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Finite Volume Corrections
• The finite volume correction (FVC) for a given quantity Q is given by

δQ = Q(L)− Q(∞)

• Q(L) and Q(∞) are calculated in the finite volume and infinite volume, respectively.
• FVC are not only the theoretical interest, but also the need in the precise extraction of

physical results in lattice QCD simulation.
• The Lüscher formula provides an approach to calculate FVC to masses.

• Lüscher formula relate the finite size mass shift to an integral of a special amplitude,
evaluated in the infinite volume. [M. Luscher, Commun. Math. Phys. 104, 177-20(61986)]

• Its application to the study of the FVC to the masses, pions, nucleon and heavy mesons, has
been made.
[G. Colangelo, et al, EPJC 33, (2004)], [G. Colangelo, et al, NPB 721, (2005)], [G. Colangelo, et al, PRD 82, 034506 (2010)]

• This approach fails in generating exponential terms beyond leading order.
• A resummed version [G. Colangelo, et al, NPB 721, (2005)] or a Lüscher-formula-like asymptotic [G. Colangelo,

et al, PLB 590 (2004), 258-264] expression was proposed. But the feasibility of the Lüscher formula
approach is rather limited.
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Chiral perturbation theory
• At finite volume, another systematical and popular tool to evaluate FVC is the ChPT.

[J. Gasser, H. Leutwyler, PLB 184 (1987) 83], [J. Gasser, H. Leutwyler, PLB 188 (1987) 477], [J. Gasser, H. Leutwyler, NPB 307 (1988) 763]
• The Lagrangian is the same as the infinite case.
• In a cubic box, momentum is discretized where the boundary conditions are imposed.

Fig. from [Alessio Giovanni Willy Vaghi, PHD thesis, (2015)]
• We are interested in ChPT for p-regime:

MπL ≫ 1
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Chiral perturbation theory
• A multitude of works concerning FVC based on ChPT have been done :

• Masses:
[S. R. Beane, PRD 70, 034507 (2004)], [L. S. Geng, et al, PRD 84, 074024 (2011)], [L. Alvarez-Ruso, et al, PRD 88, 054507 (2013)],

[D. L. Yao, PRD 97, 034012 (2018)], [D. Severt, et al, CTP. 72, 075201 (2020)]
• Decay constants: [D. Becirevic, et al, PRD 69, 054010 (2004)], [L. S. Geng, et al, PRD 89, 113007 (2014)]
• Nucleon electric dipole moments: [T. Akan, et al, PLB 736, 163-168 (2014)]
• Scalar form factors in Kℓ3 semi-leptonic decay: [K. Ghorbani, et al, EPJC 71, 1671 (2011)]
• FVC to forward Compton scattering off the nucleon: [J. L. de la Parra, et al, PRD 103, 034507 (2021)]
• · · ·

• Calculations of FVC in ChPT are tedious :
• Complexity occurs in the one-loop analyses.
• Automation of the one-loop calculations of FVC is still unavailable.
• Expressions of the results for a given quantity might be different in form.

• Our work
• Intend to give a unified description of the one-loop tensor integrals in a finite volume.
• Generalize tensor decomposition of the one-loop tensor integrals to the FVC case, and derive

a compact formula for the tensor coefficients.
• Investigate the feasibility of the PV reduction of the tensor integrals. 5 / 27



Definition of loop integrals for FVC I
• General form of one-loop N-point rank-P tensor integrals

T N,µ1,··· ,µP =
1

i

∫ ddk
(2π)d

kµ1 · · · kµP

D1D2 · · ·DN
, Dj = [(k + pj−1)

2 − m2
j + i 0+]

with p0 = 0, j = 1, 2, · · · ,N, and an infinitesimal imaginary part i 0+.
• The finite-volume tensor integrals

• In a cubic box of volume V = L3, the periodic boundary conditions kn = 2πn
L∫ dk

(2π)3
F(k) → 1

L3

∑
n

F(kn) , n ≡ (n1, n2, n3) with ni ∈ Z

• The tensor integrals at finite volume are

T N,µ1,··· ,µP
V =

1

i

(∫
1

L3

∑
n

∫ dk0
2π

)
kµ1 · · · kµP

D1D2 · · ·DN
≡ 1

i

∫
V

ddk
(2π)d

kµ1 · · · kµP

D1D2 · · ·DN
.
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Definition of loop integrals for FVC II
• Poisson summation formula

1

L3

∑
n

F(kn) =
∑

n

∫ dk
(2π)3

ei lk·kF(kn).

