A unified formulation of one－loop tensor integrals for finite－volume effects

Ze－Rui Liang
（梁泽锁•湖南大学）

第七届手征有效场论研讨会

东南大学•南京，October 15－17， 2022

Based on［ZRL and De－Liang Yao（姚德良），arXiv：2207．11750］

Outline

- Introduction
- Decomposition of one-loop tensor integrals
- Definition of loop integrals for FVC
- Decomposition of the FVC tensor integrals
- Evaluation of the coefficients
- Reduction of tensor coefficients
- Center-of-mass frame
- Passarino-Veltman reduction
- A pedagogic example of application
- Summary and outlook

Finite Volume Corrections

- The finite volume correction (FVC) for a given quantity Q is given by

$$
\delta Q=Q(L)-Q(\infty)
$$

- $Q(L)$ and $Q(\infty)$ are calculated in the finite volume and infinite volume, respectively.
- FVC are not only the theoretical interest, but also the need in the precise extraction of physical results in lattice QCD simulation.
- The Lüscher formula provides an approach to calculate FVC to masses.
- Lüscher formula relate the finite size mass shift to an integral of a special amplitude, evaluated in the infinite volume. [M. Luscher, Commun. Math. Phys. 104, 177-20(61986)]
- Its application to the study of the FVC to the masses, pions, nucleon and heavy mesons, has been made.
[G. Colangelo, et al, EPJC 33, (2004)], [G. Colangelo, et al, NPB 721, (2005)], [G. Colangelo, et al, PRD 82, 034506 (2010)]
- This approach fails in generating exponential terms beyond leading order.
- A resummed version [6. Colangelo, et al, NPB 721, (2005)] or a Lüscher-formula-like asymptotic [6. Colangelo, et al, PLB 590 (2004), 258-264] expression was proposed. But the feasibility of the Lüscher formula approach is rather limited.

Chiral perturbation theory

- At finite volume, another systematical and popular tool to evaluate FVC is the ChPT.
[J. Gasser, H. Leutwyler, PLB 184 (1987) 83], [J. Gasser, H. Leutwyler, PLB 188 (1987) 477], [J. Gasser, H. Leutwyler, NPB 307 (1988) 763]
- The Lagrangian is the same as the infinite case.
- In a cubic box, momentum is discretized where the boundary conditions are imposed.

Fig. from [Alessio Giovanni Willy Vaghi, PHD thesis, (2015)]

- We are interested in ChPT for p-regime:

$$
M_{\pi} L \gg 1
$$

Chiral perturbation theory

- A multitude of works concerning FVC based on ChPT have been done :
- Masses:
[S. R. Beane, PRD 70, 034507 (2004)], [L. S. Geng, et al, PRD 84, 074024 (2011)], [L. Alvarez-Ruso, et al, PRD 88, 054507 (2013)],
[D. L. Yao, PRD 97, 034012 (2018)], [D. Severt, et al, CTP. 72, 075201 (2020)]
- Decay constants: [D. Becirevic, et al, PRD 69, 054010 (2004)], [L. s. Geng, et al, PRD 89, 113007 (2014)]
- Nucleon electric dipole moments: [T. Akan, et al, PLB T36, 163-168 (2014)]
- Scalar form factors in $K_{\ell 3}$ semi-leptonic decay: [K. Ghorbani, et al, EPJC 71, 1671 (2011)]
- FVC to forward Compton scattering off the nucleon: [J. L. de la Parra, et al, PRD 103, 034507 (2021)]
- ...
- Calculations of FVC in ChPT are tedious :
- Complexity occurs in the one-loop analyses.
- Automation of the one-loop calculations of FVC is still unavailable.
- Expressions of the results for a given quantity might be different in form.
- Our work
- Intend to give a unified description of the one-loop tensor integrals in a finite volume.
- Generalize tensor decomposition of the one-loop tensor integrals to the FVC case, and derive a compact formula for the tensor coefficients.
- Investigate the feasibility of the PV reduction of the tensor integrals.

