Theories of dark matter

Lian-Tao Wang
University of Chicago

Peking University, May 27,2021



We have solid evidence for dark matter:
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We have solid evidence for dark matter:
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Our goal:
Understand the properties of dark matter.



This talk

— Going over our basic understanding and main
scenarios of dark matter.

— Focusing on theoretical aspects of dark matter
models

- It is a HUGE subject.

> This talk is only an overview and glossing over
many details.



What do we Know about dark matter

- Stable.

> If it decays, lifetime much longer than the age of
universe = 10!7 sec.
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What do we Know about dark matter

- Stable.

> If it decays, lifetime much longer than the age of
universe = 107 sec.

— Dark. Does not emit/absorb/reflect light.

> Does not have electric charge.

— Produced in the early universe with the right
amount. Right “relic abundance”

tter 26.8%
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What do we Know about dark matter

— Seed structures in the universe.

We begin with
quantum
fluctuations in
early universe
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What do we Know about dark matter

— Seed structures in the universe.
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Dark matter needs to be "primordial”, be there in early universe.



What do we Know about dark matter
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early universe

— "Collisionless”. No long range interaction, except gravity.

— Cold. Non-relativistic: Kinetic energy << mass



Mass of dark matter




Mass of dark matter

DM needs to seed structures



Mass of dark matter

DM needs to seed structures

Smallest structure DM seeded:
Dwarf spheroidal galaxy, size = 1 kpc (3000 lyr)

Dark matter particle wave packet must be smaller,
Lightest < largest de Broglie wave length
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"Fuzzy dark matter”



Mass of dark matter

10-22 eV
< |

NGCi47

L DM needs to seed structures

Smallest structure DM seeded:
Dwarf spheroidal galaxy, size = 1 kpc (3000 lyr)

Dark matter particle wave packet must be smaller,
Lightest < largest de Broglie wave length

27

mpmMmv
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~ 0.4 kpc (
mpM

AdB =

"Fuzzy dark matter”



Mass of dark matter

10-22 eV

Upper bound? Large primordial blackholes
(PBH) formed in early universe.



Blackhole lighter than 10-17 Mg 0.010% U

will evaporate in the age of :
universe, not dark. 0.001

Other searches...
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Very heavy BH accrete matter,
too much ionizing radiation,

Blackhole lighter than 10-7 Mg o010,
will evaporate in the age of _
universe, not dark. B,

Other searches... 10-5L_

Mass of dark matter
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Mass of dark matter

1022 eV 10s Mo
] ;
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> 80 order of magnitudes!

What else can we say?
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Mass of dark matter

10-22 eV 102 eV 10s Mg

Bosonic DM

Pauli exclusion principle

Fermionic dark matter

Pmax —_— @
Since dark matter forms local bound .
structures such as galaxies .
pmax = mDM X Vesc P= —@ ®

VGSC *

escape velocity

mpy > 10s eV



Mass of dark matter

Not “Warm” —
10-22 eV 102eV keV 10s Mo
N H I >
< |
Bosonic DM
Warm dark matter limit:
“‘ galaxies... ,"
Dark matter needs to be cold (non-relativistic) G o
for the smallest structure it can seed. . '.,'
\“ ."'
For dark matter particle (in thermal equilibrium) A SR

mom > keV (103 eV) ® O 00000 o
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1) A detailed and reasonable (without too many miracles) story.
2) Have a good chance to be tested.



Mass of dark matter

Not “Warm” —
10-22 eV 102eV keV 10s Mg

— H —

< |

Bosonic DM

How do we guide our searches? We need theories (stories).

A theory should give
1) The property of dark matter: spin, mass, couplings, etc.
2) How is dark matter produced in the early universe?

A good theory should be
1) A detailed and reasonable (without too many miracles) story.
2) Have a good chance to be tested.

Vast number of models, only a few good theories.



Mass of dark matter
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Mass of dark matter
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Bosonic DM WIMP
A lamppost.

A tiny window in the full mass range.
A good lamppost.



Mass of dark matter
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Bosonic DM WIMP

A lamppost.
A tiny window in the full mass range.
A good lamppost.



WIMP (weakly interacting massive
particle)
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Dark matter in thermal equilibrium with the known (Standard
Model) particles in the early universe.

Interaction rate faster than the expansion of the universe



WIMP (weakly interacting massive
particle)
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Dark matter in thermal equilibrium with the known (Standard
Model) particles in the early universe.

