^2}{A_{t'}^2 - \frac{1}{2}} + \frac{\left(\frac{4B_t(t',\theta)\sin\theta}{(t'-t_\pi)(t'-t_N)}\right)^2}{A_{t'}\sqrt{A_{t'}^2 - 1}} = 1,$$

where $\Sigma = 2(m_{\pi}^2 + m_N^2), t_N = 4m_N^2, A_{s'} = 1 + \frac{2s' T_{st}(s')}{\lambda_{s'}} (s' > s_+)$ and $A_{t'}^2 = \frac{16m_N^2 N_{st}(t')}{(t'-t_{\pi})(t'-t_N)} (t' > t_N), A_{t'}^2 = 1 - \frac{16m_N^2 N_{st}(t')}{(t'-t_{\pi})(t-t_N)} (t_N > t' > t_{\pi})$ Ditsche et al. [2012].

- The discriminant of the above quadratic equations should be nonnegative \implies

$$-2.59m_{\pi}^2 < a < 4m_{\pi}^2$$

▶ In [Hoferichter, et al., Phys. Rept. (2016)], it is chosen that $a = -29.3m_{\pi}^2 < -2.59m_{\pi}^2$, thus the solution of PWs cannot be extended to the complex *s* plane.

Theory backgrounds	Analyticity domain of $\pi N RS$ equations	Numerical Results	Discussions	Reference
	00000			

Fixed-(s - a)(u - a) representation

- $\blacktriangleright B_s(\theta) = \min_{m_+^2 \le s'} B_s(s', \theta) \text{ and } B_t(\theta) = \min_{t_\pi \le t'} B_t(t', \theta)$
- ▶ PW projection

$$\int_{(s-a)(\Sigma-s-a)}^{(s-a)(\Sigma-s-a)} \cdots db \Longrightarrow \begin{cases} (s-a)(\Sigma-s-a) - B_{s/t}(\theta) \exp(i\theta) = 0\\ (s-a)\left(\left(m_N^2 - m_\pi^2\right)^2 / s - a\right) - B_{s/t}(\theta) \exp(i\theta) = 0 \end{cases}$$

★ Validity domain of the fixed-*b* RS representation (a = 0)

 \star s' integral, ρ_{su} boundary; t' integral, ρ_{st} boundary; s' integral, ρ_{st} boundary

The largest validity value of \sqrt{s} is $W_{\rm m} = 1.36$ GeV, slightly smaller than 1.38 GeV in [Hoferichter, et al., Phys. Rept. (2016)]

Theory backgrounds	Analyticity domain of $\pi N RS$ equations	Numerical Results	Discussions	References
		•000000		

Existence and Uniqueness

- (πN) RS equations are useful only at low energies and we only solve S and P waves up to matching point $W_{\rm m} = 1.36 \text{ GeV}$
- ▶ D and F waves and the intermediate energy contributions of $\ell \leq 4$ PWs \iff GWU/SAID (up to W = 2.5 GeV); Other high PW ($\ell > 4$) driving terms can be estimated by Regge theory \rightsquigarrow Negligible
- ► t-channel PWs f_{\pm}^{J} (matching point $\sqrt{t_{\rm m}} = 2m_N$): S wave \mapsto Couple channel ($\pi\pi$, $K\bar{K}$) MO formalism, phase shifts from Garcia-Martin et al. [2011]; Pelaez and Rodas [2018]; P and D waves: \mapsto Single channel MO formalism, phase shifts from Garcia-Martin et al. [2011]; Hoferichter

et al. [2016]; High PWs ~> Negligible

- * Multiplicity of the coupled integral equations, $m = \sum_{i} m_{i}$, $m_{i} = \begin{cases} \left\lfloor \frac{2\delta_{i}(s_{m})}{\pi} \right\rfloor & \text{if } \delta_{i}(s_{m}) > 0 \\ -1 & \text{if } \delta_{i}(s_{m}) < 0 \end{cases}$ Matching point $W_{m} = 1.36 \text{ GeV} \Longrightarrow m = -2$ [Wanders, EPJC (2000)]
- * Six "no cusp" constraints for phase shifts at the matching points
- Two S wave scattering lengths were fixed precisely by chiral symmetry and the pionic atom spectrum Baru et al. [2011],

$$m_{\pi} a_{0+}^{1/2} = (169.8 \pm 2.0) \times 10^{-3}, \quad m_{\pi} a_{0+}^{3/2} = (-86.3 \pm 1.8) \times 10^{-3}$$