Definition of loop integrals for FVC I

- General form of one-loop N-point rank- P tensor integrals

$$
T^{N, \mu_{1}, \cdots, \mu_{P}}=\frac{1}{i} \int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} \frac{k^{\mu_{1}} \cdots k^{\mu P}}{D_{1} D_{2} \cdots D_{N}}, \quad D_{j}=\left[\left(k+p_{j-1}\right)^{2}-m_{j}^{2}+i 0^{+}\right]
$$

with $p_{0}=0, j=1,2, \cdots, N$, and an infinitesimal imaginary part $i 0^{+}$.

- The finite-volume tensor integrals
- In a cubic box of volume $V=L^{3}$, the periodic boundary conditions $\mathbf{k}_{n}=\frac{2 \pi n}{L}$

$$
\int \frac{\mathrm{d} \mathbf{k}}{(2 \pi)^{3}} F(\mathbf{k}) \rightarrow \frac{1}{L^{3}} \sum_{\mathbf{n}} F\left(\mathbf{k}_{n}\right), \quad \mathbf{n} \equiv\left(n_{1}, n_{2}, n_{3}\right) \text { with } n_{i} \in \mathbb{Z}
$$

- The tensor integrals at finite volume are

$$
T_{V}^{N, \mu_{1}, \cdots, \mu_{P}}=\frac{1}{i}\left(\int \frac{1}{L^{3}} \sum_{\mathbf{n}} \int \frac{\mathrm{d} k^{0}}{2 \pi}\right) \frac{k^{\mu_{1}} \cdots k^{\mu_{P}}}{D_{1} D_{2} \cdots D_{N}} \equiv \frac{1}{i} \int_{V} \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} \frac{k^{\mu_{1}} \cdots k^{\mu_{P}}}{D_{1} D_{2} \cdots D_{N}} .
$$

Definition of loop integrals for FVC II

- Poisson summation formula

$$
\frac{1}{L^{3}} \sum_{\mathbf{n}} F\left(\mathbf{k}_{n}\right)=\sum_{\mathbf{n}} \int \frac{\mathrm{d} \mathbf{k}}{(2 \pi)^{3}} e^{i \mathbf{l}_{k} \cdot \mathbf{k}} F\left(\mathbf{k}_{n}\right)
$$

- Then the finite-volume tensor integrals are

$$
T_{V}^{N, \mu_{1}, \cdots, \mu_{P}}=\sum_{\mathbf{n}} \frac{1}{i} \int_{V} \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} e^{-i l_{k} \cdot k} \frac{k^{\mu_{1}} \cdots k^{\mu_{P}}}{D_{1} D_{2} \cdots D_{N}},
$$

with a four vector $I_{k}^{\mu}=(0, \mathbf{n} L)=n^{\mu} L .|\mathbf{n}|=0$ represents the infinite-volume contribution.

- The difference between the infinite and finite cases defines the FVC, and the tensor integrals for FVC are

$$
\widetilde{T}^{N, \mu_{1}, \cdots, \mu_{P}}=\sum_{\mathbf{n} \neq 0} \frac{1}{i} \int_{V} \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} e^{-i l_{k} \cdot k} \frac{k^{\mu_{1}} \cdots k^{\mu_{P}}}{D_{1} D_{2} \cdots D_{N}} .
$$

Decomposition of the FVC tensor

- Considering the discretization effects at finite volume, a unit space-like vector $n^{\mu}=(0, \mathbf{n})$ is introduced.

$$
\widetilde{L}^{\mu_{1} \cdots \mu_{P}}=\{\underbrace{g \cdots g}_{s} p \cdots p \underbrace{n \cdots n}_{r}\}_{i_{2 s+1} \cdots i_{P-2 s-r}}^{\mu_{1} \cdots \mu_{P}},
$$