• Then the finite-volume tensor integrals are

T N,µ1,··· ,µP
V =

∑
n

1

i

∫
V

ddk
(2π)d e−i lk·k kµ1 · · · kµP

D1D2 · · ·DN
,

with a four vector lµk = (0, nL) = nµL. |n| = 0 represents the infinite-volume contribution.
• The difference between the infinite and finite cases defines the FVC, and the tensor

integrals for FVC are

T̃ N,µ1,··· ,µP =
∑
n ̸=0

1

i

∫
V

ddk
(2π)d e−i lk·k kµ1 · · · kµP

D1D2 · · ·DN
.
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Decomposition of the FVC tensor

• Considering the discretization effects at finite volume, a unit space-like vector nµ = (0, n)
is introduced.

L̃µ1···µP = {g · · · g︸ ︷︷ ︸
s

p · · · p n · · · n︸ ︷︷ ︸
r

}µ1···µP
i2s+1···iP−2s−r

,

• 2s out of P indices are distributed over the metric tensors and any pair of them are
symmetrical.

• the n-vectors occupy r indices from the remaining ones.
• the rest indices are assigned to the momenta
• the number of terms

P !

2ss !r !(P − 2s − r) !
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Examples
• Some instructive examples

{pp · · · p}µ1µ2···µP
i1i2···iP = pµ1

i1 pµ2
i2 · · · pµP

iP ,

{pn}µ1µ2
i1 = pµ1

i1 nµ2 + nµ1pµ2
i1 ,

{ppn}µ1µ2µ3
i1i2 = pµ1

i1 pµ2
i2 nµ3 + pµ1

i1 nµ2pµ3
i2 + nµ1pµ2

i1 pµ3
i2 ,

{pnn}µ1µ2µ3
i1 = pµ1

i1 nµ2nµ3 + nµ1pµ2
i1 nµ3 + nµ1nµ2pµ3

i1 ,

{gn}µ1µ2µ3 = gµ1µ2nµ3 + gµ1µ3nµ2 + gµ2µ3nµ1 ,

{gpn}µ1µ2µ3µ4
i1 = gµ1µ2(pµ3

i1 nµ4 + nµ3pµ4
i1 ) + gµ1µ3(pµ2

i1 nµ4 + nµ2pµ4
i1 )

+ gµ1µ4(pµ2
i1 nµ3 + nµ2pµ3

i1 ) + gµ2µ3(pµ1
i1 nµ4 + nµ1pµ4

i1 )

+ gµ2µ4(pµ1
i1 nµ3 + nµ1pµ3

i1 ) + gµ3µ4(pµ1
i1 nµ2 + nµ1pµ2

i1 ) ,

{gg}µ1µ2µ3µ4 = gµ1µ2gµ3µ4 + gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3 .
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Decomposition of the FVC tensor integrals
• The one-loop tensor integrals can be decomposed into the form as

T̃ N,µ1···µP =
∑
n ̸=0

T⃗ N,µ1···µP

with

T⃗ N,µ1···µP =

[P/2]∑
s=0

P−2s∑
r=0

N−1∑
i2s+1=1,

···
iP−2s−r=1

{
g · · · g︸ ︷︷ ︸

s

p · · · p n · · · n︸ ︷︷ ︸
r

}µ1···µP
i2s+1···iP−2s−r

T⃗N
0···0︸︷︷︸
2s

i2s+1···iP−2s−r N···N︸︷︷︸
r

.

• [P/2] is the floor function.
• Tensor coefficient T⃗N

0···0i2s+1···iP−2s−rN···N is invariant with respect to permutation of the
subscripts ij’, i.e. C⃗001233 = C⃗002133.

• the subscripts “N” are unique in the finite volume.
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Examples

• Decomposition of the FVC tensor integrals up to rank 3

T⃗N,µ =

N−1∑
i=1

pµi T⃗N
i + nµT⃗N

N ,

T⃗N,µν = gµνT⃗N
00 +

N−1∑
i,j=1

pµi pνj T⃗N
ij +

N−1∑
i=1

{pn}µνi T⃗N
iN + nµnνT⃗N

NN ,

T⃗N,µνρ =

N−1∑
i=1

{gp}µνρi T⃗N
00i + {gn}µνρT⃗N

00N +

N−1∑
i,j,k=1

pµi pνj pρkT⃗N
ijk +

N−1∑
i,j=1

{ppn}µνρij T⃗N
ijN

+

N−1∑
i=1

{pnn}µνρi T⃗N
iNN + nµnνnρT⃗N

NNN ,
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Evaluation of the coefficients
• Technical steps:

