Higgs Property Measurement @ ATLAS

Yanping Huang

(IHEP, CHINA)

中國科學院為能物現研究所 Institute of High Energy Physics Chinese Academy of Sciences

iggs particle

\s = 8 TeV, L = 5.3 fb⁻¹

ELSEVIER

Weighted Events / Ш ш The Higgs particle is responsible for the masses * 2.4 MeV 1.27 GeV 171.2 GeV mass 2/3 charge -2/3 2/3 ^{2/3} ^{1/2} **C** of elementary particles, while was the missing 1/2 spin 1/2 charm top photon up name corner stone of the SM before LHC. .8 MeV 104 MeV 4.2 GeV Local p₀ ^{-1/3} ^{1/2}**S** -1⁄3 ATLAS .5 GeV s = 7-8 TeV 2011-12 Quarks 1/2 ₩ Η→γγ $\sqrt{s} = 7$ TeV, L = 5.1 fb⁻ down strange bottom gluon 1500 $\sqrt{s} = 8$ TeV, L = 5.3 fb 10⁻² S/(S+B) Weighted Events <0.17 MeV <15.5 MeV 91.2 GeV 3σ <2.2 eV Ve $^{\circ}_{\frac{1}{2}}V_{\mu}$ 0 V_{τ} 10-4 1/2 1/2 electron muon tau 10⁻⁶ Z boson CMS neutrino neutrino neutrino 5σ Bosons - S+B Fit 105.7 MeV 1.777 GeV 0.511 MeV 30.4 GeV 10^{-8} Bkg Fit Component ±1σ 6 0 eptons e 1/2 L Sauge +2 0 Expected Signal ± 1 o 1/2 10^{-10} 150 200 120 130 140 150 110 300 400 500 110 tau muon W boson electron m,, (GeV) PLB, 716, 2012 m_µ [GeV] H Higgs discovery: A new and of particle physics – measure the Higgs boson properties of the new particle $= -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + i\bar{\Psi}D\psi$ $2i \frac{m_V^2}{2} q^{\mu\nu}$ Gauge coupling 5 6; • E t d Si 300 400 200 500 **Self-coupling** нĹ $D_{\mu}\Phi^{\dagger}D^{\mu}\Phi$ Φ $i \frac{m_f}{m_f}$ 22 $\Psi_L Y \Phi \Psi_R + h.c.$ Yukawa coupling

Higgs boson production and decays @ LHC

LHC/ATLAS

Full Run2 data-taking finished (~ 140 fb⁻¹): 13 TeV, 25 ns bunch spacing

Outline

- Higgs mass and width
- Higgs combination measurement and interpretation:
 - Coupling/STXS/Diff. XS
- Di-Higgs search
- Higgs rare decays
 - + H→inv
 - **+** H→μμ
 - **+** H→Zγ

Higgs Mass

Compatible with 12.3%

CMS :125.26±0.21(±0.20±0.08)GeV (0.17%) JHEP 11(2017)047

- Precise measurements with excellent detector performance : σ(m_H)/m_H ~ 0.17% (CMS) and 0.21% (ATLAS), are better/comparable w.r.t. ATLAS+CMS Run-1 combination 0.19%
- Still dominated by statistical uncertainties, uncertainty on coupling ~ 0.5%

Higgs Width

It is impossible to extract the coupling and Higgs width separately from on-shell cross section measurement \rightarrow Importance of $\Gamma_{\rm H}$ measurement.

$$\sigma_{i \to H \to f}^{on-shell}(SM) \sim \frac{g_i^2 g_f^2}{\Gamma_H}$$

SM: $m_H = 125 \text{GeV} \rightarrow \Gamma_H = 4.07 \text{MeV}$

 $\Gamma_{\rm H}$ cannot be accessed directly due to the experiment resolution

Run-1 direct Higgs width measurement:	
--	--

II 777	$\Pi \rightarrow LL$
.0 (6.2) GeV	2.6 (6.2) GeV
4 (3.1) GeV	3.4 (2.8) GeV
	1.1 (1.6) GeV
	0 (6.2) GeV 4 (3.1) GeV

3 orders of magnitude larger than SM width

Indirect Higgs Width Measurement

With the combination between **on-shell and off-shell analyses**

- + Assuming the on-shell coupling modifiers are the same as the off-shell coupling modifiers
- Assuming NP modifying off-shell coupling without the modification of other background and signal expectation.