- $2 s$ out of P indices are distributed over the metric tensors and any pair of them are symmetrical.
- the n-vectors occupy r indices from the remaining ones.
- the rest indices are assigned to the momenta
- the number of terms

$$
\frac{P!}{2^{s} s!r!(P-2 s-r)!}
$$

Examples

- Some instructive examples

$$
\begin{aligned}
& \{p p \cdots p\}_{i_{1} i_{2} \cdots i_{P}}^{\mu_{1} \mu_{2} \cdots \mu_{P}}=p_{i_{1}}^{\mu_{1}} p_{i_{2}}^{\mu_{2}} \cdots p_{i_{P}}^{\mu_{P}}, \\
& \{p n\}_{i_{1}}^{\mu_{1} \mu_{2}}=p_{i_{1}}^{\mu_{1}} n^{\mu_{2}}+n^{\mu_{1}} p_{i_{1}}^{\mu_{2}}, \\
& \{p p n\}_{i_{1} i_{2}}^{\mu_{1} \mu_{2} \mu_{3}}=p_{i_{1}}^{\mu_{1}} p_{i_{2}}^{\mu_{2}} n^{\mu_{3}}+p_{i_{1}}^{\mu_{1}} n^{\mu_{2}} p_{i_{2}}^{\mu_{3}}+n^{\mu_{1}} p_{i_{1}}^{\mu_{2}} p_{i_{2}}^{\mu_{3}}, \\
& \{p n n\}_{i_{1}}^{\mu_{1} \mu_{2} \mu_{3}}=p_{i_{1}}^{\mu_{1}} n^{\mu_{2}} n^{\mu_{3}}+n^{\mu_{1}} p_{i_{1}}^{\mu_{2}} n^{\mu_{3}}+n^{\mu_{1}} n^{\mu_{2}} p_{i_{1}}^{\mu_{3}} \text {, } \\
& \{g n\}^{\mu_{1} \mu_{2} \mu_{3}}=g^{\mu_{1} \mu_{2}} n^{\mu_{3}}+g^{\mu_{1} \mu_{3}} n^{\mu_{2}}+g^{\mu_{2} \mu_{3}} n^{\mu_{1}}, \\
& \{g p n\}_{i_{1}}^{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}=g^{\mu_{1} \mu_{2}}\left(p_{i_{1}}^{\mu_{3}} n^{\mu_{4}}+n^{\mu_{3}} p_{i_{1}}^{\mu_{4}}\right)+g^{\mu_{1} \mu_{3}}\left(p_{i_{1}}^{\mu_{2}} n^{\mu_{4}}+n^{\mu_{2}} p_{i_{1}}^{\mu_{4}}\right) \\
& +g^{\mu_{1} \mu_{4}}\left(p_{i_{1}}^{\mu_{2}} n^{\mu_{3}}+n^{\mu_{2}} p_{i_{1}}^{\mu_{3}}\right)+g^{\mu_{2} \mu_{3}}\left(p_{i_{1}}^{\mu_{1}} n^{\mu_{4}}+n^{\mu_{1}} p_{i_{1}}^{\mu_{4}}\right) \\
& +g^{\mu_{2} \mu_{4}}\left(p_{i_{1}}^{\mu_{1}} n^{\mu_{3}}+n^{\mu_{1}} p_{i_{1}}^{\mu_{3}}\right)+g^{\mu_{3} \mu_{4}}\left(p_{i_{1}}^{\mu_{1}} n^{\mu_{2}}+n^{\mu_{1}} p_{i_{1}}^{\mu_{2}}\right), \\
& \{g g\}^{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}=g^{\mu_{1} \mu_{2}} g^{\mu_{3} \mu_{4}}+g^{\mu_{1} \mu_{3}} g^{\mu_{2} \mu_{4}}+g^{\mu_{1} \mu_{4}} g^{\mu_{2} \mu_{3}} .
\end{aligned}
$$