 Evaluation of the 
 coefficients 

 Feynman Parameterization  To combine propagator denominators

 Perform momentum integration 

 1. Wick rotation: do the integration in 
 Euclidean space

 3. Complete the square of momentum, and 
 give the results 

  Express the left integral in terms 
 of the modified Bessel functions

 Transfer the results to the 
 Minkowski space 

 a compact formula for the tensor coefficients 
 obtained 

 2. Gaussian Parameterization: rewrite the 
 denominator factors into an exponential 
 form. The price is introducing the parameter a 
 parameter lambda to be integrated over.
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Evaluation of the coefficients
• In the end, the one-loop tensor integrals have the form

T̃N,µ1,··· ,µP =
∑
n̸=0

[P/2]∑
s=0

P−2s∑
r=0

N−1∑
i2s+1=1

···
iP−2s−r=1

{g · · · g︸ ︷︷ ︸
s

p · · · p n · · · n︸ ︷︷ ︸
r

}µ1µ2···µP
i2s+1,··· ,iP−2s−r

(−1)N+P−s−r

(4π)d/22s

(
iL
2

)r

×
∫ 1

0
dXNXi2s+1

N · · ·XiP−2s−r
N eilk·PNKN−s−r− d

2
(
|n|2L2

4
,M2

N) ,

with
∫

dXN ≡ 1
Γ(N)

∫ 1
0 dXN =

∫ 1
0 dx1 · · ·

∫ 1
0 dxN−1x2 · · · xN−2

N−1.
• A general expression for the coefficients reads

T⃗ 0···0︸︷︷︸
2s

i2s+1···iP−2s−r N···N︸︷︷︸
r

=
2

(4π)d/2
(−1)N+P−s−r

2s

(
iL
2

)r ∫ 1

0
dXNXi2s+1

N · · ·XiP−2s−r
N eiL n·PN

×
(
|n|2L2

4M2
N

)N−s−r−d/2
2

K|N−s−r− d
2
|(|n|LMN) .

• The Lorentz invariance is broken by n · PN.
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Center-of-Mass frame
• It is convenient to compute FVC in the rest frame or in the CM frame, where the net

three momentum is zero.

lk · pi = 0 ⇐⇒ n · pi = 0 , i = 1, · · · ,N − 1 .

• e.g. elastic two-body forward scattering at threshold, mass renormalization in the rest frame
are satisfied by this condition.

• This condition lead to the L̃µ1···µP tensors with odd n-vectors vanish. And then the
dependence on n of the rank-P tensor can be relieved∑

n̸=0

nµ1 · · · nµ2tF(n2) = 1

2t(ds/2)t
{h · · · h}µ1···µ2t

∑
n ̸=0

(n2)tF(n2) ,

• The auxiliary tensor hµν is defined as hµν ≡ gµν − h̄µh̄ν = diag(0,−1,−1,−1) with
h̄µ = (1, 0, 0, 0), which serves to eliminate the zero-th component of the vector.

• The rank-P tensor is irrelevant of n, and enable us to perform the sum over n in advance.
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Tensor coefficients of FVC integrals in CM frame
• The tensor decomposition of the FVC integrals

T̃ N,µ1···µP =

[P
2
]∑

s=0

[P−2s
2

]∑
t=0

N−1∑
i2s+1=1

···
iP−2s−2t=1

{g · · · g︸ ︷︷ ︸
s

p · · · p h · · · h︸ ︷︷ ︸
t

}µ1µ2···µP
i2s+1,··· ,iP−2s−2t

T̃ N
0···0︸︷︷︸
2s

i2s+1···iP−2s−2t N···N︸︷︷︸
2t

.

• The n-independent coefficients are

T̃ N
0···0︸︷︷︸
2s

i2s+1···iP−2s−2t N···N︸︷︷︸
2t

=
1

2t(ds/2)t

∑
n̸=0

[
(n2)tT⃗ N

0···0︸︷︷︸
2s

i2s+1···iP−2s−2t N···N︸︷︷︸
2t

]
.

• Now the equation relies merely on n2, then the triple sum can be replaced by a single sum
ns ≡ n21 + n22 + n23 once the multiplicity ϑ(ns) for a given ns takes into account.