- * |m| + 6 + 2 = 10 constraints, implies a unique solution exists if and only if the system also has 10 free parameters
- Subthreshold subtractions (s = u = $m_{\pi}^2 + m_N^2$, t = 0): 10 subthreshold expansion parameters

・ロト ・ 伊ト ・ ヨト ・ ヨト

A E 6 A E 6

A D > A A P >
 A

Theory backgrounds	Analyticity domain of $\pi N RS$ equations	Numerical Results	Discussions	References
		000000		

$\pi\pi \rightarrow NN$ and **MO** problem

Two-channel MO formalism with finite matching point, S wave

► The $\pi\pi \to N\bar{N}$ and $K\bar{K} \to N\bar{N}$ S-waves $f^0_+(t)$ and $h^0_+(t)$ fulfill the unitarity relation:

$$\operatorname{Im} \mathbf{f}(t) = T^*(t)\Sigma(t)\mathbf{f}(t), \quad \mathbf{f}(t) = \begin{pmatrix} f_+^0(t) \\ \frac{2}{\sqrt{3}}h_+^0(t) \end{pmatrix}$$

• RS equations provide a DR: $\mathbf{f}(t) = \mathbf{\Delta}(t) + (\mathbf{a} + \mathbf{b}t)(t - t_N) + \frac{t^2(t - t_N)}{\pi} \int_{t_\pi}^{\infty} dt' \frac{\operatorname{Im} \mathbf{f}(t')}{t'^2(t' - t_N)(t' - t)}$ where

$$\begin{split} \Delta_{1}(t) &= \tilde{N}_{+}^{0}(t) + \frac{1}{\pi} \int_{W_{+}}^{\infty} \mathrm{d}\,W' \sum_{l=0}^{\infty} \left\{ \tilde{G}_{0l}\left(t,\,W'\right)\,\mathrm{Im}\,f_{l+}^{l}\left(\,W'\right) + \tilde{G}_{0l}\left(t,-W'\right)\,\mathrm{Im}\,f_{(l+1)-}^{l}\left(\,W'\right) \right\} \\ &+ \frac{1}{\pi} \int_{t_{\pi}}^{\infty} \mathrm{d}\,t'\,\sum_{J'=J+2}^{\infty} \frac{1+(-1)^{J+J'}}{2} \left\{ \tilde{K}_{J'}^{1}\left(t,t'\right)\,\mathrm{Im}\,f_{+}^{J'}\left(t'\right) + \tilde{K}_{0J'}^{2}\left(t,t'\right)\,\mathrm{Im}\,f_{-}^{J'}\left(t'\right) \right\} \end{split}$$

- The major challenge in the RS application concerns the generalization of MO formalism to the case of a finite matching point [Hoferichter, et al., JHEP (2012)]
- ► The final solution:

$$\mathbf{f}(t) = \mathbf{\Delta}(t) + (t - t_N) \,\Omega(t) (1 - t\dot{\Omega}(0)) \mathbf{a} + t \,(t - t_N) \,\Omega(t) \mathbf{b} - \frac{t^2 \,(t - t_N)}{\pi} \Omega(t) \int_{t_\pi}^{t_m} \mathrm{d}t' \frac{\mathrm{Im} \,\Omega^{-1} \,(t') \,\mathbf{\Delta} \,(t')}{t'^2 \,(t' - t_N) \,(t' - t_N)} \, \mathrm{d}t' = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right$$