Decomposition of the FVC tensor integrals

- The one-loop tensor integrals can be decomposed into the form as

$$
\widetilde{T}^{N, \mu_{1} \cdots \mu_{P}}=\sum_{\mathbf{n} \neq 0} \vec{T}^{N, \mu_{1} \cdots \mu_{P}}
$$

with

$$
\vec{T}^{N, \mu_{1} \cdots \mu_{P}}=\sum_{s=0}^{[P / 2]} \sum_{r=0}^{P-2 s} \sum_{\substack{i_{2 s+1}=1, i_{P-2 s-r}=1}}^{N-1}\{\underbrace{g \cdots g}_{s} p \cdots p \underbrace{n \cdots n}_{r}\}_{i_{2 s+1} \cdots i_{P-2 s-r}}^{\mu_{1} \cdots \mu_{P}} \vec{T}_{2 s}^{N} \underbrace{N}_{2 \cdots 0} i_{2 s+1} \cdots i_{P-2 s-r} \underbrace{N \cdots N}_{r} .
$$

- $[P / 2]$ is the floor function.
- Tensor coefficient $\vec{T}_{0 \cdots i_{2 s+1} \cdots i_{P-2 s-r} N \ldots N}^{N}$ is invariant with respect to permutation of the subscripts ij${ }_{j}$, i.e. $\vec{C}_{001233}=\vec{C}_{002133}$.
- the subscripts " N " are unique in the finite volume.

Examples

- Decomposition of the FVC tensor integrals up to rank 3

$$
\begin{aligned}
\vec{T}^{N, \mu} & =\sum_{i=1}^{N-1} p_{i}^{\mu} \vec{T}_{i}^{N}+n^{\mu} \vec{T}_{N}^{N}, \\
\vec{T}^{N, \mu \nu} & =g^{\mu \nu} \vec{T}_{00}^{N}+\sum_{i, j=1}^{N-1} p_{i}^{\mu} p_{j}^{\nu} \vec{T}_{i j}^{N}+\sum_{i=1}^{N-1}\{p n\}_{i}^{\mu \nu} \vec{T}_{i N}^{N}+n^{\mu} n^{\nu} \vec{T}_{N N}^{N}, \\
\vec{T}^{N, \mu \nu \rho} & =\sum_{i=1}^{N-1}\{g p\}_{i}^{\mu \nu \rho} \vec{T}_{00 i}^{N}+\{g n\}^{\mu \nu \rho} \vec{T}_{00 N}^{N}+\sum_{i, j, k=1}^{N-1} p_{i}^{\mu} p_{j}^{\nu} p_{k}^{\rho} \vec{T}_{i j k}^{N}+\sum_{i, j=1}^{N-1}\{p p n\}_{i j}^{\mu \nu \rho} \vec{T}_{i j N}^{N} \\
& +\sum_{i=1}^{N-1}\{p n n\}_{i}^{\mu \nu \rho} \vec{T}_{i N N}^{N}+n^{\mu} n^{\nu} n^{\rho} \vec{T}_{N N N}^{N},
\end{aligned}
$$

Evaluation of the coefficients

- Technical steps:

Evaluation of the coefficients

- In the end, the one-loop tensor integrals have the form

$$
\begin{aligned}
\widetilde{T} N, \mu_{1}, \cdots, \mu_{P} & =\sum_{\mathbf{n} \neq 0} \sum_{s=0}^{[P / 2]} \sum_{r=0}^{P-2 s} \sum_{\substack{i_{2 s+1}=1 \\
i_{P-2 s-r}=1}}^{N-1}\{\underbrace{g \cdots g}_{s} p \cdots p \underbrace{n \cdots n}_{r}\}_{i_{2 s+1}, \cdots, i_{P-2 s-r}}^{\mu_{1} \mu_{2} \cdots \mu_{P}} \frac{(-1)^{N+P-s-r}}{(4 \pi)^{d / 2} 2^{s}}\left(\frac{i L}{2}\right)^{r} \\
& \left.\times \int_{0}^{1} \mathrm{~d} X_{N} X_{N}^{i_{2 s+1}} \cdots X_{N}^{i_{P-2 s-r}} e^{i i_{k} \cdot \mathcal{P}_{N}} \mathcal{K}_{N-s-r-\frac{d}{2}} \frac{|\mathbf{n}|^{2} L^{2}}{4}, \mathcal{M}_{N}^{2}\right)
\end{aligned}
$$

with $\int \mathrm{d} X_{N} \equiv \frac{1}{\Gamma(N)} \int_{0}^{1} \mathrm{~d} \mathcal{X}_{N}=\int_{0}^{1} \mathrm{~d} x_{1} \cdots \int_{0}^{1} \mathrm{~d} x_{N-1} x_{2} \cdots x_{N-1}^{N-2}$.