T̃ N
0···0︸︷︷︸
2s

i2s+1···iP−2s−2t N···N︸︷︷︸
2t

=
(−1)t

2t(ds/2)t

∑
ns>0

[
ϑ(ns)nt

sT⃗ N
0···0︸︷︷︸
2s

i2s+1···iP−2s−2t N···N︸︷︷︸
2t

]
.
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PV reduction of one-point tensor integrals
• For one-point tensor integrals, they can only be contracted by the metric tensor, and then

the recurrence relations[
(d − 1) + 2(t − 1)

]
Ã 0···0︸︷︷︸

2s

1···1︸︷︷︸
2t

+
[
d + 2s + 4(t − 1)

]
Ã 0···0︸︷︷︸

2s+2

1···1︸︷︷︸
2t−2

= m2
1Ã 0···0︸︷︷︸

2s

1···1︸︷︷︸
2t−2

.

• Specifically, the relations of one-point tensor integrals are, i.e.
dÃ00 + (d − 1)Ã11 = m2

1Ã0 ,

(d + 2)Ã0000 + (d − 1)Ã0011 = m2
1Ã00 .

• All the relations can either be checked numerically or be verified by the recurrence relations
of the modified Bessel functions Kz(Y).

• All the one-loop FVC integrals can be reduced to a linear combination of Ã 0···0︸︷︷︸
2s

.

Ã0···0︸︷︷︸
2s

1···1︸︷︷︸
2t

=
t∑

i=0

{
[m2

1]
t−i∏t

j=1 a(j)

1∑
i1=0
···

it=0

[
δi,

∑t
j=1 ij

t∏
j=1

[b(j)]ij
]
Ã 0···0︸︷︷︸

2(s+i)

}
,

where a(j) = (d − 1) + 2(j − 1), b(j) = −[d + 2s + 4(j − 1)], and δ is the Kronecker delta.
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PV reduction of one-point tensor integrals

• Schematic roadmap for PV reduction of one-loop FVC tensor integrals
Ã0

Ã00 Ã11

Ã0000 Ã0011 Ã1111

Ã000000 Ã000011 Ã001111 Ã111111

⋮ ⋮ ⋮ ⋮ ⋱

• Dashed lines : represent
simplification operations by the
recursive use of the recurrence
relations.

• The Ã0, Ã00, Ã0000, etc, can be
adopted as the tensor basis.
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PV reduction of two-point tensor integrals
• Schematic roadmap for PV reduction of two-point FVC tensor integrals

B̃0

B̃1

B̃00 B̃11 B̃22

B̃0000 B̃0011 B̃1111 B̃0022 B̃2222B̃1122

B̃00001 B̃00111 B̃11111 B̃00122B̃11122 B̃12222

B̃001 B̃111 B̃122

⋮ ⋮ ⋮ ⋮⋮⋮ ⋱⋱

• Dashed lines : the number of
subscripts “2” is reduced by
recursively utilizing the relation
deduced by contracting the gµν .

• Solid lines : the indices “1” can
be eliminated by making use of
the relation obtained by
contracting of the external
momentum p1µ.

• Like the case for one-point
integrals, the tensor coefficients
only with even numbers of “0”
survive.
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PV reduction of N-point tensor integrals
• Schematic roadmap for PV reduction of N-point FVC tensor coefficients

T̃N
0

T̃N
i1

T̃N
00 T̃N

i1i2 T̃N
NN

T̃N
0000 T̃N

00i1i2 T̃N
i1i2i3i4 T̃N

00NN T̃N
NNNNT̃N

i1i2NN

T̃N
0000i1 T̃N

00i1i2i3 T̃N
i1i2i3i4i5 T̃N

00i1NNT̃N
i1i2i3NN T̃N

i1NNNN

T̃N
00i1

T̃N
i1i2i3 T̃N

i1NN

⋮ ⋮ ⋮ ⋮⋮⋮ ⋱⋱

• Dashed lines : by recursively
utilizing the relation deduced by
contracting the gµν .

• Solid lines : by making use of the
relation obtained by contracting
of the external momentum pµ1

j .
• The boxed coefficients are

chosen as the tensor basis.