Theory backgrounds	Analyticity domain of $\pi N RS$ equations	Numerical Results	Discussions	References
		0000000		

$\pi\pi \rightarrow N\bar{N}$ and MO problem

- ▶ Solutions to MO problem with finite matching point, S wave [Hoferichter, et al., J. High Energy Phys. 1206 (2012) 063]
- ▶ Discretization method + SVD [Moussallam, EPJC (2000), D.-L. Yao, et al., EPJC (2018)]

 Ω_0

Theory backgrounds	Analyticity domain of $\pi N RS$ equations	Numerical Results	Discussions	References
0000000	00000	0000000	000000	

$\pi\pi \to N\bar{N}$ and MO problem

Single-channel MO formalism with finite matching point

For example, $f_{-}^{1,2}(t)$ waves:

$$\begin{split} f_{-}^{1}(t) &= \Delta_{-}^{1}(t) + \frac{\sqrt{2}}{12\pi} \left\{ \left(b_{00}^{-} - \frac{g^{2}}{2m_{N}^{2}} \right) \left(1 - t\dot{\Omega}_{1}(0) \right) + b_{01}^{-}t \right\} \Omega_{1}(t) + \frac{t^{2}\Omega_{1}(t)}{\pi} \int_{t\pi}^{t_{m}} \mathrm{d}t' \frac{\Delta_{-}^{1}(t') \sin \delta_{1}(t')}{t'^{2}(t'-t) |\Omega_{1}(t')|} \\ f_{-}^{2}(t) &= \Delta_{-}^{2}(t) + \frac{\sqrt{6}}{60\pi m_{N}} b_{00}^{+}\Omega_{2}(t) + \frac{t\Omega_{2}(t)}{\pi} \int_{t\pi}^{t_{m}} \mathrm{d}t' \frac{\Delta_{-}^{2}(t') \sin \delta_{2}(t')}{t'(t'-t) |\Omega_{2}(t')|} \end{split}$$

▶ Solutions to MO problem with finite matching point, *P* and *D* wave

Theory backgrounds	Analyticity domain of $\pi N RS$ equations	Numerical Results	Discussions	Refere
0000000	00000	0000000	000000	

t-channel: $\pi\pi \to N\bar{N}$

Theory backgrounds	Analyticity domain of $\pi N RS$ equations	Numerical Results	Discussions	References
0000000	00000	000000	000000	

s-channel: $\pi N \rightarrow \pi N$

The Subthreshold $\frac{1}{2}$ Nucleon Resonance from Roy-Steiner Equation Analyses

曹雄辉 (X.-H. Cao) (Peking U.) 21/27

Theory	backgrounds
0000	000

Analyticity domain of $\pi N RS$ equations

Numerical Results

Discussions

References

The lowest-lying $\frac{1}{2}^-$ resonance

•
$$S_{11}$$
 S matrix: $S_{0+}^{1/2}(s) = 1 - \frac{\sqrt{(s_+ - s)(s_- s_-)}}{\sqrt{s}} f_{0+}^{1/2}(\sqrt{s})$

- Analytic continuation: $S_{0+}^{1/2II} = 1/S_{0+}^{1/2}$
- ► $\sqrt{s_{N^*(920)}} = (919 \pm 4) i(162 \pm 7)$ MeV and $\sqrt{s_{\Delta(1232)}} = (1213 \pm 2) i(50 \pm 2)$ MeV all inside the validity domain. $\Delta_{33}(1232)$ PDG average value: $(1210 \pm 1) i(50 \pm 1)$ MeV

Two virtual poles, how to understand it?