- A general expression for the coefficients reads

$$
\begin{aligned}
\vec{T}_{\underbrace{}_{2 s} \cdots 0} i_{2 s+1 \cdots i P-2 s-r} \underbrace{N \cdots N}_{r} & =\frac{2}{(4 \pi)^{d / 2}} \frac{(-1)^{N+P-s-r}}{2^{s}}\left(\frac{i L}{2}\right)^{r} \int_{0}^{1} \mathrm{~d} X_{N} X_{N}^{i_{2 s+1}} \cdots X_{N}^{i p-2 s-r} e^{i L n \cdot \mathcal{P}_{N}} \\
& \times\left(\frac{|\mathbf{n}|^{2} L^{2}}{4 \mathcal{M}_{N}^{2}}\right)^{\frac{N-s-r-d / 2}{2}} K_{\left|N-s-r-\frac{d}{2}\right|}\left(|\mathbf{n}| L \mathcal{M}_{N}\right)
\end{aligned}
$$

Center-of-Mass frame

- It is convenient to compute FVC in the rest frame or in the CM frame, where the net three momentum is zero.

$$
I_{k} \cdot p_{i}=0 \Longleftrightarrow n \cdot p_{i}=0, \quad i=1, \cdots, N-1 .
$$

- e.g. elastic two-body forward scattering at threshold, mass renormalization in the rest frame are satisfied by this condition.
- This condition lead to the $\widetilde{L}^{\mu_{1} \cdots \mu_{P}}$ tensors with odd n-vectors vanish. And then the dependence on \mathbf{n} of the rank- P tensor can be relieved

$$
\sum_{\mathbf{n} \neq 0} n^{\mu_{1}} \cdots n^{\mu_{2 t}} F\left(n^{2}\right)=\frac{1}{2^{t}\left(d_{s} / 2\right)_{t}}\{h \cdots h\}^{\mu_{1} \cdots \mu_{2 t}} \sum_{\mathbf{n} \neq 0}\left(n^{2}\right)^{t} F\left(n^{2}\right),
$$

- The auxiliary tensor $h_{\mu \nu}$ is defined as $h_{\mu \nu} \equiv g_{\mu \nu}-\bar{h}_{\mu} \bar{h}_{\nu}=\operatorname{diag}(0,-1,-1,-1)$ with $\bar{h}_{\mu}=(1,0,0,0)$, which serves to eliminate the zero-th component of the vector.
- The rank- P tensor is irrelevant of \mathbf{n}, and enable us to perform the sum over \mathbf{n} in advance.

Tensor coefficients of FVC integrals in CM frame

- The tensor decomposition of the FVC integrals
- The \mathbf{n}-independent coefficients are

$$
\widetilde{T}_{\underbrace{N}_{2 s}}^{N} i^{0 \cdots 0} i_{2 s+1} \cdots i_{P-2 s-2 t} \underbrace{N \cdots N}_{2 t}=\frac{1}{2^{t}\left(d_{s} / 2\right)_{t}} \sum_{\mathbf{n} \neq 0}[\left(n^{2}\right)^{t} \underbrace{\vec{T}_{0 \cdots 0}^{N}}_{2 s} i_{2 s+1 \cdots i_{P-2 s-2 t}}^{\underbrace{N \cdots N}_{2 t}}] .
$$

- Now the equation relies merely on n^{2}, then the triple sum can be replaced by a single sum $n_{s} \equiv n_{1}^{2}+n_{2}^{2}+n_{3}^{2}$ once the multiplicity $\vartheta\left(n_{s}\right)$ for a given n_{s} takes into account.