• It is a first attempt and only aim at finding out the feasibility of PV reduction and the
existence of a tensor basis for the one-loop integrals at finite volume.
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The FVC of nucleon mass

• Leading one-loop Feynman diagrams contributing the nucleon mass

(a) (b)

• The self-energy of the nucleon can be expressed as

Σ(/p, /n) =
∑
n̸=0

[
A+ /pB + /nC

]
• A, B and C are functions of the scalar products of the external momentum and the unit

space-like vectors.
• The occurrence of the third term is due to the introduction of spatial boundary conditions of

the finite volume.
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The FVC of nucleon mass

• The self-energy functions for (a)

Aa =
3g2

AmN
4F2

π

{
sB⃗0 + 2sB⃗1 + dB⃗00 + sB⃗11 + n2B⃗22 − 2n · p

[
B⃗2 + B⃗12

]}
,

Ba =
3g2

A
4F2

π

{
sB⃗1 + 2sB⃗11 + 2dB⃗00 + (d + 2)B⃗001 + sB⃗111 + n2(2B⃗22 + B⃗122)

− 2n · p
[
B⃗2 + 2B⃗12 + B⃗112

]}
,

Ca =
3g2

A
4F2

π

{
sB⃗2 − (d + 2)B⃗002 − sB⃗112 − n2B⃗222 + 2n · pB⃗122

}
,

• s = p2.
• gA is the axial coupling constant, Fπ is the pion decay constant, and mN denotes the nucleon

mass in the chiral limit.
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The FVC of nucleon mass

• In the CM frame, one has ū(p)/nu(p) = 0. And the self-energy functions for (a) can be
simplified to

Aa =
3g2

AmN
4F2

π

{
sB̃0 + 2sB̃1 + dB̃00 + sB̃11 + (d − 1)B̃22

}
,

Ba =
3g2

A
4F2

π

{
sB̃1 + 2sB̃11 + 2dB̃00 + (d + 2)B̃001 + sB̃111 + (d − 1)

[
2B̃22 + B̃122

]}
.

• The form is by making use of PV reduction

Aa(L) =
3g2

AmN
4F2

π

{
Ã0(m2

N; L) + M2
πB̃0(m2

N,m2
N,M2

π; L)
}

,

Ba(L) =
1

mN
Aa(L) .

where Mπ is the pion mass and L is the size of the spatial cubic box.
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The FVC of nucleon mass
• The self-energy functions for (b)

Ab(L) = − h2
A

3F2
πm∆

{
(m2

∆ − m2
N + 3M2

π)Ã0(M2
π; L)− (m2

∆ + m2
N − M2

π)Ã0(m2
∆; L)

+ λ(m2
∆,m2

N,M2
π)B̃0(m2

N,m2
∆,M2

π; L)
}

,

Bb(L) =
h2

A
6F2

πm2
∆m2

N

{
λ(m2

∆,m2
N,M2

π)Ã0(m2
∆; L)− [(m2

∆ − M2
π)

2 − m4
N + 4m2

NM2
π]Ã0(M2

π; L)

+ 4m2
N[Ã00(m2

∆; L)− Ã00(M2
π; L)]

+ λ(m2
∆,m2

N,M2
π)(m2

∆ + m2
N − M2

π)B̃0(m2
N,m2

∆,M2
π; L)

}
,

• Källén function λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc.
• hA is the coupling constant of the πN∆ interaction, and m∆ is the mass of the ∆ resonance

in the chiral limit.
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A pedagogic example of application
• The expression of the FVC on the nucleon mass

mFVC
N (L) =

[
A(L) + mNB(L)

]
with A(L) = Aa(L) +Ab(L) and B(L) = Ba(L) + Bb(L).

• FVC to the nucleon mass

• The validity of the PV reduction for the FVC
tensor coefficients is explicitly verified.

• The result of diagram (a) is identical to the
one given in Ref. [L. Alvarez-Ruso, et al, PRD 88, 054507

(2013)].
• The contributions of the nucleon and delta

loops are comparable with each other, which
implies the importance of the ∆ resonance in
the estimation of FVC to the nucleon mass.
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A pedagogic example of application

• The L-dependence of the nucleon mass with different pion mass.

• For a given finite size L, the larger the pion mass is, the smaller the FVC become.
• The effect of FVC on the nucleon mass becomes negligible when MπL ≳ 3.
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Summary and Outlook
• A systematical formulation of one-loop tensor integrals for FVC has been

advocated.
• A compact formula for the tensor coefficients in the decomposition has been

derived, which is suitable for numerical computations.
• In the CM frame, the tensor coefficients can be simplified by means of PV

reduction.
• An example is given to illustrate the application of our formulation.

• The formulation pave a path for efficient computations of FVC.
(e.g. can be readily implemented in FeynCalc.)

• Chiral extrapolation of Lattice QCD results with FVC and precise extraction of
physical quantities. (e.g. doubly charmed baryons and Goldstone bosons)

• Generalize to two-loop integrals.
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Many thanks for your attention!
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