Indirect Higgs Width Measurement

Introduce the BSM contribution in the Coupling combination parametrization

Extract the Higgs width with the mass shift from the interference of the $H \rightarrow \gamma \gamma$ w.r.t the continuum background (gg $\rightarrow \gamma \gamma$ box diagrams)

ATLAS @ 3000 fb⁻¹: <160MeV @95%

- Less model dependence
- Make use of Rec. optimization for sensitive improvement
- Further combination and interpretation (signal strength, EFT, BSM)

Event categorization @ Rec. level

Н→үү

H→ZZ

Event categories are defined based on kinematic properties of the $\gamma\gamma/4l$ system + extra particles in the event

 Sensitivity optimization is constrained in the STXS bins: new physics beyond that, lost some global sensitivity, complicated bins and no sensitivity for some bins given current statistics (anti-correlation)

Signal strength

 $\mu = 1.06 \pm 0.07 = 1.06 \pm 0.04 \text{ (stat.)} \pm 0.03 \text{ (exp.)}^{+0.05}_{-0.04} \text{ (sig. th.)} \pm 0.02 \text{ (bkg. th.)}$

Analysis decay channel	Target Prod. Modes	\mathcal{L} [fb ⁻¹]	
$H \rightarrow \gamma \gamma$	ggF, VBF, WH , ZH , $t\bar{t}H$, tH	139	
H \ 77*	ggF, VBF, WH , ZH , $t\bar{t}H(4\ell)$	139	
$\Pi \rightarrow LL$	$t\bar{t}H$ excl. $H \rightarrow ZZ^* \rightarrow 4\ell$	36.1	
$H \rightarrow WW^*$	ggF, VBF	36.1	
	$t\bar{t}H$	50.1	
$H \rightarrow \tau \tau$	ggF, VBF	36.1	
	tīH	50.1	
	VBF	24.5 - 30.6	
$H \rightarrow b \bar{b}$	WH, ZH	139	
	tīH	36.1	
$H \rightarrow \mu \mu$	ggF, VBF, VH, ttH	139	
$H \rightarrow inv$	VBF	139	

Process	Value		SM pred.
$(y_H < 2.5)$	[pb]	Total	[pb]
ggF	44.7	± 3.1	44.7 ± 2.2
VBF	4.0	± 0.6	$3.51 \stackrel{+ 0.08}{- 0.07}$
WH	1.45	+ 0.28 - 0.25	1.204 ± 0.024
ZH	0.78	+ 0.18 - 0.17	$0.797 \stackrel{+ 0.033}{- 0.026}$
$t\bar{t}H + tH$	0.64	± 0.12	0.59 + 0.03 - 0.05

7%

ATL-CONF-2020-027

• Significances of all major production modes (ggF, VBF, WH, ZH, tty) > 5σ

• First observation for WH: obs(exp) significances are 6.3 (5.2) σ for WH and 5.0 (5.4) σ for ZH 12

Product of production XS and BR

к-framework

Parameter	Result
κ _Z	1.02 ± 0.06
κ _W	1.05 ± 0.06
Кb	$0.98 \stackrel{+ 0.14}{- 0.13}$
κ _t	0.96 ± 0.08
$\kappa_{ au}$	$1.06 \stackrel{+ 0.15}{- 0.14}$
Kμ	$1.12 \begin{array}{c} + \ 0.26 \\ - \ 0.32 \end{array}$

STXS measurement

Interpretation of the combined STXS measurements

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} O_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} O_j^{(8)} + \dots$$

$$(\sigma \times B)^{i,H \to X} = (\sigma \times B)^{i,H \to X}_{\text{SM}(N(N))\text{NLO}} \left(1 + \frac{\sigma^{i}_{\text{int},(N)\text{LO}}}{\sigma^{i}_{\text{SM},(N)\text{LO}}} + \frac{\sigma^{i}_{\text{BSM},(N)\text{LO}}}{\sigma^{i}_{\text{SM},(N)\text{LO}}}\right)$$