$$
\widetilde{T}_{\underbrace{N \cdots 0}_{2 s}}^{N} i_{2 s+1 \cdots i_{P-2 s-2 t}}^{\underbrace{N \cdots N}_{2 t}}=\frac{(-1)^{t}}{2^{t}\left(d_{s} / 2\right)_{t}} \sum_{n_{s}>0}[\vartheta\left(n_{s}\right) n_{s}^{t} \vec{T}_{\underbrace{N}_{2 s}}^{N} i_{2 s+1} i_{2 s+1} \cdots i_{P-2 s-2 t} \underbrace{N \cdots N N}_{2 t}] .
$$

PV reduction of one-point tensor integrals

- For one-point tensor integrals, they can only be contracted by the metric tensor, and then the recurrence relations

$$
[(d-1)+2(t-1)] \widetilde{A}_{2 s}^{0 \cdots 0} \underbrace{1 \cdots 1}_{2 t}+[d+2 s+4(t-1)] \underbrace{}_{2 s+2} \widetilde{A}_{0 \cdots 0} \underbrace{1 \cdots 1}_{2 t-2}=m_{1}^{2} \widetilde{A}_{\underbrace{}_{2 s}}^{0 \cdots 0} \underbrace{1 \cdots 1}_{2 t-2} .
$$

- Specifically, the relations of one-point tensor integrals are, i.e.

$$
\begin{aligned}
& d \widetilde{A}_{00}+(d-1) \widetilde{A}_{11}=m_{1}^{2} \widetilde{A}_{0}, \\
& (d+2) \widetilde{A}_{0000}+(d-1) \widetilde{A}_{0011}=m_{1}^{2} \widetilde{A}_{00}
\end{aligned}
$$

- All the relations can either be checked numerically or be verified by the recurrence relations of the modified Bessel functions $K_{z}(Y)$.
- All the one-loop FVC integrals can be reduced to a linear combination of $\widetilde{A}_{0 \ldots 0}$.

$$
\underbrace{\tilde{A}_{0 \cdots 0}}_{2 s} \underbrace{1 \cdots 1}_{2 t}=\sum_{i=0}^{t}\{\frac{\left[m_{1}^{2}\right]^{t-i}}{\prod_{j=1}^{t} a(j)} \sum_{\substack{i_{1}=0 \\ i_{t}=0}}^{1}\left[\delta_{i, \sum_{j=1}^{t} i_{j}}^{\prod_{j=1}^{t}}[b(j)]^{i j}\right] \underbrace{\widetilde{A}_{0 \cdots 0}}_{2(s+i)}\},{ }^{2 s}
$$

where $a(j)=(d-1)+2(j-1), b(j)=-[d+2 s+4(j-1)]$, and δ is the Kronecker delta.

PV reduction of one-point tensor integrals

- Schematic roadmap for PV reduction of one-loop FVC tensor integrals

- Dashed lines : represent simplification operations by the recursive use of the recurrence relations.
- The $\widetilde{A}_{0}, \widetilde{A}_{00}, \widetilde{A}_{0000}$, etc, can be adopted as the tensor basis.

PV reduction of two-point tensor integrals

- Schematic roadmap for PV reduction of two-point FVC tensor integrals

- Dashed lines : the number of subscripts " 2 " is reduced by recursively utilizing the relation deduced by contracting the $g_{\mu \nu}$.
- Solid lines : the indices " 1 " can be eliminated by making use of the relation obtained by contracting of the external momentum $p_{1 \mu}$.
- Like the case for one-point integrals, the tensor coefficients only with even numbers of " 0 " survive.

PV reduction of N-point tensor integrals

- Schematic roadmap for PV reduction of N-point FVC tensor coefficients

- Dashed lines: by recursively utilizing the relation deduced by contracting the $g_{\mu \nu}$.
- Solid lines : by making use of the relation obtained by contracting of the external momentum $p_{j}^{\mu_{1}}$.
- The boxed coefficients are chosen as the tensor basis.
- It is a first attempt and only aim at finding out the feasibility of PV reduction and the existence of a tensor basis for the one-loop integrals at finite volume.