Theory backgrounds	Analyti 0000	icity doma	in of $\pi N \mathbf{R}$	S equations		Numerical Results	Discussions ○●○○○○	References
Virtual pole n	iechar	nism						
 Such general phenor [Blankenbecler, Goldberg (rediscovered in πτ πN scatterings [Q2 These virtual poles phase shifts (if no b decomposition An extra CDD p NPA (2010)] Virtual poles: R 	menon v er, MacDow r scatterir L i and H. hardly a bound sta pole is ne S equatio	vas firs vell, and ngs [Z -Q. Zhen ffect pl te), in eeded in ons vs.	stly disc Treiman, I Y Zhou, e g, CTP (20 nysical of the sche n P_{11} c Leadin	ussed ir Phys. Rev. (t al., JHEF (222)]) observal eme of t hannel [g order	1 (1961)] ? (2005)], bles suc he PKU Gasparyan χPT	in <i>CR</i> h as and Lutz,	Analyticity Properties and Bounds of the	$\begin{array}{c} S \\ 1 \\ s_R \end{array}$
RS equations	S ₁₁ 961	S_{31}	P ₁₁	P ₃₁	P ₁₃	P ₃₃	(Documents on Modern Physics)	
$\frac{\sqrt{s_{pole}} [MeV]}{\sqrt{p_{TLO}}}$ $\frac{\sqrt{s_{pole}} [MeV]}{\sqrt{p_{TLO}}}$ Virtual states: $\sqrt{s_{pole}} [MeV]$	916 961 918		976	917	961	908		
🕨 👁 André Marti	in (1970)	· e	O is an a	accumul	lation of	,	Martin, Andre	

André Martin (1970): s = 0 is an accumulation of singularities on the second sheet for ππ scattering amplitudes.
 Q.-Z. Li and H.-Q. Zheng (2022): s = c_{L,R} are accumulation of singularities on the second sheet for πN case.

Theory backgrounds	Analyticity domain of $\pi N RS$ equations	Numerical Results	Discussions	References
000000	00000	000000	00000	

Comparison

Theory backgrounds	Analyticity domain of $\pi N RS$ equations	Numerical Results	Discussions	References
000000	00000	000000	000000	

Regge trajectories

Regge theory: analytic continuation in the angular momentum plane

Trajectories are (approximately) straight lines with a similar slope parameter (1 GeV^{-2})

MacDowell symmetry: $\alpha^{\pm}(\sqrt{s}) \simeq \alpha_0 + \alpha' s$

Trajectory	Isospin	Parity	Signature $(-1)^{J-1/2}$	Parity partner	
N_{α}	1/2	+	+	N_{β}	
N_{γ}	1/2	-	_	N_{δ}	
Δ_{δ}	3/2	+	-	Δ_{γ}	
Δ_{β}	3/2	-	+	Δ_{lpha}	

Theory backgrounds

Analyticity domain of $\pi N \mathbf{RS}$ equations 00000 Numerical Results

Discussions

References

N*(920) and Regge trajectories

- $N^*(1675)$ and $N^*(2250)$ are PDG four-stars resonances
- Long missing lowest-lying $\frac{1}{2}^{-}$ state: $N^*(920)$
- The mass of N* (920) is even lower than nucleon!
- It has large width similar to broad resonances $\sigma/f_0(500)$ and $\kappa/K_0^*(700)$

Theory backgrounds	Analyticity domain of $\pi N \mathbf{RS}$ equations 00000	Numerical Results	Discussions	References
Summary and (Dutlook			

- The unity of rigorous dispersive techniques and experimental data is powerful to investigate the pole properties of low-lying resonances in QCD
 - Widely-used unitarization methods such as K matrix, Padé approximation (IAM), etc., are poor in light meson & baryon studies
 - (Covariant) Chiral pertubation theory obeys perturbative unitarity and analytic properties (correct LHC structure), but is hard to predict broad resonances such $\sigma/f_0(500)$, etc.
 - ▶ Rigorous dispersive approaches, *N/D* (+comformal mapping), PKU factorization, Roy-Steiner equations, etc. are necessary when touching the mysterious area in the complex plane

■ $N^*(920)$ as the lowest-lying $(J^P = \frac{1}{2}^-)$ nucleon resonance in QCD