Parameter

Definition

 $c_{Hq}^{(3)}$

 $-0.27c_{HW} - 0.84c_{HB} + 0.47c_{HWB} - 0.02c_{uW} - 0.05c_{uB}$

$$s_k(c_i, \theta) = \sum_{i, X} \left(\mu^{i, X} \equiv \frac{(\sigma \times B)_{\text{SMEFT}}^{i, H \to X}(c_i)}{(\sigma \times B)_{\text{SM,MC}}} \right) \times \mathcal{L} \times (\sigma \times B)_{\text{SM,MC}}^{i, X}(\theta) \times \epsilon_k^{i, X}(\theta)$$

Wilson coefficients

				Ä	2	$-0.96c\mu_W + 0.19c\mu_P - 0.20c\mu_WP + 0.02c\mu_P$
Wilson coefficient	Operator	Wilson coefficient	Operator	'n'QQH	3	$-0.08c_{HW} + 0.50c_{HR} + 0.86c_{HWR} + 0.07c_{HDD} + 0.03c_{uW} + 0.06c_{uR}$
$c_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$	c _{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$	B,HWB,	4	$0.03c_{HWB} - 0.85c_{HDD} + 0.32c_{uW} + 0.43c_{uB}$
c_{HDD}	$\left(H^{\dagger}D^{\mu}H ight)^{*}\left(H^{\dagger}D_{\mu}H ight)$	c_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{H} W^I_{\mu\nu}$	с ^{[[]}	5	$-0.01 c_{HW} + 0.07 c_{HB} + 0.05 c_{HWB} - 0.44 c_{HDD} - 0.86 c_{uW} - 0.23 c_{uB}$
c_{HG}	$H^{\dagger}HG^{A}_{\mu u}G^{A\mu u}$	(P	$(\bar{a}_{\mu}\sigma^{\mu\nu}\mu_{\nu})\widetilde{H}B_{\mu\nu}$		6	$-0.01 c_{HW} + 0.06 c_{HB} + 0.04 c_{HWB} - 0.29 c_{HDD} + 0.39 c_{uW} - 0.87 c_{uB}$
c_{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$	сив с′	$(\bar{q}_{p}o \ u_{r})\Pi D_{\mu\nu}$		1	$+0.999c_{HG} + 0.038c_{uG}$
c_{HW}	$H^\dagger H W^I_{\mu u} W^{I\mu u}$	\mathcal{L}_{ll}	$(i_p \gamma_\mu i_t)(i_r \gamma^\mu i_s)$ $(\bar{a}_r \gamma_\mu a_t)(\bar{a}_r \gamma^\mu a_s)$		2	$\begin{array}{l} -0.03 c_{HG} + 0.73 c_{uG} - 0.03 c_{qq}^{(i)} - 0.23 c_{qq} - 0.05 c_{qq}^{(i)} - 0.54 c_{qq}^{(i)} - 0.02 c_{uu} - 0.24 c_{uu}^{(i)} - 0.04 c_{ud}^{(i)} - 0.01 c_{qu}^{(i)} - 0.15 c_{qu}^{(i)} - 0.04 c_{qd}^{(i)} - 0.18 c_G + 0.18 c_G + 0.01 c_{qu}^{(i)} - $
c_{HWB}	$H^\dagger au^I H W^I_{\mu u} B^{\mu u}$	cqq	$(\overline{q}p / \mu q_l)(\overline{q}r / q_s)$	<u>e</u> -		0.06 <i>c</i> _{<i>uH</i>}
C _{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	\mathcal{C}_{qq}	$(q_p \gamma_{\mu} \tau q_r)(q_s \gamma^{\mu} \tau q_t)$ $(\bar{a}_r \gamma_{\mu} a_t)(\bar{a}_r \gamma^{\mu} a_r)$	1 <i>G,uH</i> ,tc	3	$\begin{array}{l} -0.03c_{HG}+0.05c_{uG}^{(0)}+0.04c_{q_{1}}^{(0)}+0.25c_{q_{2}}+0.05c_{q_{1}}^{(0)}+0.5c_{q_{2}}^{(0)}+0.5c_{q_{1}}^{(0)}+0.02c_{uu}+0.03c_{uu}^{(0)}+0.03c_{uu}^{(0)}+0.01c_{q_{1}}^{(0)}+0.03c_{q_{1}}^{(0)}+0.29c_{G}+0.2$