The FVC of nucleon mass

- Leading one-loop Feynman diagrams contributing the nucleon mass

(a)

(b)
- The self-energy of the nucleon can be expressed as

$$
\Sigma(p, p)=\sum_{\mathrm{n} \neq 0}[\mathcal{A}+p \mathcal{B}+\mathfrak{p} \mathcal{C}]
$$

- \mathcal{A}, \mathcal{B} and \mathcal{C} are functions of the scalar products of the external momentum and the unit space-like vectors.
- The occurrence of the third term is due to the introduction of spatial boundary conditions of the finite volume.

The FVC of nucleon mass

- The self-energy functions for (a)

$$
\begin{aligned}
\mathcal{A}_{a}= & \frac{3 g_{A}^{2} m_{N}}{4 F_{\pi}^{2}}\left\{s \vec{B}_{0}+2 s \vec{B}_{1}+d \vec{B}_{00}+s \vec{B}_{11}+n^{2} \vec{B}_{22}-2 n \cdot p\left[\vec{B}_{2}+\vec{B}_{12}\right]\right\} \\
\mathcal{B}_{a}= & \frac{3 g_{A}^{2}}{4 F_{\pi}^{2}}\left\{s \vec{B}_{1}+2 s \vec{B}_{11}+2 d \vec{B}_{00}+(d+2) \vec{B}_{001}+s \vec{B}_{111}+n^{2}\left(2 \vec{B}_{22}+\vec{B}_{122}\right)\right. \\
& \left.\quad-2 n \cdot p\left[\vec{B}_{2}+2 \vec{B}_{12}+\vec{B}_{112}\right]\right\} \\
\mathcal{C}_{a}= & \frac{3 g_{A}^{2}}{4 F_{\pi}^{2}}\left\{s \vec{B}_{2}-(d+2) \vec{B}_{002}-s \vec{B}_{112}-n^{2} \vec{B}_{222}+2 n \cdot p \vec{B}_{122}\right\}
\end{aligned}
$$

- $s=p^{2}$.
- g_{A} is the axial coupling constant, F_{π} is the pion decay constant, and m_{N} denotes the nucleon mass in the chiral limit.

The FVC of nucleon mass

- In the CM frame, one has $\bar{u}(p) \phi u(p)=0$. And the self-energy functions for (a) can be simplified to

$$
\begin{aligned}
& \mathcal{A}_{a}=\frac{3 g_{A}^{2} m_{N}}{4 F_{\pi}^{2}}\left\{s \widetilde{B}_{0}+2 s \widetilde{B}_{1}+d \widetilde{B}_{00}+s \widetilde{B}_{11}+(d-1) \widetilde{B}_{22}\right\}, \\
& \mathcal{B}_{a}=\frac{3 g_{A}^{2}}{4 F_{\pi}^{2}}\left\{s \widetilde{B}_{1}+2 s \widetilde{B}_{11}+2 d \widetilde{B}_{00}+(d+2) \widetilde{B}_{001}+s \widetilde{B}_{111}+(d-1)\left[2 \widetilde{B}_{22}+\widetilde{B}_{122}\right]\right\} .
\end{aligned}
$$

- The form is by making use of PV reduction

$$
\begin{aligned}
& \mathcal{A}_{a}(L)=\frac{3 g_{A}^{2} m_{N}}{4 F_{\pi}^{2}}\left\{\widetilde{A}_{0}\left(m_{N}^{2} ; L\right)+M_{\pi}^{2} \widetilde{B}_{0}\left(m_{N}^{2}, m_{N}^{2}, M_{\pi}^{2} ; L\right)\right\}, \\
& \mathcal{B}_{a}(L)=\frac{1}{m_{N}} \mathcal{A}_{a}(L) .
\end{aligned}
$$

where M_{π} is the pion mass and L is the size of the spatial cubic box.