- ▶ $N^*(920)$: $\sqrt{S_{N^*(920)}} = (919 \pm 4) i(162 \pm 7)$ MeV \hookrightarrow Model independent!
 - Why it is physically relevant meanwhile it is far from the physical region?
 - How to define rigorously the distinction between an S matrix pole and a physical resonance?
- A possible universal phenomenon for the appearance of such a (S wave) broad structure $\sigma/f_0(500), \kappa/K_0^*(700), N^*(920) \cdots ?$ [Z.-Y. Zhou and Z.-G. Xiao, EPJC (2021)]

Future applications

- ► $NN \to NN\&N\bar{N} \to N\bar{N}$ and $\gamma^{(*)}\gamma^{(*)} \to N\bar{N}\&\gamma^{(*)}N \to \gamma^{(*)}N$ in RS equations analyses, etc.
- Lattice data + Roy and Roy-Steiner eqs. for $\pi\pi$, πK and πN ... (CXH, Q.-Z. Li and Z.-H. Guo, in preparation) ...

Thank you very much for your attention!

Theory backgrounds	Analyticity domain of $\pi N RS$ equations	Numerical Results	Discussions	References
000000	00000	000000	000000	

- V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga, and D. R. Phillips. Precision calculation of the π⁻ deuteron scattering length and its impact on threshold π N scattering. *Phys. Lett. B*, 694:473–477, 2011. doi: 10.1016/j.physletb.2010.10.028.
- P. Buettiker, S. Descotes-Genon, and B. Moussallam. A new analysis of pi K scattering from Roy and Steiner type equations. *Eur. Phys. J. C*, 33:409–432, 2004. doi: 10.1140/epjc/s2004-01591-1.
- I. Caprini, G. Colangelo, and H. Leutwyler. Mass and width of the lowest resonance in QCD. *Phys. Rev. Lett.*, 96:132001, 2006. doi: 10.1103/PhysRevLett.96.132001.
- S. Descotes-Genon and B. Moussallam. The K*0 (800) scalar resonance from Roy-Steiner representations of pi K scattering. *Eur. Phys. J. C*, 48:553, 2006. doi: 10.1140/epjc/s10052-006-0036-2.
- C. Ditsche, M. Hoferichter, B. Kubis, and U. G. Meissner. Roy-Steiner equations for pion-nucleon scattering. JHEP, 06:043, 2012. doi: 10.1007/JHEP06(2012)043.
- R. Garcia-Martin, R. Kaminski, J. R. Pelaez, J. Ruiz de Elvira, and F. J. Yndurain. The Pion-pion scattering amplitude. IV: Improved analysis with once subtracted Roy-like equations up to 1100 MeV. *Phys. Rev. D*, 83:074004, 2011. doi: 10.1103/PhysRevD.83.074004.
- M. Hoferichter, J. Ruiz de Elvira, B. Kubis, and U.-G. Meißner. Roy–Steiner-equation analysis of pion–nucleon scattering. *Phys. Rept.*, 625:1–88, 2016. doi: 10.1016/j.physrep.2016.02.002.
- H. Lehmann. Analytic properties of scattering amplitudes as functions of momentum transfer. *Nuovo Cim.*, 10(4):579–589, 1958. doi: 10.1007/bf02859794.
- S. Mandelstam. Determination of the pion nucleon scattering amplitude from dispersion relations and unitarity. General theory. *Phys. Rev.*, 112:1344–1360, 1958. doi: 10.1103/PhysRev.112.1344.
- S. Mandelstam. Analytic properties of transition amplitudes in perturbation theory. *Phys. Rev.*, 115: 1741–1751, 1959. doi: 10.1103/PhysRev.115.1741.
- J. R. Pelaez and A. Rodas. $\pi\pi \to K\bar{K}$ scattering up to 1.47 GeV with hyperbolic dispersion relations. *Eur. Phys. J. C*, 78(11):897, 2018. doi: 10.1140/epjc/s10052-018-6296-9.