c_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}H)$	c_{qq}	$(qp \gamma \mu qt)(qr \gamma qs)$	c ^{[[]}	4	$+0.11c - c + 0.01c - 0.018c^{(3)} + 0.029c^{(3)} + 0.012c^{(1)} - 0.993c + 0.012c^{(1)} + 0.01$
c_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}\widetilde{H})$	c_{qq}	$(q_p \gamma_\mu \eta q_t)(q_r \gamma^{r} \eta q_s)$		5	$+0.02c - 1.0c^{(3)} + 0.06c^{(3)} + 0.03c^{(1)} + 0.02c^{(8)} + 0.02c_{H}$
$c_{11}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{n}\gamma^{\mu}l_{r})$	c _{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$		6	$+0.02c_{qq} - 1.0c_{qq} + 0.03c_{qq} + 0.03c_{uu} + 0.02c_{qu} + 0.02c_{uH}$ +0.07c c -0.02c ⁽¹⁾ +0.07c +0.03c ⁽³⁾ +0.32c ⁽³⁾ +0.06c ⁽¹⁾ +0.04c ⁽⁸⁾ +
Hl	$(\mathbf{U}^{\dagger}; \overleftarrow{\mathbf{D}} I \mathbf{U}) (\overline{\mathbf{I}} - I_{\mathbf{U}} + I_{\mathbf{U}})$	$c_{uu}^{(1)}$	$(\bar{u}_p \gamma_\mu u_t)(\bar{u}_r \gamma^\mu u_s)$		0	$\frac{10.8c_{ud}^{(0)}}{c_{uu}^{(0)}} + 0.04c_{gd}^{(0)} - 0.94c_G + 0.02c_{uH}$
c_{Hl}	$(H^{+}lD_{\mu}^{-}H)(l_{p}\tau^{-}\gamma^{-}l_{r})$	$C_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_t) (\bar{u}_r \gamma^\mu u_s)$	$c^{[1]}_{Hl^{(1)},He}$		$+0.78c_{Hl}^{(1)} - 0.62c_{He}$
c_{He}	$(H^{\dagger}iD_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	$c^{(8)}$.	$(\bar{u}_n \gamma_{\mu} T^A u_r) (\bar{d}_s \gamma^{\mu} T^A d_t)$	$c^{[2]}_{Hl^{(1)},He}$		$+0.62c_{Hl}^{(1)}+0.78c_{He}$
$\mathcal{C}_{H_{\mathcal{A}}}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	ud	$(\bar{a} \ \gamma \ T^A a)(\bar{u} \ \gamma^{\mu} T^A u)$	$c^{[1]}_{Hu,Hd,Hq^0}$	1)	$-0.87c_{Hu} + 0.26c_{Hd} + 0.42c_{Hq}^{\scriptscriptstyle (1)}$
2 ⁽³⁾	$(\mathbf{U}^{\dagger}; \overleftrightarrow{\mathbf{D}} I \mathbf{U}) (= -I \cdot \mathcal{U}_{\mathbf{a}})$	c_{qu}	$(q_p)_{\mu} (q_r)(u_s) (\overline{u_s}) (\overline{u_t})$	$c^{[2]}_{Hu,Hd,Hq}$	1)	$+0.41c_{Hu} - 0.09c_{Hd} + 0.91c_{Hq}^{(1)}$
c_{Hq}	$(\Pi^{+} \iota D_{\mu} \Pi)(q_{p} \iota^{-} \gamma^{r} q_{r})$	c_{qd}	$(q_p \gamma_\mu I^{-1} q_r)(a_s \gamma^\mu I^{-1} a_t)$	$c^{[3]}_{Hu,Hd,Hq}$	1)	$-0.28c_{Hu} - 0.96c_{Hd} + 0.03c_{Hq}^{(1)}$
c_{Hu}	$(H^{\dagger}iD_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	c_W	$\epsilon^{IJK}W^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$	$c^{[1]}_{Hl^{(3)},ll'}$		$0.87c_{HI}^{\scriptscriptstyle (3)} - 0.50c_{II}^{\prime}$
c_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	c_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	$c^{[2]}_{Hl^{(3)},ll'}$		$0.50c_{Hl}^{(3)} + 0.87c_{ll}'$
		••	, .			