The FVC of nucleon mass

- The self-energy functions for (b)

$$
\begin{aligned}
\mathcal{A}_{b}(L)=-\frac{h_{A}^{2}}{3 F_{\pi}^{2} m_{\Delta}}\left\{\left(m_{\Delta}^{2}\right.\right. & \left.-m_{N}^{2}+3 M_{\pi}^{2}\right) \widetilde{A}_{0}\left(M_{\pi}^{2} ; L\right)-\left(m_{\Delta}^{2}+m_{N}^{2}-M_{\pi}^{2}\right) \widetilde{A}_{0}\left(m_{\Delta}^{2} ; L\right) \\
& \left.+\lambda\left(m_{\Delta}^{2}, m_{N}^{2}, M_{\pi}^{2}\right) \widetilde{B}_{0}\left(m_{N}^{2}, m_{\Delta}^{2}, M_{\pi}^{2} ; L\right)\right\}
\end{aligned} \begin{aligned}
\mathcal{B}_{b}(L)= & \frac{h_{A}^{2}}{6 F_{\pi}^{2} m_{\Delta}^{2} m_{N}^{2}}\left\{\lambda\left(m_{\Delta}^{2}, m_{N}^{2}, M_{\pi}^{2}\right) \widetilde{A}_{0}\left(m_{\Delta}^{2} ; L\right)-\left[\left(m_{\Delta}^{2}-M_{\pi}^{2}\right)^{2}-m_{N}^{4}+4 m_{N}^{2} M_{\pi}^{2}\right] \widetilde{A}_{0}\left(M_{\pi}^{2} ; L\right)\right. \\
& +4 m_{N}^{2}\left[\widetilde{A}_{00}\left(m_{\Delta}^{2} ; L\right)-\widetilde{A}_{00}\left(M_{\pi}^{2} ; L\right)\right] \\
& \left.+\lambda\left(m_{\Delta}^{2}, m_{N}^{2}, M_{\pi}^{2}\right)\left(m_{\Delta}^{2}+m_{N}^{2}-M_{\pi}^{2}\right) \widetilde{B}_{0}\left(m_{N}^{2}, m_{\Delta}^{2}, M_{\pi}^{2} ; L\right)\right\}
\end{aligned}
$$

- Källén function $\lambda(a, b, c)=a^{2}+b^{2}+c^{2}-2 a b-2 a c-2 b c$.
- h_{A} is the coupling constant of the $\pi N \Delta$ interaction, and m_{Δ} is the mass of the Δ resonance in the chiral limit.

A pedagogic example of application

- The expression of the FVC on the nucleon mass

$$
m_{N}^{\mathrm{FVC}}(L)=\left[\mathcal{A}(L)+m_{N} \mathcal{B}(L)\right]
$$

with $\mathcal{A}(L)=\mathcal{A}_{a}(L)+\mathcal{A}_{b}(L)$ and $\mathcal{B}(L)=\mathcal{B}_{a}(L)+\mathcal{B}_{b}(L)$.

- FVC to the nucleon mass

- The validity of the PV reduction for the FVC tensor coefficients is explicitly verified.
- The result of diagram (a) is identical to the one given in Ref. [L. Alvarez-Ruso, et al, PRD 88, 054507 (2013)].
- The contributions of the nucleon and delta loops are comparable with each other, which implies the importance of the Δ resonance in the estimation of FVC to the nucleon mass.

A pedagogic example of application

- The L-dependence of the nucleon mass with different pion mass.

- For a given finite size L, the larger the pion mass is, the smaller the FVC become.
- The effect of FVC on the nucleon mass becomes negligible when $M_{\pi} L \gtrsim 3$.

Summary and Outlook

- A systematical formulation of one-loop tensor integrals for FVC has been advocated.
- A compact formula for the tensor coefficients in the decomposition has been derived, which is suitable for numerical computations.
- In the CM frame, the tensor coefficients can be simplified by means of PV reduction.
- An example is given to illustrate the application of our formulation.
- The formulation pave a path for efficient computations of FVC. (e.g. can be readily implemented in FeynCalc.)
- Chiral extrapolation of Lattice QCD results with FVC and precise extraction of physical quantities. (e.g. doubly charmed baryons and Goldstone bosons)
- Generalize to two-loop integrals.

Many thanks for your attention!