Dark matter number density predicted by thermal eq: Neq



WIMP (weakly interacting massive
particle)
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As universe expands, dark matter become rare. The DM-SM
interaction rate cant keep up. DM drops out thermal eq.

Dark matter density become fixed, “"Freeze-out”



A simple picture of interaction

X /
v
Dark "T“Her SM particle
Particle A
X f
|
Mediator

To get the correct relic abundance:

(ov) ~ 2 x 107 %%cm? /s



Two limits

X f
V gt 1
My > My, OV ~
DM ~ My 4z my
X / g: coupling

Limit on coupling: g < 4 = Mpm < 100s TeV
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Two limits

X /
4 2
v g" mpm
mDM < mv, oV ~ 1
dr my
X g: coupling
my = 102 GeV = mpm > GeV
10-22 gV 102eV keV GeV 100TeV 10s Mo
N H I I : >
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Bosonic DM WIMP



Simple WIMP model
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Standard

Model

Mediated by a known interaction:
The weak interaction in the Standard Model

Mediator mass: 102 GeV



WIMP “miracle”
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» We get the right relic abundance of dark matter.

— Coincide with our expectation for weak(+) scale
new physics!



Why is WIMP a good theory?
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Reasonable:
Early universe (hot) is in thermal equilibrium.
Dont need to know too much detail beyond
(before) that.

Can be linked to other motivations for
electroweak scale new physics.

Present in many models: SUSY, extra
dimension...

Testable:
With a sizable coupling to the known (SM)
particle, WIMP can be searched in labs.



Looking around the lamppost

Indirect detection:
AMS2, PAMELA, Fermi-LAT

Cosmology Direct detection:
. > CDMS

\ A CoGeNT
CcCOuUPP
SM CRESST
DAMA
XENON

Lux

DM <«

Collider searches: e
LHC, ...



Direct detection
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At colliders
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At colliders

DM (invisible)

detector

jet, photon ...

missing pT (or ET)
calculated from momentum conservation

» DM (invisible)
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Still a lot to be done
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Beyond WIMP
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Beyond the simple WIMPs

multiple species, non-thermal
different candidate: axion, v'...

N

N
‘& Dark Matter }\.\

dark interaction:
dark gauge boson,

more —————————

dark photon,

“~e.. Wt Z,h
new mediator =~ ~s.

Standard
Model

’

hidden valley
Collider Connection
searches . with
Beam dump Direct Indlre.ct early universe
. detection
detection
e 6 o0 o

New signals. DM may not be the first dark sector discovery.



Extend the WIMP story to lower
masses

4 2
Az my
Y f g: coupling

my = 102 GeV = mpm > GeV

We can consider lighter mediators, my < GeV



Dark photon

;(FWFW

<

photon: |y) photon’: |y

dark photon: a quantum superposition of ¥ and y’

| Yaar) = 17 +217)

Mediates an interaction with strength  y



Roles of dark photon

As mediator for thermal freeze out. (Discussed earlier)



Roles of dark photon

As mediator for thermal freeze out. (Discussed earlier)

Freeze-in

log(abundance)

Freezeout of
non-relativistic particle

Freeze-1n

Mg

m/T  (time)

X f
Weak coupling, dark matter not
in thermal eq.

It approaches the correct relic
abundance.



Roles of dark photon

As mediator for thermal freeze out. (Discussed earlier)

Freeze-in
Freezeout of

— non-relativistic particle

o
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a0

=

Freeze-in :
m/T  (time)

Examples

X f
Weak coupling, dark matter not
in thermal eq.

It approaches the correct relic
abundance.

Thermal freeze out: mpy = 10 MeV, my, = 30 MeV, y ~ 10~

Freeze in:

mpy = 1 MeV,my, = 10712 eV, y ~ 107°



Windows into dark sector: portals

— Any known (SM) particle can in principle have small
couplings to dark matter/dark sector.

Higgs

Neutrino

Higgs/Z factories, such as CEPC
Neutrino facilities, fixed target experiments...



Theories of dark matter

10-22 eV 102eV keV GeV 100TeV 10s Mg
<+ H I I I
< | <l=>
Bosonic DM ) WIN\F{
f WIMP
Neighborhood

Axion, dark photon

Not single particle-like.



Dark matter = classical wave

10~%%eV ’

DM e

noccupation = M X /153 — 1094 ( M )
DM DM

10~*%eV ;
Aap ~ Kpc pom =~ 0.4 GeV/em

— Huge occupation number within a de Broglie
wavelength.