Elgenvectors

- Parametrize the signal strength directly with wilson coefficients of SMEFT operators ۲
- Sensitive elgenvectors are chosen as the measured parameters (more orthogonal). ۲

 $\Gamma^{H \to \overline{X}}$

 $\frac{\Gamma_{\text{int}}}{\Gamma_{\text{SM}}^{H \to X}}$

+

 Γ^H

 $\frac{1}{\frac{\text{BSM}}{\prod_{i=1}^{H \to X}}}$

SM ΓH

 $\frac{BSM}{\Gamma_{S'}^H}$

SM

Eigenvalue

1900

245000 33 🗸

0.0077

0.0025 176000

Fit

1

4 🖌 0.017

20 🗸

1.3 🗸

0.14

0.02

0.0092

2.6 0.056

59

0.10

0.0018 27 1

0.33

Para meter

Interpretation of the combined STXS measurements

્

HG,uG,uH,top

Interpretation on BSM model (2HDM)

Based on the coupling strength modifiers (κ-framework), 2HDM constraints indicate no significant deviations from SM prediction.

Interpretation on BSM model (MSSM)

Assuming the observe boson is the light CP-even h of the MSSM theory, six MSSM benchmark scenarios:

- M¹²⁵h scenario: All superparticles are heavy that production and decays of MSSM Higgs boson are only mildly affected
- M¹²⁵h(χ) scenario: All chargions and neutrinos are relatively light, with significant higgsino-gaugino mixing
- M¹²⁵h(τ) scenario: Light staus and light gauging-like charginos and neutralinos
- M¹²⁵h(alignment) scenario: alignment without decoupling scenario

Generally exclude the low mA regime and low tanß range

Interpretation on BSM model (MSSM)

Assuming the observe boson is the **light CP-even h of the MSSM theory**, six MSSM benchmark scenarios:

- M¹²⁵h,EFT scenario: a flexible mass scale MSUSY of super partners (6TeV 10¹⁶TeV)
- M¹²⁵h(χ) scenario: light neutralinos and charginos

No results of direct search are available for the two benchmarks All the results are complementary to limits from direct searches for additional Higgs bosons

Differential Cross Section

Combined measurement

Total Higgs boson production cross section measurement (8%):

55.4+4.3-4.2pb (±3.1(stat.)+3.0-2.8(sys.)) (SM prediction of 55.6±2.5pb)

4l, $p_{\mathrm{T,H}}$	0-)-10 10-2		-20 20-30			30-	45-60		
$\gamma\gamma, p_{\rm T,H}$	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-45	45-60	
Combination	0-	-10	10-	-20	0 20-30			30-45		
4l, $p_{\mathrm{T,H}}$	60-80	80-	-120		120-200		200-	-350	350-1000	
$\gamma\gamma, p_{\rm T,H}$	60-80	80-100	100-120	120 - 140	140 - 170	170 - 200	200 - 250	250-350	350-1000	
Combination	60-80	80-	-120		120-200		200-	-350	350-1000	

EFT interpretation on Diff. cross section

EFT interpretation on Diff. cross section

20

Limit on the c-quark Yukawa coupling

The fit only uses shape information, while the normalization is profiled

t/D

Getting close to 10*SM rate for Di-Higgs production

Constraint on the Higgs self-coupling

- Kinematic dependence on κ_{λ} is estimated with LO prediction, and K-factor is only estimated with $\kappa_{\lambda}=1$
- Amplitude dependence on κ_{λ} can be expressed with 3 reference samples

$$|A(k_t, k_{\lambda})|^2 = k_t^2 \left[\frac{90k_t^2 + 9k_{\lambda}^2 - 99k_t k_{\lambda}}{90} |A(1, 0)|^2 + \frac{100k_t k_{\lambda} - 10k_{\lambda}^2}{90} |A(1, 1)|^2 + \frac{k_{\lambda}^2 - k_t k_{\lambda}}{90} |A(1, 10)|^2 \right]$$

• -5.0<k λ <12.0 / -5.8<k λ <12.0

Self-coupling from single Higgs

Constraint on self-coupling (obs/exp) @ 95% CL:

- **ATLAS (H):** -3.2<κ_λ<11.9 / -6.2<κ_λ<14.4
- **ATLAS (HH):** -5.0<κ_λ<12.0 / -5.8<κ_λ<12.0
- ATLAS (H+HH): -2.3<κ_λ<10.3 / -5.1<κ_λ<11.2
- **CMS(HH):** -5.8<κ_λ<12.0 / -5<κ_λ<12.1

Update on the individual decay modes

HH→bbWW

	-2σ	-1σ	Expected	$+1\sigma$	$+2\sigma$	Observed
$\sigma (gg \rightarrow HH) [pb]$	0.5	0.6	0.9	1.3	1.9	1.2
$\sigma\left(gg\to HH\right)/\sigma^{\rm SM}\left(gg\to HH\right)$	14	20	29	43	62	40

More precise measurements are coming soon

$H \rightarrow Z\gamma/\gamma\gamma^*$ search

- * $H \rightarrow Z\gamma$ search is important to probe the Higgs loop interaction
- * Multiple processes contribute to $H \rightarrow II\gamma$, including $H \rightarrow \gamma\gamma^*$

	Obs.	Exp.	σ×B(H→IIγ)
H→Zγ	2.0 σ	1.2 σ	2.0+1.0-0.9
Η→γ*γ	3.2 σ	2.1 σ	1.5 ± 0.5

$H \rightarrow \mu \mu$

* $H \rightarrow \mu\mu$ can probe the coupling between Higgs and 2nd-generation Fermion

Benefit from the precise measurement of muon

Full Run 2

Obs. (Exp.) significance: 2.0 (1.7)σ

gs invisible decay

~ 0.00

 $\sqrt{s} = 7 \text{ TeV}, 4.7 \text{ fb}^{-1}$

35₄

- In SM, B(H ۲
- BSMs predict DM productions @ LHC, including Higgs portal models: ۲

 $B_{H \to \, \rm inv}$

1σ

- Higgs acts as a portal between a dark sector and the SM sector
- DM particles can only be indirectly inferred through MET, termed as "invisible"

^{0.3} [∗]→4v decays

Input channels: ttH-01 @ Run2, ttH-21 @ Run2, VBF @ Run2 and Run1

						>	1					
Analysis	\sqrt{s} [TeV]	Int. luminosity [fb ⁻¹]	Best fit $\mathcal{B}_{H \to \text{inv}}$	Observed upper limit	Expected upper limit	B _{H→ in}	0.9	V	A TLAS Pre s = 7 TeV, 4 s = 8 TeV, 4	liminary 4.7 fb ⁻¹ 20 3 fb ⁻¹	Obse Expe	erved
Run 2 VBF	13	139	$0.00^{+0.07}_{-0.07}$	0.13	$0.13^{+0.05}_{-0.04}$	t on	0.8	V	s = 13 TeV,	139 fb ⁻¹	<u></u> ± 1σ ± 2σ	
Run 2 $t\bar{t}H$	13	139	$0.04^{+0.20}_{-0.20}$	0.40	$0.36_{-0.10}^{+0.15}$	ili I	0.6					
Run 2 Comb.	13	139	$0.00^{+0.06}_{-0.07}$	0.13	$0.12^{+0.05}_{-0.04}$	pper	0.5					
Run 1 Comb.	7,8	4.7, 20.3	$-0.02^{+0.14}_{-0.13}$	0.25	$0.27^{+0.10}_{-0.08}$	SL u	0.4					
Run 1+2 Comb.	7, 8, 13	4.7, 20.3, 139	$0.00\substack{+0.06\\-0.06}$	0.11	$0.11^{+0.04}_{-0.03}$	2% 0	0.3					
						6	0.2					
VBF mode	provi	des most	sensitiv	ity for	inv. sear	rch	0.1					
		ATL-CONF	-2020-05	<u>52</u>			0⊢	ttH Run 2	VBF Run 2	Combined Run 2	Combined Run 1	 Combined Run 1+2

- **Dominated by systematic uncertainties** (statistics of simulation MC, Rec and ID of Jet/ ۲ lepton, background modelling)
- More stringent constraint is coming with the combination of VH and Higgs visible decay ۲ **modes** (*k*-framework) [c n² ATL'AS Preliminary

10-41

Highlighting the complementarity of DM searches at the LHC and direct detection experiments

Summary

- Comprehensive Higgs property measurements: mass, width, fiducial/differential cross section, simplified template cross section: everything is in good agreement with SM
- More precise measurements are coming soon.