> Collective motion —classical waves, not a single particle

> similar fo sound, waves on the ocean, traveling on a
string...



Classical field in expanding universe

¢+ 3Hd+ V(p) =0

/

Expansion of universe
"Viscosity” V() = m2¢ T ...

a
Hubble: H = - Mass + interactions



Classical field in two limits

H>my §+3H)+ Wp) =0 H<my §+3Hp+ WYp) =0

Hubble expansion more important mass more important
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Classical field in two limits

H>my §+3H)+ Wp) =0 H<my §+3Hp+ WYp) =0

Hubble expansion more important mass more important

. N

1
d(1) PETIN sin(myt + )

Axion Field ¢

H =my/2. T. Lin 2018 TASI lecture



Classical field in two limits

H>my §+3H)+ Wp) =0 H<my §+3Hp+ WYp) =0

Hubble expansion more important mass more important

. N

1
d(1) PETIN sin(myt + )

p X mq%qbz(t) X 30

On large scales, behave same as particle-like matter.

Will similarly cluster, form structure, efc.



Why is axion light?

Potential of a symmetry breaking

-
—

A very common phenomenon:
1) Standard Model electroweak
symmeftry breaking. Strong interaction.
2) Condensed matter system: phonon,

magnets, BCS...

(¢) (adimens.)

. J
oY\ \,
\‘Y" ‘

Excitation in 0 direction massless. “Goldstone” boson.

Symmetry 0 — 0 + ¢ = 0 is massless.

Small mass can then be generated by a small coupling.



logyo(¢i/GeV)

Production: misalignment

H>m¢ H<m¢

Hubble expansion more important mass more important

]
----------------------------------------
‘e
.

18+ v ¢
’ l

o*
.....
---------------------------------------

N, P(t) = T sin(myt + ¢g)
: p=mip(1) < ¢
9 Need large initial value

Possible during inflation.



“The axion” and ALP

QCD (strong interaction) axion: the axion

Axion from breaking of a U(1) global symmetry.
Axion mass generated by small non-perturbative effect of strong interaction.

Motivation: QCD strong CP problem.

The neutron electric dipole moment expected from QCD is wrong by at least
9 orders of magnitude.

Axion gives a dynamical solution to this problem.



“The axion” and ALP

QCD (strong interaction) axion: the axion

Axion from breaking of a U(1) global symmetry.
Axion mass generated by small non-perturbative effect of strong interaction.

Motivation: QCD strong CP problem.

The neutron electric dipole moment expected from QCD is wrong by at least
9 orders of magnitude.

Axion gives a dynamical solution to this problem.

Axion like particles: ALPs

Similar light scalar particles.
The property is not dictated by the strong interaction. More general
scenarios than the QCD axion.



Axion coupling to the known particles

Main detection channel relies on axion photon coupling
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Dark photon dark matter

Multiple production mechanisms:

Produced gravitationally during
inflation and reheating

Similar to Hawking radiation, but applied to
expanding universe.

From topological defects (such as
cosmic strings) radiation

+ from misalignment, coupling to
axions, ...

—4 | |
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Dark photon searches
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Heavier dark photon: Colliders, fixed target experiments



Dark photon searches
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Lighter dark photon: Terrestrial/table top detectors, astrophysical, ...

Many new ideas still emerging: e.g. H. An, F. P. Huang, J. Liu, W. Due, 2010.15836



Are axion/dark photon good theories?

— Quite reasonable:

> Based on well known physics (such as Goldstone
boson and symmetry breaking).

» QCD axion can solve strong CP problem.

- Testable:

> Simple coupling to the Standard Model. Large
possible region of coupling strength.

» Many new development for new techniques.

Pretty good theories. Good guide for experiments.



Other stories
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A special feature on the inflaton potential
gives large fluctuations
= primordial blackhole production

Gravitational effect during inflation and
reheating can produce (very) heavy
particles "WIMP-zillars” (10!2-15 GeV)
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The gaps in our stories
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— Still, many orders of magnitudes empty.
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— Even more if we also take into account coupling strength



Conclusion

— Understanding dark matter is one of the most
pressing questions in physics.

— It is a very difficult task.

> Vast range of possibilities, yet we know extremely
little.

— After decades of effort, we have several good
theories: WIMP + dark sector, axion,...

— Much more is needed to cast a wide net! Huge
amount of work left to be done!
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Limits from annihilation
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